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CAUCHY-DAVENPORT THEOREM IN GROUP EXTENSIONS

by Gyula Kärolyi*)

Abstract. Let A and B be nonempty subsets of a finite group G in which
the order of the smallest nonzero subgroup is not smaller than d \A\ + |R| - 1.
Then at least d different elements of G have a representation in the form ab, where
a G A and b G B. This extends a classical theorem of Cauchy and Davenport to
noncommutative groups. We also generalize Vosper's inverse theorem in the same
spirit, giving a complete description of critical pairs A, B for which exactly d group
elements can be written in the form ab. The proofs depend on the structure of group
extensions.

1. Introduction

Let G ^ 1 be any group. Denote by p(G) the order of the smallest
nontrivial subgroup of G.IfG is finite, then equals the smallest prime
divisor of the order of G. On the other hand, p(G) oc if and only if G
is torsion free. For any prime number p, we will denote by the group
of p elements. Somewhat unconventionally, throughout this paper we will use
multiplicative notation even in the case of Abelian groups.

For nonempty subsets A,B CG with \A\ k and |B| define

AB {ab I a G

According to the Cauchy-Davenport theorem ([2], [4]), \AB\ 1

holds if GZp,whereg is a prime number such that > + - 1. This
result has been generalized in several ways, see e.g. [3, 23, 24, 25, 27].

In particular, the following improvement can easily be obtained from
Kneser's theorem ([19], [21]) or can be proved directly with a short
combinatorial argument, see [16].

*) On leave from Eötvös University, Budapest. Research partially supported by Hungarian
Scientific Research Grants OTKA T043623 and T043631.
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THEOREM 1. If A andB are nonempty finite subsets of an Abelian group

G such that p(G)>|A| + |ß| - 1, then \AB\ > |A| + \B\ - 1.

Kneser's theorem cannot be extended to noncommutative groups in a natural

way ([22], [28]), and the simple combinatorial proof does not work either.

Denote by £iG(M)the minimum size of the product set AB where A and

B range over all subsets of G of cardinality k and respectively. For finite

Abelian groups G, the function pG has been exactly determined by Eliahou,

Kervaire and Plagne [7], Some partial results in the non-Abelian case were

found recently by Eliahou and Kervaire ([5], [6]). In particular, they proved

the inequality pdk,0< k+ I— 1 for all possible values of k and i when

G is a finite solvable group. That equality holds here for + — 1 < piG), a

case in which the upper bound is folklore, is contained in the following result

that we found extending some of the ideas developed in [14, 15, 17],

THEOREM 2. If A and B are nonempty subsets of a finite group G such

that p(G)>|A| + |ß| — 1, then \AB\ > |A| + |ß| — 1.

Based on the theory of group extensions, the proof of this result is

surprisingly simple. Most of this paper is devoted to the study of critical

pairs A, Bforwhich equality is attained in the above theorem.

According to Vosper's inverse theorem [26], if A, B are nonempty subsets

of Zpsuch that \AB\ |A| + |ß| — 1, then either |A| +• |ß| — 1 (that is,

AB Z p),orone of the sets A and B contains only one element, or

I Aß I p -1 and with the notation {c} ZP\AB, B is the complement of

the set cA"1 in Zp, or both A and ß are (geometric) progressions with the

same common quotient. Hamidoune and Rpdseth [12] go one step further; they

characterize all pairs A, ß with |Aß| jA| + |ß|. An extension of Vosper s

theorem to arbitrary Abelian groups is due to Kemperman [18]. For a related

result, see Lev [20].

Vosper's theorem has been extended to torsion fret: groups by Brailovsky

and Freiman [1]. A generalization to arbitrary noncommutative groups has

been obtained by Hamidoune [10]. To state it, we first have to recall the

following notion. Let ß be a finite subset of a group G such that 1 G ß. ß is

called a Cauchy-subset of G if, for every finite nonempty subset A of G,

IAß I > min{|G|, |A| + |ß| - 1}

If the group G is finite, then a subset S that contai ns the unit element is

known to be a Cauchy subset if and only if for every subgroup of G,
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min{|Sff|, |HS|} > min{|G|, \H\ + |S| - 1}

see Corollary 3.4 in [10]. Now Theorem 6.6 in the same paper can be stated
as follows. (Here (q)denotes the subgroup generated by the element q.)

Theorem 3. Let Gbe a finite group and let B be a Cauchy subset of G
such that |G| is coprime to \B\ - 1. Assume that \AB\ - |A| + |ß| — 1 < |G| - 1

holds for some subset A of G. Then either 1, for
some aG G, orthere are elements G G and natural numbers
such that

A {a,aq,aq2,..,,aqk-1} and BU

Since without any loss of generality we may assume in Vosper's theorem
that 1 e B, and any such B with |2?| > 2 is a Cauchy subset of Zp, Vosper's
theorem follows immediately from the above result of Hamidoune. Note that
if G is not a cyclic group of prime order, then a subset B of G with
2 < |#| < p(G) is not a Cauchy subset in general. Thus the following result
gives a different kind of generalization of Vosper's inverse theorem, more in
the spirit of Theorem 2.

THEOREM 4. Let A, B be subsets of a finite group G such that \A\ k,
\B\ =£ and k + £- 1 < p(G) — 1. Then \AB\ =k + £- 1 if and only if one
of the following conditions holds :

(i) k 1 or i 1 ;

(ii) there exist a, b, q e G such that

A {a,aq,aq2,..,faqk-1}and ;

(iii) k+1 - 1 p(G) — 1 and there exist a subgroup F of G of order
and elements u,vGG, z G F such that

A C uF, BCFvandA — u(F \ zvB~l).

Note that the assertions of both Theorems 2 and 4 are obvious if 2.
Thus in view of the Feit-Thompson theorem [8], it is enough to prove the
assertions for solvable groups. Given that the results hold for cyclic groups
of prime order, the natural approach is then to transfer the results to group
extensions. In the case of Theorem 2 this is relatively simple, and depends
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only mildly on the structure of the extension, see Lemma 7. We prove this

result in the next section. The proof of Theorem 4 is more delicate; in this

case we cannot directly transfer the result to group extensions. In Section 3 we

study how much the general approach of the previous section can contribute

towards the characterization of critical pairs if we also assume that the group

H in Lemma 7 is a cyclic group of prime order, meaning that we can also take

advantage of Vosper's inverse theorem. We complete the proof of Theorem 4

in the last section, where we finally take into account the specific structure

of cyclic extensions. The proof also relies on Hamidoune's result Theorem 3.

Finally we note that the following alternative proof of Theorem 2 has been

suggested by Hamidoune [11]. Let A and S denote nonempty finite subsets

of an arbitrary group G. Denote by (S) the subgroup generated by S and

by is(S) the mininum order of an element in S. According to a result of

Hamidoune [9], if A U AS ^ A(S), then

\A U AS\ > \A\ + min{|S|, i/\S\}

Now let A and B be arbitrary nonempty finite subsets of G satisfying

\A\ + |ß| - 1 < p(G). If |2?| 1, then obviously AB\ |A| + \B\ - 1.

Otherwise, replacing A by Ab and B by b~lB for some element b e B, we

may assume that 1 G B. Let S B\{ 1}, then v(S) > p(G) and \(S)\ > p(G).

Moreover, A U AS AB. Thus either AB A(S), in v/hich case

\AB\> |(S)| > p(G) >|A| + |ß|-lf
or the above theorem implies that

IAß I |A UAS\ > |A| + min{|S|, i/(£)} |A| + |5'| |A| + |ß| - 1.

Even though this argument extends Theorem 2 to infinite groups, we feel

that our direct approach is more transparent. We also depend on our proof in

order to derive Theorem 4.

2. Proof of Theorem 2

For simplicity, we say that the group G possesses the Cauchy-Davenport

property if for any pair of nonempty subsets A,ß of G with p(G) > |A| +
|ß| - 1, we have \AB\ > |A| + \B\ - I. In view of our previous remarks,

Theorem 2 can be reduced to the following
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THEOREM 5. Every finite solvable group G possesses the Cauchy-
Davenport property.

Let G — Go > Gi > • • • > Gr {1} be a composition series of G.
Here every composition factor G,/G(+i is a cyclic group of prime order, and
the length of the series r r(G), being equal to the total number of prime
divisors of the order of G, does not depend on the particular choice of the
composition series. If G/N H for some proper normal subgroup N of G,
then |G| |N| • \H\ and thus p(G) — min{p(N). p(H)\. We just remark that
even if the group G is not finite, the inequality p(G) > p(H)}
is not difficult to verify. Since every cyclic group of prime order has the
Cauchy-Davenport property, Theorem 5 follows easily by induction on r from
the following lemma.

Lemma 6. LetG be anarbitrary group with a proper normal subgroup N.
Assume that p(G) min{ p(N), p(G/N)}.If both N and G/N possess the
Cauchy-Davenport property, then so does G.

Before we indicate how this lemma follows from a more general statement,
we briefly recall the structure of general group extensions, following the
terminology of [13]. Namely, if HG/N, then the group G can be
reconstructed from N and Has follows. There exist a map x -a N
and for every h G Han automorphism i)h Aut(N) such that the following
conditions hold for every nG N and hH :

(i) /(l,Ai)=/(Ai,I)=l;
(ii) f(hi,h2)f(h\h2,hf)— 0hl (f(h2, h2)) f(h\, h2h2) ;

(iii) dhldh2(n) =f(h\, h2)dhlh2{n)f(h\,h2);(iv) d] is the unit element of Aut(W).
Then G is isomorphic to the group we obtain if we equip the set of

ordered pairs {(n, h) \ nG N, h £H}withthe multiplication

(ni,hi)(n2,h2)=: {n\dhl{n2).
The behavior in the second coordinate is just as in the case of direct product,
thus the properties of H can be exploited in a natural way. Note also that for
every h\,h2 G H, the mapping

n -)• êhl {ri)fQu,
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is an N -> N bijection. This is the key fact that allows us to exploit also

the properties of N. Now it is clear that Lemma 6 is a special case of the

following statement.

LEMMA 7. LetN and H be arbitrary groups that possess the Cauchy-

Davenport property. Assume that bijections N —? N are given

for every h\. hi GH. Define a binary operation on the set of ordered pairs
G {(«, h)I n G N, h GH}asfollows :

(ni,hi)(n2,h2) =: (fhl,h2(n•

Then \AB\ > |A| + |S| — 1 holds for arbitrary subsets which satisfy

\A\ + \B\— 1 < min{/?(A0, p(H)}

Proof The assertion is obvious if one of the sets A and B is infinite.

Thus we assume that A,Barefinite subsets of G such that \A\ + |ß| - 1 <

min {p(N), p(H)}. Write k |A|, £ — |B| and let A U • • • U

and B Dt U • • U D,, where C, {(</,,. c,) 1 < and

Di {(bij,dj)I1 < i<£i}.We assume that C {<'•, and

D {d\. ...,dt} are subsets of H of cardinality .s and respectively.

We will also assume that k\< •< ksand< • • • < it. Thus, s < k,

t<£ and X);=t k> k - Y'= i it -i.Introducealso .4, {ay \ 1

and Bj {by \ 1 < j<£,}; they are subsets of In C,Dn the second

coordinate of each element is cfi,, whereas the first coordinates form the set

Since ipChdjandipChdj are bijections and

ki + lj -1 < k + i -1 < min{p(N), p(H)\ <

our hypothesis on the group N implies that

IQDjI > - 1 > 1

holds for every 1 < i < sand 1 < jDue to the symmetry of the

multiplication introduced on G,wemay assume without any loss of generality

that s > t. Consider the numbers cid,, c2dt,..., c,d, G H ; they are s different

elements of the set product CD. Since 1 1 < p(H), our

hypothesis on the group H implies that Therefore there

exists a set Iof t-1 pairs (7,6) such that the numbers
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Cidt (1 < i < 5"), Cryd§ ((t? 3) G /)

are all different. Since the sets

CiD, (1 <i<s\C7Ds ((7 ,S)e/)
are pairwise disjoint subsets of AB,it follows that

S

(D \AB\>Yj\CiD,\+ Y, \GDs\
1=1 (7 ,S)ei

s

(2) >$>/ + *'-D + (ï-l)
i=l

(3) — k + tit + (s — t)£t — s + t — 1

(4) =k+tet + (ß-txet-1)-1
(5) > k + £ — 1,

as was to be proved.

3. An intermediate step

Now we take a closer look at the proof of Lemma 7. For the rest of this
section we assume that the finite sets A, B satisfy

\AB\ |A| + |S| - 1 < min{p(AT), p(H)} - 1.

Then we must have equality in (5), which means that I l2 t, and
also that either s t or 1 must hold. Note that we have assumed >
In the case t > sa similar argument yields that kt k2 ~ ks and,
in addition, either s torks 1. Thus, if s 1, then lx 1, and
similarly, if t > s — I then k1.

Assume now that v. / > -• If // is a cyclic group of order p for some
prime number p, then H clearly possesses the Cauchy-Davenport property.
In (1) we also must have equality, which means that

\CD\=s + t-\<k + t-\< min{ - 1 < 1.

Vosper's inverse theorem applied to H leaves us two possibilities, one being
that C H \ hD~lforsome he H, but this only can occur if ,v k,
£ t and k+ £— p<p(N). The other possibility is that C {c\,..., c's}
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and D {d'v..., d't}, where cft c<t~x and d[ dql
1 for suitable

elements c,d,q G H. There is an index 1 < a < s such that cs — cfa.

Clearly,

CD {cd, cdq, cdq2,..., cdg5+?~2}

{cj, cf2di,..., ca, cad2, • • •, Cq,dn ca_^_idn c5df}

Writing Cj Ch k[ kj if c- c;- and D\ D7, C if d,-, and

noticing that the sets

C\D\,C'2D\, c'^c'^cazy„ C+1d;, C(D;

are pairwise disjoint subsets of G that satisfy

we may argue that

a— 1 ^

|A5| > J] i^D'ii+E + 5Z
i=l i=l /=a+1

t s— 1

> — 1) + ^ h
i= 1 «=1

5 f
k[ + + (t — l)ks — t

i= l /=i
Jfc + f-l + (f-l)(*,-l)

> £ + 1.

From the conditions \AB\ |A| + \B\ - 1 and J > 2 it follows that ks 1,

that is, s k. A similar argument also yields t — I.
We summarize these observations in the following lemma.

LEMMA 8. Let N be an arbitrary group that possesses the Cauchy-

Davenport property, and let H Zp for some prime number p. Assume that

bijections phuh2,iphlM: N -A N are given for every huh2 G H. Define a

binary operation on the set of ordered pairs G {(n,h) | n G N,h G H} as

follows :

(ni,hi)(n2,h2) =: (^1,^2(^1)^1^2(^2),h\h2)

If A, B are subsets of G which satisfy

\AB\ \A\ + \B\ - 1 < vain{p(N), p - 1,

then (using the notations introduced in the proof of Lemma 7) one of the

following conditions holds :
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(a) k 1 or i 1 ;

(b) k, £ > 2 and s t 1 ;

(c) s — k >2, t — £ > 2 and C, D are progressions in H with the same
common quotient;

(d) s k >2, t £ > 2, k + £ p <and hD~l for a
suitable element hG H.

4. Proof of Theorem 4

The 'if' part is quite simple. First, if 1 then |AB| Sj I, and if
£ 1 then ,4/f |A| k. Next, if the second condition holds, then again

I Aß I I {aq'b\0 <i< k + £- 2}| + - 1

because the order of q is at least k + £. Finally, in the third case we also
have

IAB I I uFv\{uzv}I— \F\ — \=k + t—\.
To prove the necessity of the conditions, we may assume that the group G

is solvable. We proceed by induction on the length of the composition series
of G. If r(G) - 1 then G is a cyclic group of prime order and the result
is contained in Vosper's theorem. So we assume that r(G) > 2 and that the
theorem has been already verified for every finite solvable group G' with
r(G') < r(G). Choose a normal subgroup such that H G/N Zp
for a prime number p. Then G is a cyclic extension of by and can be
reconstructed from Nand H(h) as follows. There is an element
and an automorphism d G AutW) such that â(n0) n0, n()nnf1 for
every nG Nandthe multiplication on the set of ordered pairs

Go — {(«, h') I nG N,0< i < — 1}

introduced as

(ni,h')(n2,hJ)(niê'(n2)f(h',hJ),h'+j)

where

(n0 if i +j > p
makes G0 a group isomorphic to G, which we may as well identify with G.
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In particular, the function /: H x H N satisfies among others the relations

(6) f(hu,l)=f(hhv)

and

(7) V(f(h\hv))=f(hu,hv)

for every integer / and 0 < u,v < p — 1.

According to Theorem 2, A possesses the Cauchy-E>avenport property. We

also have

\A\ + |5| - 1 < p{G) - 1 min{/?(A0, /'} - 1
•

Thus we may apply Lemma 8 with

iPhi.hJ id and ißh\hj(n) ^\n)f{hlfhJ).

Accordingly, we distinguish four cases.

(a) If k 1 or £ 1, then condition (i) holds.

(b) If k, i > 2 and s t 1, then \Ax\=kx=k and \Bx\=i\=l. Thus,

A {(ahha)I1 < i < k}and{(bj 1 £}

with suitable integers 0 < a, ß < p — 1. Therefore

AB - {(a^a(bj)f(ha,hß),ha+ß)\1 < 1 <

Put B\ {tia(bj) I 1 < j < £}. Then Au B[ are subsets of A of cardinality

k and £, respectively. Since every element of AB has the same second

coordinate ha^~P and multiplication by f(ha1h^) is an A —>• A bijection,
these sets satisfy

|AiÄi| \AB\ =k + e- 1 <p(N) - 1.

A is a finite solvable group with r(A) r(G) - 1, thus our induction

hypothesis implies that either (bl) there exist elements a,b,q G A such that

A\ {a,aq,... ,aqk~1} and B\ {b,qb,... ,qe~lb}, or (b2) k + £ — 1

p(N) — \ p(G) - 1 and there exist a subgroup F of A of order p(N)
and elements w, u G A, z G F such that Ai C wF, C Fv and

Ai w(F \ )~1

We elaborate on these two subcases separately.
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(bl) We prove that in this case condition (ii) holds. More precisely, we

prove that

(8) A {ao,aoqo,ao<7o~'} and

where a0 (a,ha),b0 m (ß-°L(b),hß) and ($""(<?), l).
We may assume that ai+l aqand bJ+, 0~"(qJb) holds for

0 < i< k —1 and 0 < y < f — 1. Thus (ai, ha) a0 and (hi, — b0. We

proceed by induction as follows. Assume first that we have already verified
that cii,ha)ai}q>-1 holds for some 1 < / < 1. Then

a0q'0 cii,ha)qo (aql~\ha)(-d~a(q),1)

(aj-l0a(0-a(q))f(ha, 1

On the other hand, if we have (bj, hß)— ^_1h0 for some 1 then

qJ0b0 qo(bj,hß)(ê~a(q), 1 )(tf~a(qJ~lb),h

(ß-a(q)ti\ß-a(qi-lb))f(\,hß\hß)(d "(<•/'/;). U) (hJ+1,

since $, and thus also t9~" is an automorphism of N. This verifies (8).

(b2) In this case we can write

Ai {uâi,uà2,... ,uâk}and

where a, uàt, O'Hbj) bjV and

(9) {âuà2,,..,àk}=F\z{hf1,hJ1,.--,^r1}-
Let Fo {($_a(/), 1) I / G F} ; then |F0| |F| p(N) — p(G), and clearly
Fo is a subgroup of G isomorphic to F. Introduce also ntl (it. h" and

v0 0 9~a(v),hß),andconsider the sets A0,B0 c F0 defined as follows:

A0 {(tra(di), 1) I 1 < i < k}andB0 - D\l<j<k}.
Then A uqAo C woFo, because for any 1 < i < k,

l) (u,ha)(#-a(äd,l)
(u&>(d-a(âi))f(ha, l),ha) (öi,ha)

holds. Similarly, for every 1 <j<£ we have

(d~a(bj), I )ro (d~a(bj),

(ß-a(bj)d0(ü-a

(ê~a(bjv),lfi) -
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implying that B B0v0 C F0v0. Finally, applying d~a to Equation (9) and

observing that the map p: N —» G defined as p(x) (x, 1) induces a group
isomorphism from £)~a(F) onto Fo, we find that Ao Fo \zoBq1 where

Zo (fa(z),l)Gfo. Consequently,

A uqAo u0(F0 \ zo(Bv~lyl) wo(F0 \ Zov0B~l)

justifying that condition (iii) holds in this case.

(c) s — k > 2, t — i> 2 and C, D are progressions in // with the same

common quotient. In this case we may write

A {(a,, c,) I 1 < i <k}andB= | 1 <}<t),
where c, — h"+u~117 and dj/j^+O'-Dtwith suitable integers 0 < a,ß,7 <

p -1, 7 # 0. Let öo («1,ci) (bo— and

qo — (x,h7)where

x d-a{a^a2{f(ha^))-x).
This implies that

a0q0 (auha)(x,hi)(ai0a(x)f(ha,hV),ha+t) («2,/îa+7) (aj,c2).

We claim that in general,

(ahq) aoq'Z1 and - qJ0"lbo

holds for every 1 < i<kand1 < j t, indicating that condition (ii) is

satisfied in this case.

Let 1 < i < k, 1 <j<£ and m — i+j — 2. Then

(at, a)(bj,dj)(a^a+(l'-1)T(^)/(/îa+(,-1)7,hß+u~iyi),ha+ß+m*)

Thus, for each 0 < m < k+£-2, there is an element xm of AB whose second

coordinate is /^+ß+m7. Moreover, the facts that p is a prime, 1 < 7 < p — 1

and k + £ - 1 < p imply that the numbers ha+f3+m7 (0<m<k + £- 2)

are k + £ — 1 different elements of H, thus the element xm G AB must be

unique. It follows that

(a,-, Ci)(bj, dj) (a//, c?)(bj>, dj')

holds whenever i+j - i' +/. We know that (a2,c2) (auci)q0. For arbitrary
1 < j < £ — 1 we have

(fl2 ,c2)(bj,dj) (ai,ci)(bj+udj+i),

which then implies q0(bj,dj) (bj+\,dj+\). Thus, (bj}dj) qJ0 lbo follows

by induction on j. In particular, (fr2,d2) qo(b\,d\). Thus the relation
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(ßi+l,Ci+\)Q>ud\) (,ai,Ci)(b2,d2)

implies (a^ \, c,-+1 (at, c£)qo for every 1 <i<k — 1, and we also obtain
(ah ci) a0qQ-1 by induction on i.

(d) s k > 2, t £> 2, k + £ p < p(N) and C H\ hD~l for a

suitable element h e H. Let us note first, that we may assume £ > k. This is
because A w(F\z^_1) is equivalent to 15 (F\A_1wz)t; and therefore,
by reversing the multiplication on G (that is, introducing a*b ba) we may
exchange the roles of A and 5 without changing the statement of Theorem 4.

Once again, we may write

A {(at, ci) I 1 < i < k} and B {(bj, dj) | 1 < j < £}

Introduce A (ai,ci)_1A and 5 5(&i,di)_1, then we can write

A q) I 1 < i < k} and B {(bj, dj) | 1 <j <£},
where (à\,c\) (b\,d\) (1,1) f A riß, and writing C {q | 1 < i < k}
and D {dj \ I < j <£}, we have |A| |C| &, |5| \D\ £, and

C H\hD
1

holds with A cf1. In addition, clearly \ÂÈ\ \AB\
|A| + IÈI — 1. We distinguish two cases.

(dl) G0 (B) / G. Now we claim that A C G0. Indeed, if a G A \ G0 then

(1,1)5 and aÈ are disjoint subsets of A5, yielding

|A5| > 2|5| =2£>p> |A| + |5| - 1,

a contradiction. Note that Go is a proper subgroup of G, hence solvable with
r(G0) < r(G) and />(G0) > p(G). Thus we may apply our induction hypothesis
to conclude that either there exist à, b, qo G G0 such that

A= {à,àq0,àq20, ...,âqk0~1}and

or p(Go) p(G) and there exist a subgroup F of G0 < G of order p(G) and
elements u,v G Go, zGf such that

A C uF, È c Fv and A w(F \ zvÈ~l).

In the first case we have

A {a0, a0q0, a0<?o, • • -1 aoql~1} and B {b0, qoh, qfao,..., q^~lb0}

with ao (a\,c\)à and bo b(b\,d\), and thus condition (ii) holds. In the
other case, since (1,1) G A D 5, we may assume u v 1, and writing
uo — (a\,c\), vq (/?i, Ji) we may conclude that
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A c uoF, B C Fvo and A wo(^ \ zvoB~l),

implying condition (iii).

(d2) Go (È) G. In this case we show that È is a Cauchy-subset of G.

To see that, let #o be any subgroup of G. If Ho G, then clearly

min{|£//0|, Ml} |G| > min{|G|p \H0\ + |5| - 1}

If Ho {(1,1)}, then

min{|M0|, \H0È\} \è\ min{|G|, \H0\ + \à\ - 1}

Otherwise È <2 Ho, \Ho\ > p(G) > |2?|, and thus

min{|£tf0|, Ml} > 2|tf0| > \H0\ + |*| -1 min{|G|, \H0\ + |£| - 1}

Therefore we can apply Theorem 3. Since |A| ^ 1 and |A| + |Z?| < |G|, it
follows that there are elements a,b,q G G and a natural number I such that

A {a, ag, aq21..., a#*-1} and 2? (G \ (#)&) U {&, qb, q2£>,•••, ql~lb}

If we had (q) ^ G, we would have |G| > p(G)\(q)b\, and thus it would

follow that

' - B\>P(^ ~}

1

|G| > pFFzA{piG)f > MG) > £,

a contradiction. Consequently, (q) G, I £,

A {a,aq,aq2,... ,aqk~1} and È {b,qb,qzb,... ,q£~lb}

and with the notation ao (a\,c\)a, bo Z?(^i,^i) we see that

A {ao,aoq,aoq2,... ,a0^-1} and ß {bo,qb0,q2b0,... ,</_1Z?o}

implying that condition (ii) must hold.

This concludes the induction step, and the proof of Theorem 4 is complete.
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