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A HQMOTQPIC INTERSECTION THEORY ON SURFACES :

APPLICATIONS TO MAPPING CLASS GROUP AND BRAIDS

by Bernard PERRON

§ 0 Introduction

(0.1) Let Sijj, be a compact, connected, oriented surface of genus g,
with b boundary components (b > 1). Denote by Sg.b.n (« ä 0) the

surface Sg.b with n points {Pj, P2,..., P„} removed in the interior of Sg.b. Fix
a base point .v(l in one of tlie boundary components and set T — Tt\(S,jj,.„ ; .v(l).

Thus T is a free group witli m — 2g + n + b — 1 generators. Denote

by H the abelianization of T. Denote by AIthe mapping class group
of the surface Sg.b.,t, i.e. the group of isotopy classes of homeomorphisms

°f Sg.b.n, equal to identity on the boundary and keeping invariant the set of
points {/J1. /J2 /Vf.

(0.2) There is a well-known integral, skew-symmetric bilinear form on //,
denoted by { defined as follows : let a, ß E H be represented by immersed,
oriented loops with only transversal self-intersection points. Put a,ß in general

position. Then define (a,ß) by

(a, ß) ^2 £p i
P£a fjl ß

where the sum is taken over all intersection points P and eP is equal to +1
(resp. — 1 if the framing (1'pa, Tpji) gives the right (resp. opposite) orientation
of Sg.b.n. where Tpa denotes a tangent vector to a at P, with the orientation

given by a.
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(0.3) Let Z[T] be the group ring of T with integer coefficients : litis is

the free abelian group generated by T, with the multiplication inherited from
that of T. Let e: Z[L] —> Z be the canonical homomorphism defined by

i i

Then the main result of tins paper is

THEOREM 0.1. There exists a map uj\ Y x T —> Z[L] (the homotopic
intersection form) making the following diagram commutative :

r x r —> Z|L|

I V
HxH {']

> Z

and such that:

1) w.(y.,x) -uj(x,y) -|- (y - IX*-1 - 1),

2) uj(xy, z) — w{x, z) + xaj(y, z),

3) uj(x,yz) uj(x, y) + lo(x, z)y_1,

where ): Z[TJ —» Z[L] is the anti-isomorphism given by —

E "iff,"1-

Remark, a can be extended by bilinearity to Z[L] x Z[ T |

(0.4) In the terminology of ([Pap], §4), w is a biderivation on Z[T],
using points 2) and 3) of Theorem 0.1.

Given a free basis (z1?, z,„ of T, we associate to uj a m x m matrix A
with coefficients in Z[l'|, whose (z,/) entry is Ut(Zi,Zj). Standard arguments
of Fox free differential calculus show that

uj(x, y) — dd x A x dy,

dx dx t d
where dx is tlie colutmi ——,.. ^ —— (Here — denotes tire Fox partial

OZi dZm OZi
derivative ; see [F].)

(0.5) In a suitable free basis, the above matrix A takes a particularly
simple form in the case of Sg.i.o (see Lemma 2.4) and in the case of
%i,« Dz - {Pu ,P„}) (see Lemma 2.5).
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(0.6) The main interest of Theorem 0.1 is perhaps in its applications.
It allows us to reprove very quickly and simply some classical results and to

prove some new ones.

Here are some of these applications.

(0.7) APPLICATION A). The intersection form u is closely related to the

Reidemeister pairing (see [Pap] or [H]).
Let S he a compact, connected, oriented surface, .v() a base point and

N a normal subgroup of r — tt i (.V ; .v(l). Denote by T the quotient T/'/V and

let y : T —> T be the canonical map. Let S be the regular covering of S

corresponding to N.

(0.8) The Reidemeister pairing is the bilinear map

Hi (S ; Z) x //,(S; Z) —Z|7|
defined by

J) i t.
mr

where t.ß denotes the action of t i- T on the 1-chain ß and is the usual

algebraic intersection form on S.

Denote by <f> the composition

N x N —>H1(S;Z)x HßS ; Z) Z [T].

(0.9) Then elementary properties of coverings show that (Lemma 2.6)

<I> x ° w \ N x N.
I .sing (0.4) and (0.5) we immediately get the fundamental formula of

([Pap], Theorem 10.13; see also [H], Theorem 3.3),

(*) <f>(i/, i;) X0u' x A x dv) for u, v £ N.

From this formula (*), Papakyriakopoulos obtains the main result of ([Pap],
Theorem 11.1), which is a necessary and sufficient condition for the covering S

to be planar.

(0.10) Application B). From the very definition of the form uj on
Sg.b.n t we have for any (isotopy class of) homeomorphism / of equal
to identity on dS and permuting the points {Ri,..> ,P„} :

(**) VC/(-v)./0')) /- (.v. y) for any ,r,_y V ^ Wtjhßp ' #
(/is identified with the isomorphism induced on f
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(0.11) Given a free basis i — 1.. ,m} of F, define the Fox matrix

B(f) of / by

df(zj)
dzi B(f) g GL„,(Z[r]).

(0.12) In tlie case of Sg i o, for tlie free basis given in Leimna 2.4, the

relation (*.*) above translates into matrix language using (0.4) as

'B(fjx Ax B(,f)=fA.

We thus recover almost tautologically Theorem 5.3 of [Moi]. This shows the

"symplectic" character of the Fox matrix of the elements of the mapping class

group Mg,i of Sg.i (Mg,i stands for Mg,i,o)-

(0.13) APPLICATION C). Applying tlie abelianization homomorpliism

r - 7Ti(Sgtl ; s0) —> H — //d.v.,., ; Z),

tlie Fox matrix B(f) of / Mg_\ becomes a matrix Bab(f) g GL1;IŒ\II\).
It is easy to see tliat tlie map

Bab : Mg,i —> GLzg(Z[H]),

when restricted to the Torelli subgroup Ig_\ of A4gj, is a homomoiphism
(recall that / G Ig.\ if / induces identity at tlie homological level).

(0.14) S. Morita ([Moi], problem 6.23) asks whether

^;/.2,(Z|//|)

is injective or not.

In [Su], Suzuki exhibits an element of Lg \ in the kernel of B"b, using
lengthy computations.

We produce here, using the fonn u>, a geometric way of obtaining elements

ill tlie kernel of B"b, explaining geometrically, without computation why
Suzuki's example works.

Moreover we obtain many more explicit elements in tlie kernel of B"b.
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(0.15) APPLICATION D). Observe that the mapping class group A/f0.i.„
is the usual braid group B„ with n strings (see [Bi]).

For <7 0 B„, we define as above the matrix Bab(a) G GL„(Z[H]), where

H — //1 (I)2 — {Fx, • ,Pn} ; Z). Ulis matrix is known as the Gassner matrix
of a. The map B"b : B„ —> GL„(Z[//|) becomes a (true) homomorplfism,
when restricted to the pure braid group P„ C B„.

(0.16) Translated into matrix language, tlie relation (**) of (0.10) above

becomes

Bab{a) x Q,j x Bab(a) Q„

for any a G P„ C Bn, where Q„ is the following matrix of GL„(Z [//]),
mentioned in (0.5) :

-l/ 1 ~ "Ï

(1 - lt2)( 1 - M"1)

-
-11 —

(1 - m3)(1 ~ M2_1)

0

0

\(1 - M„)(l - IIl (1 - M„)(l - II2

0 \
0

0

1 - ",7 V

(0.17) Finder the mapping H —, Z - (r) sending each generator
IIA 1 ,...,n) of H onto t, tlie Gassner matrix of a G B„ becomes

the (unreduced) Burau matrix Bu(a) (see [Bi], Chapter 3). The matrix Q„
of (0.16) becomes, after simplification by (1 — f-1),

/ 1

(l-o 1

Q„

0\

(l-o

\0 o (l-o (i-o y
(0.18) REMARK. Our Gassner and Burau matrices are those of [Bi], up

to transposition.
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(0.19) By considering the "hennitian" matrix Q„ + (resp. Q„ + Q„),
and sending m,(/ — 1,... ,n) (resp. t) to appropriate complex numbers of the

unit circle, we can see that the group of Gassner (resp. Burau) matrices is

conjugated to a subgroup of the unitary group U„(C).
In the case of Burau, this was first proved by Squier [Sq]. But our

matrix is much simpler than that of Squier: Q„ is triangular and belongs

to GL„(Z[t,t-1]), instead of GL„(Z[r=|/2|).

(0.20) The fact that £2« (resp. Q„ is triangular imposes strong constraints

on a matrix to be a Gassner (resp. Burau) matrix. In the case of Burau, these

contraints are stronger that the one imposed by Squier. For example, we have

a generalization of Theorem 1.1 of [LP].

PROPOSITION. Let B be the Gassner (resp. Burau) matrix of some a G B„
such that

«I

0

B -

\0
Then B must be equal to

(I

9 9

0 o o\

0 10 0 0

: 0

• : A
rt-n—p

\0 0

?\

a ^ 9 9 9
Up

A
n—p
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§ 1 Definition of the intersection form u>

We are going to prove Theorem 0.1.

(1.1) Let a,y e T ~i(.V,; so) be represented by oriented immersed
closed curves with nonnal crossings, based at ,v0 ttSg,b,n •

Push a little bit the base point ,v0 into a point s'0 0 (TV,, in the positive
direction of dS,, t, „ (oriented like the boundary of Sgb.n)- Push also a little
bit the curve y onto a curve y' based at s'() (see Figure 1). Put x and y' in
general position and define u)(x,y) by

where Sp was defined in (0.2) and gp &T is defined as follows : go from so

to P along x in the positive direction of x, then go from P to s'0 along y'
in the negative direction, then go from s'0 to so along in the negative
direction of dSg.n.b (Figure 2).

(1.2) We first have to prove that w is well-defined, that is depends only
on the homotopy classes of x and y. For this, fix x and let yo, >t be two
oriented immersed curves with normal crossings which are homotopic in Sg.b.„.

Deform yo and yx onto yj, and y, as above.

Then it is easy to see that we can pass from y,', to v) by finite compositions
of three types of elementary moves, with respect to M :

Aasfjtv'

Figure 1 Figure 2

(gp is represented in Figure 2 by the oriented dotted line)

Move I

x
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\ 1 / V\l /
i\ /

Move II 1 V
1 / \if \

A yô

Move III: Regular homotopy from v(', to y'j far from .v.

It is then easy to See that each of these three operations does not affect
the form uj(x,y).

(1.3) To prove point 1) of Theorem 0.1, we proceed as follows.
To compute x(x. y), we use x and y' of Figure 3. To compute jj(y. x),

we can use y" and y of Figure 3.

FJÖBRB .3

This amounts to introducing four extra intersection points between x and

y". I'\. P? • ô I Ô2 • For the intersection points P of xfly' tire contribution in
u(x,y) is £p gp, wliile in u>(y,x) it is —gp gjl. In the configuration of
Figure 3 we have for the four extra points of y" fjl x :

£p1 — «1 —£p2

:ii 1 ~£Qi

9pi M 9PI »= 1

5ei =?arh m? •

So tire contribution of the four extra points in tlie configuration of Figure 3 is :

(.V ' 1 v ' 1).
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The result is the same in any other configuration (by changing the

orientation of x and/or y).
The proof of points 2) and 3) of Theorem 0.1 is straightforward.

DEFINITION 1.1. An oriented embedded loop based at ,v0 is said to be

of type I or II, if in a neighbourhood of s0 it looks like

so dS so 9S

(I) (II)

The next lemma can be seen as an obstruction for an element of
iTi(Sg.b,n i Y) to be represented by an embedded loop.

LEMMA 1.2. // i £ r ; Vo) Is represented by an embedded

based loop then U){x, x) — 1 — X (resp. 1 — A"-1) if x is of type I (resp. II).

Proof Suppose x is of type I. Then, by pushing x along a normal vector
field 7, such that 7 followed by the orientation of x gives the positive
orientation of „, we may suppose that x and x' meet only at two points
P and Q shown in Figure 4.

Figure 4

Then Sp — — 1 —ïq. gP x, <jq — 1. The lemma is proved.
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§ 2 The intersection form w and Fox free differential calculus

We review some basic facts about Fox free differential calculus [F]. Let T
be a free group with free basis §| z,„.

(2.1) DEFINITION, ä derivation (resp. an antiderivation) is a map
D: Z[T] —ï Z[T] such tliat

1) i) is additive,

2) D(uv) — e(v)D(u) + uD(v), where e. Z[T] —| Z is defined in (0.3)

(resp. /)(»/;•) - e(v)D(u) + D(t:)77).

The fundamental example of a derivation is the partial derivative
9

— : Z[T] —> Zfl I defined by:
OZi

dzj
(l) — %

du
d

(ii) —— is additive
OZi
9m: du dv

(tu) —— e(u)— + ^~-dzi OZi OZi

(2.2) Definition. A map 9: ZfT] x Z[T] —> Z[T] is called a bideriva-
tion if :

1) 0 is bilinear for +
2) 0 is a derivation (resp. antiderivation) with respect to the first (resp. sec¬

ond) variable.

(2.3) Given a biderivation 9 and a free basis C|g>- ,% for T, we can
associate a mz m matrix A, with coefficients in Z[TJ, in die following way:
the (/, j) entry of A is given by % zj)...

r du du \ '
For u Z[T], let du denote the column ——, —— Then we have

V dz\ dzm f
tlie following easy lemma.

LEMMA 2.3. Let 9 be a biderivation on the free group T equipped with

a free basis (£i,... ,Zm)- Then for (u. v) G Z[T] x zin we have

(*) 6(u, u) — du' x A x dv,

where dv is the column conjugate of dv and A is the matrix of 9 with

respect to the free basis (ZiT - .tZm)-
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Proof. Formula (*) is true, by definition of (fj, for it - zf11, v zfl.
Then proceed by induction on the length of u and v with respect to the free

basis (zi, ..,z,„).

(2.4) FUNDAMENTAL REMARK. The intersection form w : T x T—iZ[T],
extended by bilinearity to Z [T] x Z [T] is a biderivation, by points 2) and 3)
of Theorem 0.1.

(2.5) First FUNDAMENTAL EXAMPLE. Consider .S"(/, .u (also denoted

by Sg.i), tire compact, connected, oriented surface of genus g > 0, with
one boundary component. Then T — nr(.V,?.i ; .v(l) is a free group of rank 2g.
Choose the following "symplectic" free basis (.v(-, y, ; i — 1,2,., g) given by

Figorb 5

LEMMA 2.4. The matrix of the intersection form uj on Z[T] with

respect to the free basis Ht,)%; i'— L2 g) given by Figure 5 is

Jl Jl
J3 J*

where i 1,2,3,4 are the following g X g matrices with coefficients
in Z[T] :

/ 1 - «t

(1 - -t2)(l — -ÏJ ') 1-A-n

J1

(1 - .v, if I - jjT'j (1 - xd

\<i v.„)!l v (l-.YaXl-.tT1) (1-.YaXl-.tr1) I v.,./
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/ « Vi

(l — vzXl — yf1)

Jl

x2y2
'

(1 --t3)(l —jfi Xt fj
1

0 \

\<l v., )< 1 y: i (I .v., >< I y. i... il a,)(I v i x9 yg 7

/ 1 - %
1 - .Vi

J3 —

...0... 0 \

(l-_y2)(l -xf1) l-^-Ä 0

(1-.V3X1-.V-1)

Vd-.vgXi-A-r1) (l-vgXi-^1).-- 1

V:/
1

>':J

i -vr1

/4

(1 -.V2)(l -Vi 7 I-V2

...0... 0 \

(1-.V3X1-.V2-1)

di-vgXi-vi(i-vô)(i-v2x) 1~yg1J

Proof. This follows immediately from the definition and properties of w,
together with Lemma 1.2 (observe that .v, is of type I and v, of type II).

(2.6) REMARK. The matrix Agi appeared first in the work of Papaky-

riakopoulos ([Pap], §9); see also Hempel ([H], Theorem 3.3), but has 110

interpretation as the matrix of a geometric biderivation (see §3 below).
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(2.7) REMARK. The integer matrix e(Ag x) is of course the standard

antisymmetric matrix

0 k
-4 0

where Ig is the </ x g identity matrix.

(2.8) SECOND FUNDAMENTAL EXAMPLE. S0.i n is the 2 disk with n points

f% Pz, ,P„ removed. Let (8j,..., i/„ be the free basis of »yÇSûu.,® I so)

given by Figure 6.

Figure 6

LEMMA 2.5. The matrix, denoted by Q„, of the intersection form u> on

So.i,« =i D2 — {Pj,.., ,P„}, with respect to the free basis (i/j, 1/2,..., u„) given
by Figure 6 is :

1 — M.
1 ...0... 0 \

(1 — M2XI ~ ull) 1 — m2

: (i - u3)(i - u-1)

\(1 ^«)(l (1 Wn)( 1 ^2 • • •
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§3 Relation between the homotopic intersection form
AND REIDEMEISTER PAIRING ([Pap], [H])

(3.1) Let 5 be a compact, connected, oriented surface, .v(l a base point
and N a normal subgroup of tt i (.V ; .v()). Consider the canonical exact sequence

0 —> N —» ; s0) T —» 0.

(3.2) Let S be the covering surface associated to N. Choose a lifting
so S1 of so - Of course N ~ 7Ti(5 ; sö) and T acts on S as the group of
covering transformations of 5 —> S. Thus If (S ; Z) inherits a structure of
ZT -module.

(3.3) Define tire Reidemeister pairing fj>: If (S. Z) x lf(S, Z) —? Z[7"|
as

o(n.J) ^2 (a, t,ß)tr
ter

where t.ß denotes the action of t on 0 and { is the usual algebraic
intersection number in S.

Denote by <f> : N / A' —f ZT tlie composition

N x ; Z) M 11,(S : Z)^ZT,
where h is the 1 Iurewie/ map (abelianization).

(3.4) The relation between the intersection form w and Reidemeister

pairing is given by

LEMMA 3.1. If S is a surface with boundary, then <b(«, r) \ (~'(u. /•))

for any u,v & N (where \ >x the canonical map 7Tx(S; So) —? T).

Proof Let u, v be oriented based loops, s' be the loop based at Sq by
pushing v slightly as in § 1. Suppose u and v' are in general position and

let P be a point of a C v'.
Call it. r (resp. C the lifts of u, r (resp. v') starting from sö (resp. ,v('t

(3.5) Let s'0 be the lift of sö close to sö. Let u\ (resp. v\ be tlie arc

on it (resp. v') going from so (resp. sö) to P along the positive direction
of it (resp. v') (see Figure 7).



A HOMOTOPIC INTERSECTION THEORY ON SURFACES 173

Figure 7

Let ù\ (resp. if be the lift of u\, starting from iö (resp. s'0) and let P

be the end of u]. Denote by v[ the lift of v[ ending at P. Then the starting

point of v[ is x(gp).s'0, where gp is the loop «j ov'^~l 07 (here 7 denotes

tlie small arc [.v0. .v,',| on dS and composition of paths are written from left

to right). So v{ - \ (<//).rj and

>\ (.'//•) «! \(up) ï';r Mur)

(where )b denotes the algebraic intersection number at P). This proves
Lemma 2.6.

(3.6) REMARK. From the Reidemeister pairing <t> dehned on N x N,
with values in T — T/N, one cannot recover our intersection form uj, since

T T/N {1} when N - T.

(3.7) In tire case of S3i 1.0, using Lemmas 2.3, 2.4 and 3.1, we recover the

fundamental formula of [Pap], Theorem 10.13 (see also [H], Theorem 3.3),

given by

COROLLARY 3.2. With the notations of Lemma 3.1 we have, for
(11, v) N X IV,

(-• <!>(». r) — \(0it' x As j X dv).

From fonnula (*) of Corollary 3.2, Papakyriakopoulos deduces tire main
result of [Pap] :
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PROPOSITION 3.3. (Theorem 11.1 of [Pap].) The covering S, corresponding
to the normal subgroup N, is planar (e.g. homeomorphic to a subset of the

plane) if and only if X011' * A N 9v) — 0 for any ipv G N.

Proof. Â surface S is planar if and only (a,ß) — 0, for any a, ß G

H\(S ; Z), where {,) is the usual algebraic intersection number. Then

Proposition 2.8 follows immediately from Corollary 3.2.

§4 Application to mapping class groups

(4.1) Denote by Mg.b.n die mapping class group of the surface 1L.b.ni

that is the group of isotopy classes of homeomoiphisms of tire surface Sg_b,

equal to identity on 8Sg_b and preserving (globally) a set of n points in the

interior of Sg_b-

(4.2) Given / G M.g,b,n, we denote by the same letter the isomorphism
induced on T nt(Sn,b.n ; so), since it is well-known that the mapping

' Allt(7T | (Sg J> N .Vf>)

is injective.

LEMMA 4.1. Let 0J be the homotopic intersection form on Sg^.n and

f G Mg^n.. Then u}(f(x)J(y)) f(u(x, y)) for any x.y(; V jtdSy^P, ^o)-

Proof. Tliis is by definition of u>.

(4.3) On the other hand, for / representing an element of A4f)b.n > we
associate its Fox matrix (see [Moj ], §5 or [Pe], Chapter 3) as follows.

Choose a free basis {\,.y,, u, ; / — 1,2,..., g, j 1,2,..., n} for the free

group T given by Figure 8.

Figure 8
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Set

i< I < g

& % yi-g% g + i < i < 25

2gf+ 1 < ; < 2g + n.

Then f(Zi) G F is a word in the variables zj.
The Fox matrix B(f) of / is the (2g + n)x(2g+ti) matrix with coefficients

in Z |T] given by

j
/ \

dm
dzt — B(f) 7

where is the anti-isomorphism of Z [T] defined in Theorem 0.1 and -ß-

is the Fox partial derivative defined in §2.

LEMMA, 4.2. (Proposition 5.2 of [M01], or Lemma 3.2 of [Pe].)

For f,g: Mg.b.n W have

B(fo g) B(f) X J B(g),

where x denotes the usual matrix multiplication and B(g) is defined by

'B(g) fia;,) (fUl;,)) G Z[F]).

Consequently, B(f) belongs to G'L2(/_„(Z| F |), the group of invertible matrices
with coefficients in Z[F].

Combining Lemmas 2.3, 2.4 and 4.1, we get a tautological proof of
Theorem 5.3 of [M01]:

Proposition 4.3. Let f g Mgp. Then

1ÜJ) / A;/.| X />•(./') A,/. I ;

where Aô.j is the matrix of the form M with respect to the free basis

ytffiXj ;i — 1,2,... ,g} given in Lemma 2.4 A.gg is defined in Lemma 4.2).
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(4.4) Note that Mo.i.n is the usual braid group B„ (see [Bi]), I sing
Lemmas 2.3, 2.4, 4.1 again we get

Corollary 4.4. Let f g M0,i,„ B„. Then

where Q„ is the matrix defined in Lemma 2.5.

(4.5) Denote by H the abelianization of L. For / G M.g.b.n, denote by f,
the isomorpliism of H induced by /, and by B"b(f) the image of the Fox
matrix of / under the canonical homomorphism GL(Z[T]) —> C7(Z[//|).

The advantage in considering Z|//| is that it is a commutative ring, but

of course we lose information.

For it G Z[F], denote by tlie image of the column du (defined in §2)
under the map Z|T] —? Z [77].

Lemma 4.2, Proposition 4.3 and Corollary 4.4 become under the mapping
T —>H:

(i) wy) /.""s (/)x
(ii) x a;;;1, x ir\n • (/ g .vi,.,).
(hi) 'Bab(f) x Q„ x f'Qf (/ G ß„).

(4.6) Let Tg b.n be the nonnal subgroup of A4g.b.„ consisting of home-

omorpliisms such that - idw. 1 Iiis subgroup is usually called tlie Torelli

group of Sg.b.„

In tlie case <y — 0. h - /; > 0, Zo.i,« is usually denoted by P„, tlie pure
braid group of index n (recall that Afo.i,« is tlie braid group Bn).

By (i) of (4.5), Bab : Ig_b.n —t GL2g^.„(Z[HJ) is a true homomorphism.

In the case // 0. g -- 1, n > 1, Bab : Pn —> GL„(Z[H]) is tlie so-called
Gassner representation.

In ([Moi], problem 6.23, §6.8), Morita asks the following question:
Is the representation B"b : I,h \ - X;. i .o —i- G'L2(/(Z[//|) injective

In [Su], Suzuki answers this question negatively, by exhibiting, using

lengthy computations, a non-zero element in the kernel of B"b, for any g >2.
In tlie remaining part of this paragraph, using our fonn £», we produce

a geometric way of obtaining elements in the kernel of B"h, explaining
geometrically, without computation, why Suzuki's example works.
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REMARK. The question of injectivity of Bab: Xo.i,« —> GL,,(Z[//|)
(tlie Gassner representation) is still open for n > 4.

(4.7) The following lemma holds :

LEMMA 4.5. Let F be a free group with basis (zi,...,zP), H its

abelianization. Let SB G F be homologous to 0 (e.g. the image of a in H
is 0). Then for any g £T,

dnigasg'1) gdH(a),
da da

where d(a) is the p-column (————)' and dn(a) is its image under
dzi dZp

the map T —> H.

Proof Tins follows easily from the properties of the partial derivative.

(4.8) Let c he a simple closed curve on a surface Sg.x Sgy.o- Denote

by D(c) the Dehn twist along c (see [Bi], Chapter 4) defining an element

of .Vl ,;J By a bounding curve of genus p we mean a curve bounding a

subsurface of genus p. Then we have :

PROPOSITION 4.6. Let c be a simple closed bounding curve on a

surface Sgy. Then Bab(D(c)) — l2g-\-d[jax (dHay x A^, where a (defined up
to conjugation and orientation) is the element of T — 7ri(59.i ; So) represented

by c, and is the image under F —P H of the matrix Agj given in

Lemma 2.4.

Proof. Observe that <Vwn x (dna)' depends only on the conjugacy class

of a, by Leimna 4.5 and does not depend on the orientation of a.
We first prove Proposition 4.6 for c fp, where fp is tlie closed simple

bounding curve of genus p defined by Figure 8.

(4.9) The circle fi,, oriented and equipped with tlie path as indicated by
Figure 8, represents the element

[yPA>] [yp_i,Ap_x]... lyi-A'i I

of T 7rx(59,i ; j>o), where \a. b\ denotes tlie coimnutator a ba~l b~l. The

action of the Dehn twist D( fp) on tlie free basis ; 1.2..... //} is given by

D(fp)(Zk) - fpZkfp
1 for zk Xk, Ä (1 < k < p),

D(fp)(zk) Zk for Zk Xk, yk (p < k < g).
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(4.10) For simplicity, we will make computations in case p 1 (so we

may suppose g — I).
Easy computations show that

Proposition 4.6 is easily verified for e - /i.

(4.11) Let c be a simple, closed, bounding curve of genus p. Then it is

easy to find a homeomorphism <p of Mgp such that c - ?{/,)
We claim that:

where a T is represented by c (up to conjugation and orientation), p, is

the isomorphism induced by tp at the homological level, and ?'*dnfp is the

image of the column dnfp under p..,.

(i) is well known.

(ii) follows from the more general formula

where u G F. This last formula can easily be proved by induction on the

length of it, in terms of a basis of T.

(4.12) We are now ready to prove Proposition 4.6:

(by Lemma 2.4).

(i) D(c) s= ip o D(fp) o ip 1,

(ii) dHa Bab(ip) x '*» dHf„,

<)p(it) — B{pp) x ' iht.

B"h(D(c)) - irlh(p o D(fP) o p-])
B"\ip) x v>B"b(D(fp)) x Bab(p>~1)

Bab(<p) x. B"b(D(fp)) x D(é)>- B"b{p>)~1
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(since B(tp B{pj) 1 by Lemma 4.2), Hence

Bab(D(c)) Bab(p) x ** B"b(D(f x iHar1
(since !)(c), - id//)

Bab(p) X *[/ + WTp X dH /; x AffJ] x

I ih,<- x (ö//a)' x (B^(^)"1)^* A,.i x ßaÄ(i/5)_1

(by (4.11) (ii))

/ + (1//I1 X ((7,/n 1 X A,,.I

(by Proposition 4.3).

COROLLARY 4.7. Let e, t/ fee two simple, closed, bounding curves. Then

Bab(D(c) o Bfc/)) -1 f Bab(D(c)) •+ Bab(D(dj)

+ x//(r.. >') tin x HT x A'';fj

where a G T A represented by c (resp. d), up to conjugation and
orientation.

Proof. By Leimna 4.2 (D(<j, id//) and Proposition 4.6 we have

Bab(D(c) o D(d)) -/ + Bab(D(c)) + Bab{D(d))

+ dHa x (0//O:' x Agj x <•>//•!) x §// /?' x A^\

The parentliesis in the last tenn above is exactly u>//(ra, 0), by Leimnas 2.3

and 2.4.

COROLLARY 4.8. Let c,d be two simple closed, bounding curves of Sgp
such that ajH(a,0) — 0. Then Bab(D(c)) and Bab(D(d)) commute (a,0 are

defined as in Corollary 4.7).

PROPOSITION 4.9. The homomorphism Bab : Ig,x —) GL2a(Z[HJ) is not

injective, for g > 2.

Proof. By Corollary 4.8, it is sufficient to find a pair of simple, closed,

bounding curves c, d such that w//(a, 0) — 0, and such that D(c) and D(d)
do not commute. Here are three examples of such pairs.
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EXAMPLE 1. c is the circle given by Figure 9:

Eigore 9

d is the image of c by the Dehn twist along the circle y'z.

EXAMPLE 2. c and d are given by Figure 10:

ftSJifi 10

EXAMPLE 3. c and d are given by Figure 11 :

FlHORfi 11
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In each case, it is easy to see that the corresponding „'//(n. >) is zero
in Z[//1, while D(< and D(d) do not commute. To prove this last point, we

use the well-known result (see, for example [PaR], Prop. 3.7) that two Dehn
twists commute if and only if the curves c and d can be disjoined, up to

isotopy.

The hrst example is given in [Su] where it is shown that Bab(D(c)) and

Bab(D(d)) commute, using lengthy explicit computations.

Remark. Our method for proving the non injectivity of B"b resembles

the method used by Moody [Moo], Long-Paton [LP] and Bigelow [Bg] to

prove the non injectivity of the Burau representation. Our Corollary 4.8 plays
the role of Theorem 1 of [Moo], and Theorem 1.5 of [LP].

§ 5 Applications to the braid croups

(5.1) Recall that the braid group Bn is the mapping class group Afo.i.n,
e.g. the group of homeomorphisms of the 2-disk D2, fixing pointwise the

boundary dD2 and leaving invariant a set of n points Pj. Id..... P„ in the

interior of D2.

(5.2) A set of generators of B„ is dehned as follows. Let Pt- Pi- • • ,Pn
be n points in the horizontal diameter of D2 (Figure 12).

FiöüSE 12
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Let <7, be the "half Dehn twist" along the segment 77 - [P,, P/+i], equal
to identity outside a regular neighbourhood of r, and which sends a vertical

segment meeting r, as indicated by Figure 13.

ftSJifi 13

(5.3) The action of rr, on the free basis (mj,., m„) of F 7Ti(D2—{P,}; Vo)

dehned by Figure 12 is as follows :

£7i(Uj) Uj j ± i, i + 1

£) lt~l Ui+i Ui

CT;(mi+1) Ui

(composition of paths are from left to right).
So the Fox matrix of cr, with respect to the free basis {m,

is given by
1,2,...,«}

B(crd

t i + 1

/ Ii-1 oo 0 ^
0 -ill + 1 0 X

0 Uj 0 0 i + 1

V o 0 0 J-n—i— 2

(5.4) For a g B„, denote by oo tlie isomorpliism induced at the

homological level; of course rx, is a pennutation matrix, corresponding to
tlie permutation of the points {Pi,. ..,P„} under a. By definition the pure
braid group P„ is the normal subgroup of B„, consisting of braids such

that cr* - id.

By Lemma 4.2, the map B"b: P„ —> GL„(Z[H]) is a homomoiphism,
called tlie Gassner representation of P„.
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PROPOSITION 5.1. For any a £ P„, the Gassner representation Bab

satisfies

Bab{(j)' X :Qf X B"b(o) « Qf

where is the n X n matrix defined in Lemma 2.5.

Proof. Follows immediately from Corollary 4.4.

(5.5) Remark. By sending «, on appropriate r, g S1 c C (so that

r"1 Ti), and considering tlie "hennitian" matrix Qjf + (£2„ "f, tlie above

proposition shows that the image of tlie Gassner representation is conjugated
to a subgroup of the unitary group U„{C).

(5.6) REMARK. The fact that Q'fi is triangular imposes strong conditions

for a matrix of GL,;(Z[//1) to be the Gassner matrix of some pure braid.

For example we have the following easy lemma which generalizes Theorem
1.1 of [LP],

COROLLARY 5.2. Suppose the Gassner matrix M of a £ I',, has the form

im, x x x\

M —

v°

av X X

0

: i^n-p)
0

Then M is equal to

M

h OO

0 0

A
n—p

OO
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Proof: Using Proposition 5.1 and the fact that Q'fi is triangular, it is easy
to see that

[ol\ 0... 0 \

M CKp .0

• 4fin—p

\o
To show that ai — I, proceed as follows. By definition of M, its first column

/da{uifb do(iii)"b y1 <)u\
' ' dun J

By the fundamental formula of Fox differential calculus,

we have a(u{) — 1 04(1/1 — 1). But since a G P„, a(it\) — it\.

(5.7) Let 9: H — ua) —> Z —< t > be tire hornomoiphism
defined by 9{uî) - t

By definition of Bn, any element a £ B„ makes tlie following diagram
commutative :

H H
9 \ y/ 6

Z

The homomorpltism 9 induces a homomorphism 9: Z[//1 —> Z[Z] ~
Zff, r'|.

Denote by Bit : B„ —> GL„(Z[f, r-1]) tlie (true) homomorpltism defined

by tlie composition

Bit: Bn—> GLna\n\) A GU7ArJ '])
Tltis is tlie (unreduced) Burau representation of B„.
From Corollary 4.4 we deduce

COROLLARY 5.3. For any a B„, its Burau matrix satisfies

Bu(a)' x Qn x Bn(cr) — Q„
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where
1 0

Q 1 — t
fi

I

0
1

\l — r 1 -t 1/

REMARK. Squier [Sq] gives ail "hermitian" matrix Mn such tliat

Bu(a)
'

X M„ x Bu(a) — M„

but our matrix Qn is much simpler for two reasons :

(a) Q„ e GL„(Z[f, f-1]), whereas M„ G GL„(Z[?±I/2|) ;

(b) £2„ is triangular.
The fact that Q„ is triangular imposes more constraints on a matrix to be

a Burau matrix, than that of Squier. This will help to understand the group
of Burau matrices (recall that we know that the Burau representation is not
faithful for n > 5 by [Moo], [L; P], [Bg]).

COROLLARY 5.4. Corollary 5.2 is true, if Gassner matrices are replaced
by Burau matrices.

Adclecl in proof. After this paper had been written, the author was informed

(in June 2005) that Theorem 0.1 and Lemma 1.2 were obtained previously
by V, Turaev in a paper "Intersection loops in two-dimensional manifolds",
which appeared in Mathematics of the USSR Sbornik 35 (1979).
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