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FINITENESS PROPERTIES OF

CHARACTERISTIC CLASSES OF FLAT BUNDLES

by Michelle Bucher-Karlsson *

ABSTRACT. We prove that primary characteristic classes of flat G-bundles can be

represented by cocycles taking only finitely many values on singular simplices when
G is a real algebraic group. Gromov previously showed that a bounded representative
exists. In contrast to Gromov's proof, we do not rely on Hironaka's resolution of
singularities. Instead our method involves standard techniques of semi-algebraic sets.

1. Introduction

The first boundedness property of characteristic numbers of flat bundles is

probably Milnor's characterization of flat bundles over surfaces ([Mi]), later

generalized to the unoriented case by Wood ([Wo]).

Theorem 1 (Milnor-Wood inequality). Let £ be a SL2R-bundle over a
surface ~2g of genus g > 1. The bundle £ is flat if and only if its Euler class

c(0 G H2(Xg) satisfies

NÜ[2Ö]| <g- 1.

This result, or more precisely one of its implications, can be put in a natural

way in the context of singular bounded cohomology. Indeed, the following
theorem proven by Ivanov and Turaev in [IvTu] shows that the Euler class of

any flat SLBR-bundle can be represented by a bounded cocycle. (A singular
cocycle is said to be bounded, if its set of values on singular simplices is

bounded, or equivalently, if its norm ||. i|is finite. See Section 2 for further

details.)

*) Supported by the Swiss National Science Foundation, Grant number PBEZ2-106962.
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Theorem 2. If £ is a flat SLBR-bundle over a CW-complex B, then its
Euler class e(f) Hn(B) satisfies

»
This bound on the Euler class, together with the knowledge of the é'1 -norm

of the fundamental class of a surface (also called simplicial volume) implies
half of the Milnor-Wood inequality, as pointed out by Ghys in [Ghl] (see also

[Gh2]). It is a simple consequence of the duality of the two norms.
In his seminal paper [Gr], Gromov generalized the boundedness of the

Euler class of flat bundles to all characteristic classes :

Theorem 3. Let G be a real algebraic subgroup of GL„(R). Then every
primary characteristic class offlat G-bundle can be represented by a bounded

cocycle.

As explained further in Section 3, by a (primary) characteristic class of flat
G-bundles is meant a cohomology class in the image of H*(BG) H*(BG^),
where Gd denotes the group G endowed with the discrete topology.

An immediate corollary of Gromov's theorem (Theorem 3 here) is that

a topological space with amenable fundamental group does not possess any
nontrivial characteristic class of flat G-bundle, when G is a real algebraic
subgroup of GL„(R).

The hypothesis in the above theorem of Gromov (Theorem 3) that G be

algebraic cannot be removed. Indeed, Goldman gives in [Go] an example of a

flat G-bundle over the 2-torus with nontrivial characteristic class in degree 2.
This class cannot be bounded since the bounded cohomology of the torus is
trivial. The group G considered is the quotient of the Heisenberg group H
of upper triangular unipotent 3 by 3 matrices with the normal subgroup

generated by any central element, and the characteristic class in H2(BG) is

the obstruction to the existence of a section of the universal bundle over BG.
We give in the present paper a new proof of Gromov's theorem with the

advantage that a representative for every characteristic class of flat bundle can
be found whose set of values on singular simplices is not only bounded, but
furthermore finite. We thus prove:

Theorem 4. Let G be a real algebraic subgroup of GL„(R) • Then every
primary characteristic class offlat G-bundle can be represented by a cocycle
whose set of values on singular simplices is finite.
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The first step of the proof, which is common to both Gromov's original
proof of Theorem 3 and our Theorem 4, is to reduce to a simplicial version

of the statement:

Theorem 5. Let G be a real algebraic subgroup of GL„(R) and

ß Hq(BG) a characteristic class. There exists a finite subset I of R such

that for every flat G-bundle £ over a simplicial complex K, the cohomology
class ß(Q Hq(\K\) can be represented by a cocycle whose set of values on
the q-simplices of K is contained in I.

Again, the case of the Euler class was already well known: Sullivan proved
in [Su] that the Euler class of any flat SL„(R)-bundle over a simplicial complex
can be represented by a simplicial cocycle taking values in {—1,0.1} and

Smillie improved this to {—1/2". 0,1/2"}.
Let us point out that both the proofs of the simplicial version of the theorem

and the reduction to it are not only completely different from Gromov's but
also much more elementary. It is in our case only a technical artifice to show

how one can reduce to the simplicial version of the theorem - or to be more
precise, a stronger version of it formulated in Theorem 16 where the simplicial
cocycle can furthermore be chosen to be the pullback by any given classifying

map F: |iT| —» BG* of an alternating singular cochain on BG*. The main

difficulty of Theorem 4 thus really lies in the proof of this simplicial version.

While Gromov needs Hironaka's deep resolution of singularities, our main

tool is the following bounded version of the existence of a finite triangulation
of semi-algebraic sets as developed by Benedetti and Risler in [BeRi], from
which the following theorem can be deduced:

Theorem 6. Let X be a compact semi-algebraic set, with a semi-algebraic
triangulation T. Let K be a simplicial complex and f : |iT| -» X a semi-

algebraic map, whose complexity is uniformly bounded on every simplex of K.
Then there exists a simplicial approximation of f on a uniformly bounded

refinement of K.

The latter theorem appears in this note, in a slightly modified and adapted
form as the Technical Lemma 15.

This paper is structured as follows: We start in Section 2 by a quick
reminder on singular bounded cohomology. In Section 3 we present the model
of classifying space we chose to work with and define characteristic classes

of flat bundles. In Section 4 we define semi-algebraic sets and present all the



36 M. BUCHER-KARLSSON

technical results to be needed in the proof of the simplicial version of our
main theorem, which we carry through in Section 5. After introducing the

necessary tool of inverse limits, we prove the singular version of our main
theorem and discuss some alternative proofs in Section 6.

Acknowledgements. The results presented here are part of my doctoral
dissertation at ETH Zurich. I am very grateful to my advisor Marc Burger
for his support and encouragement. For enlightening discussions I owe special
thanks to Johan Dupont and François Labourie.

2. Bounded cohomology

We review here, mainly in order to fix the notation, the very basics of the

theory of singular bounded cohomology, a theory which was introduced by
Gromov in [Gr],

Let X be a topological space. The space Cq(X) of singular ^-chains on X
is defined to be the (real) vector space over the basis of singular simplices

Sg(X) — {a: X] —¥ X j a is continuous}. Endowed with its natural boundary

operator d: Cq(X) Cq,..\(X) it becomes a complex whose homology is the

singular homology Hx (X) of X. The é1 -norm corresponding to the canonical

basis Sq(X) of Cq(X) is defined as

i!zili ~ zL lz<Tl5 for z ^ ^<7 C9(Z).
<r <r

This norm induces a semi-norm on the homology of X. If X is an oriented,

compact manifold of dimension n, the /i1 -norm of its fundamental class

[X] Hn(X) is called the simplicial volume of X.
While the singular cohomology of X is obtained from the cochain complex

C* (X) defined as the algebraic dual of the space of chains, let us instead

consider the topological dual of the normed space Cq(X) : The space of
(singular) bounded cochains on X is defined as

Cf(X) {c CHX) I Hcil^ < -do} ;

where

ciloo ~ sup{|c(z)| I Z G Cq(X). ||z||x — 1} — sup{|c(<7)| I a Sq(X)}
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The dual coboundary operator on C* (X) restricts to bounded cochains, so

that one defines the (singular) bounded cohomology H|(X) of the space X
to be the homology of the complex (C|(X), d). Note however that this is not

a cohomology theory : the excision axiom does not hold.

We will say that a cohomology class [c] Hq(X) is bounded if it can be

represented by a bounded cocycle, or equivalently, if it is contained in the

image of the comparison map

Hf(X) —vHq(X),

induced by the inclusion of complexes C'l(X) C* (X).

3. Classifying space and celaracteristic classes

Let G be a topological group. A principal G-bundle £g — -PG BG
is said to be universal if for every principal G-bundle £ — P —> B over
a CW-complex B there exists a classifying map f:B—> BG, unique up to
homotopy, such that the bundle £ is isomorphic to the pull back f* (£g) • The
base space BG of the universal bundle £g is called the classifying space.
We shall exhibit a possible model for BG below, or more precisely, a finite
dimensional approximation classifying all bundles over simplicial complexes
of bounded dimension.

A characteristic class c assigns to any principal G bundle £ over a

topological space B a cohomology class c(£) e Hq(ß) such that if /: B' —> B

is a continuous map then c(/*(0) =/*(c(£)) e Hq(B'). Characteristic classes

are easily seen to be in one to one correspondence with the cohomology of
some (and hence any) classifying space BG.

There are many equivalent definitions for the flatness of principal
G-bundles. Let us just introduce those which we will use in the present
note. Denote by G* the group G endowed with the discrete topology. The
set theoretic inclusion G* —> G induces a map BG^ —> BG between the

corresponding classifying spaces. A principal G-bundle is said to be flat if
its classifying map factorizes, up to homotopy, through SGd, or equivalently,
if there exists a covering of its base space and transition functions relative

to this covering which are locally constant. In the differentiable setting, this
is the same as to require that the bundle can be endowed with a connection

with vanishing curvature.
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A (primary) characteristic class offlat bundles is now simply a cohomology
class in the image of the map

H*(BG) — HflBG6),

which is induced from the mapping BGBG. Observe that Gromov's
Theorem (Theorem 3 here) now admits the following reformulation:

Theorem 7. Let G be a real algebraic group. The image of the map
H* (BG) H*(BG*) is included in the image of the comparison map
H*(BG6 —» H* (BG6

The first examples of both nontrivial flat bundles and nontrivial characteristic

classes were given by Minor in [Mi], where flat bundles over surfaces

are characterized in terms of their Euler class. Further examples comprise the

Kahler class and the Euler class in higher degree.

While the standard Chern and Pontrjagin classes, and more generally any
characteristic classes in the image of the Chern-Weil homomorphism are trivial
on flat bundles since the latter homomorphism is given by evaluation on a

curvature tensor, one gets more examples of nontrivial characteristic classes

of flat bundles whenever the Chern-Weil homomorphism is not surjective.

3.1 The model of classifying space

Let n and q be positive natural numbers and set N — (q +1 )n. The space

of n-frames in Rq, which we denote by FrH(RA'), consists of ordered «-tuples
of linearly independent vectors in RA?. It is naturally identified with the set

of N times « matrices with linearly independent columns. There is a natural

action of GL»(R) from the right (and one of GL^(R) from the left) simply
given by matrix multiplication.

Let now G be a closed subgroup of GL„(R). Define

PGq Fr»(RA') and BGq - PGq/G,

and let ixq'- PGq ~> BGq denote the natural projection. It is easy to check

that we have thus obtained a principal G-bundle, which we denote by (ff.
For a frame A in PGq, we denote by [A]g its image by the projection map

ira, that is, its equivalence class in the quotient BGq — PGq/G.
Observe that for G — GL,Z(R), the space BGq is precisely the Grassmanian

manifold of «-dimensional vector subspaces of RA?, and in general BGq is

a fiber bundle over the Grassmanian, with fiber diffeomorphic to GL„(R)/G.
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3.2 The classifying map for bundles over simplicial complexes

Let G be a closed subgroup of GLB(R). Let K be a simplicial complex
of dimension q, and £ a principal G-bundle over the geometric realization
of K. Let us write tt for the bundle map of £. We would now like to exhibit
a finite covering of |JT| on which the bundle £ can be trivialized. If we were
ready to consider coverings with arbitrarily many subsets, we could consider

the covering

{star(-ib}t,£Ko.

Indeed, as the stars are contractible, the bundle £ is trivial over them. However,

we would like to bound the number of sets in the covering independently of
the simplicial complex (but depending on the dimension q). To do so, we

will consider the stars in the first barycentric subdivision of K and take the

union of stars of barycenters of simplices of K of the same dimension.

More precisely, let denote the first barycentric subdivision of K, and

observe that the stars in of two barycenters of simplices of K of same

dimension are always disjoint. Defining Ss- to be the open subset of \K^m\

consisting of the union of the stars (in Kbm) of all barycenters of i-dimensional

simplices of K,
si - H starKJ.bs),

s£K,
Dims=i

we conclude that we get a finite covering {So, • • • -.Sq} of |iTbar| such that the

bundle £ is trivial when restricted to any of the Sf-'s. Let

—? Si x G

be some local trivialization of the bundle £ and

f/ij : Si n Sj —y GLB(R)

be the corresponding transition functions.

For every i between 0 and q, define a continuous G-equivariant map
fi~. rr\Sd —¥ PGq as

fi<M) £i#«(T(w))(7

V (t
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where u belongs to -tt (S;), the image of u via <pi is fifu) — (n(u),g), and

tt(m) — 2j=()tjbSj, with bSj the vertex in corresponding to the barycenter of
the y-th dimensional simplex Sj of K. Of course, the matrix is to be understood

as an N times « matrix consisting of (q 4~ 1) blocks of square matrices. If
is not defined, then tj is zero, so that we consider tjgp(gx(u)) as the

n times n zero matrix. Observe that this N times n matrix really represents
a frame, since the block tigu(gx(u))g has non zero determinant.

It follows from the cocycle relations of the transition functions {#y} that

fi —fj on j). The maps agreeing on their domain's intersection,
induce a continuous G-equivariant map

] p PGq

Let /: \K\ BGq be the corresponding map on the base spaces, so that if
t — Hj=0tjbSj, with Sj simplices of K of dimension j we have

togoiiO

fit) h'Idfi

tngniiÛ.

with i chosen so that /,• ^ 0. We have just proven that the map /: \K\ s BGq
is a classifying map for the bundle £. Consequently, the two bundles £ and

/*(£?) are isomorphic.

Lemma 8. Let K be a finite q -dimensional simplicial complex and
F : \K\ —> BG* a continuous map. Then there exists, for the bundle F*(PG^),
a classifying map f : \K\ —> BG as above such that for all simplices k\, k.2

of K and each affine isomorphism a: |&i| |&2|> if F\\k\\ — P\\k2\ °«. then

f\\k\ j ~~ f\\ki\ °

Proof. Let {5,-}|_0 be the covering of \K\ as defined above. Since the

classifying map / is defined uniquely in terms of transition functions relative

to the covering {5,-}f_0, it is clear that to prove the lemma, it is enough
to exhibit such transition functions such that for every affine isomorphism

a: |&i| \kf\, if F|^,j — F\\kz\ then 9ij(o:(x)) — gij(x), for every i, j and

x in \ki I fl Si HSj.
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Any section r,-: Sj F'iPG*)^ gives rise to a trivialization

iff. Si x Gd — F*(PG^)|y(

(x, 5) h—f Ti(x)g

(and conversely). Because G^ is discrete, such a section is completely
determined by its value on one point of every connected component of S,.

For every a FCK^^) c BG*, pick y(x) PGd in the fiber over a and let

Ti : Sj —> F*(PGd)\st be the sections determined by

n(bSi) (hsfj(F(bS!))) F\PG*)|s-

for every barycenter bSi of an i-dimensional simplex st of K. The
transition functions are then given, for a SffoSj, by the relation

gij(x)Tj(x) - n{x).

By construction, if a: \k\| —> |A21 is an affine isomorphism satisfying
— F\\k2\ 0 then

F*(PGâ)l^insi ^4 F*(PG%w

I At I n,Si * f f \k2\ n.Si

so that the transition functions satisfy, for all i,j and a in \k\ | n 5,- 0 5/, the

relation

9ij(a(x)) - fji/x),

which finishes the proof of the lemma.

4. Semi-algebraic sets

The aim of this section is to introduce all standard results on semi-

algebraic sets which we will need for our proof of Theorem 5. For the sake of
conciseness, we omit most proofs, and invite the interested reader to consult

Chapter 2 of the book [BeRij by Benedetti and Risler.
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4.1 DEFINITIONS AND FIRST PROPERTIES

A subset X of RB is said to be semi-algebraic if it admits a representation
of the form

S
ri
\J{x {xu...,xn)£Rn\ Pij(x) > 0},

!=i j=i

where Pij(T\,..., Tn) is a polynomial in n variables belonging to R[Ti,... ,Tn]
for every i and j. Such a representation is by no means unique as will soon
be clear.

We can surely measure the complexity of a semi-algebraic set X in terms
of the dimension of the affine space to which X belongs, and the minimal
number and degree of the polynomials involved in a representation of X.
More precisely, let R be a representation as above of some semi-algebraic
set. Define

S

C(R) — ^2 ri and D(R) — max{deg(P,j)}.
i=i lj

Let n.c.d N and set

S(n. c, d) - <X c Rn

X is semi-algebraic and admits

a representation R with
C(R) < c and D(R) < d

We say that a semi-algebraic set X is of complexity S(n.c,d) if X belongs
to S(n,c.d).

For example, algebraic sets are semi-algebraic. In particular, the affine

space RB is semi-algebraic, and belongs to S(n. 0,0). The standard ^-simplex

A* I Rq u > 0, 1 ^ Ylti > 0

1=1

belongs to S(q.q-f- 1,1), and more generally, any finite simplicial complex
K is semi-algebraic of complexity S(n,c, 1), where n and c depend on the

number of simplices of K. Observe also that the minimal complexity of a

semi-algebraic set is not well defined: the semi-algebraic set

{x R I x2 > 1} ~ {xR \ x< -1} UjieR | x > 1}

is both of complexity 5(1,1,2) and 5(1,2,1)
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Let X C RB, Y c R"3 be semi-algebraic. A map /: X -» Y is called

semi-algebraic if it is continuous and its graph is a semi-algebraic subset of
R« x rw {{. js moreover called semi-algebraic of complexity S(n,c,d) if its

graph is semi-algebraic of complexity S{n, c,d).
Before enumerating some useful properties of semi-algebraic sets and

maps which we will need in the proof of our Theorem 5, let us introduce

some convenient notation. Let n\,..., nq and n be natural numbers (or more

generally functions or various objects). We write n o (ni,...,nq) if the

number n is bounded by a number depending only on n\f...,nq. As an

example, given a polynomial / R[T], denote by r(f) the number of roots
of /, and by deg(/) the degree of /, then r(f <] deg(/).

Lemma 9. If X\.....Xt; are semi-algebraic sets of complexity S(n, c, d),
then the intersection f)^=iXi ls semi-algebraic of complexity S(n, tc,d).

LeîvUvIA 10. Let X and Y be two algebraic subsets of R". If X and Y

are of complexity S(n,c,d) then there exist C,D o (n,c,d) such that their

join

X* Y - {t(x, 0) + (1 - t)(p, 1) I 0 < t < 1, y Y}C RbxR

is semi-algebraic of complexity S(n + 1. C, D).

Theorem 11 (Tarski-Seidenberg). Let n.m,c.d be natural numbers.

Then there exist C,D <] (n X m,c,d) such that for all semi-algebraic
sets X c R", Y c R'" and for every semi-algebraic map f:X Y, if
A c X is a semi-algebraic set of complexity S(n. c. d) and f is of complexity
S(n X m, c,d), then f(A) c Y is a semi-algebraic subset of R'" of complexity
S{m, C, D).

Note that this theorem fails to be true for algebraic sets: consider the

projection of the sphere in the Euclidean plane onto any one-dimensional

subvectorspace.

Corollary 12. Let X c R" and Y c R"' be semi-algebraic sets,

f: X Y a semi-algebraic map of complexity S(n -f m,c,d). Suppose that
A c Y is a semi-algebraic subset of complexity S(m,c,d) ; then /-1(A) c X
is semi-algebraic of complexity S(n, C. D), where C. D <] (n, m, c, d).
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Corollary 13. Let X c Rn, Y c Rw and Zc Rp be semi-algebraic
sets and /: X —> Y and g: Y —> Z semi-algebraic maps. Suppose that f is

of complexity S(n ~f m, c, d) and g of complexity S(m + p. c. d). Then the

map g of: X ~¥ Z is semi-algebraic of complexity S(n 4- p,C,D), where

C.D o in, m, p, c, d).

4.2 Triangulations of sem-algebraic sets

Theorem 14 below is the most technical tool which we need for our proof
of Theorem 4. It is a bounded version of the existence of semi-algebraic

triangulations of semi-algebraic sets. The unbounded version (that is, the

existence of a semi-algebraic triangulation with no bound on the number or
on the complexity of the simplices) was proven by Hironaka in [Hi] following
the analogous result by Lojasiewicz for semi-analytic sets. It was then observed

by Benedetti and Risler that one straightforwardly obtains the corresponding
bounded version by bounding every step of the constructive proof of Hironaka,

as detailed in [BeRi, Theorem 2.9.4].

Let X be a semi-algebraic set. A triangulation h: X \K\ of X is
said to be a semi-algebraic triangulation if the homeomorphism h between

X and the geometric realization of the simplicial complex K is semi-

algebraic.

Theorem 14. For every compact semi-algebraic set X and all semi-

algebraic subsets X\.... .Xf c X, if Xi,... ,X# and X are of complexity
S(n.c,d) then there exists a semi-algebraic triangulation

h: X —y \K\

such that

1. Xt is a finite union of h~1 (s) for some simplices s of K, for every i
between 1 and i ;

2. the number of simplices of K is bounded by k, where k <3 (n,c,d, t) ;
3. for every simplex s of K the set h~1(s) is semi-algebraic of complexity

S(n, C. D), for some C, D o (n, c, d, t).

It is a straightforward consequence of the existence of semi-algebraic
triangulations of semi-algebraic sets that connected subsets of semi-algebraic
sets are semi-algebraic. (This is false for algebraic sets.)
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4.3 SEM3-ALGEBRAIQTY OF THE CLASSIFYING SPACE AND CLASSIFYING MAP

In the sequel we examine the question of semi-algebraicity for the

classifying space BGq and the classifying map /, which we defined in
Section 3, in the case where the bundle in consideration is flat

It is clear that the space of «-frames FrB(RA') is semi-algebraic. Indeed,

recall that it is naturally identified with the set of all N times n matrices

with linearly independent columns. The latter condition being equivalent to
the non vanishing of at least one of the maximal minors, the space Fr„(R'v)
can be viewed as a semi-algebraic subset of RNn.

Let G be a real algebraic subgroup of GL„R and let us show that BGq
is semi-algebraic. The main point is that BGq can be viewed in a natural

way as a homogeneous space. Indeed, consider the action of GLv R on BGq
(where, as in Section 3, N — (q +1)«) given by left matrix multiplication

GL# R x BGq ——> BGq

(A, [X]g) h—> [AX] g

The stabilizer of the point BGq is easily checked to be
G

G GH(R) <[' GL#(R)

Our space BGq is thus diffeomorphic to the homogeneous space

GL#(R)/H(R).

Since G is algebraic, it is clear that H(R) is a real algebraic subgroup of
GLnR. It is a consequence of a well known theorem of Chevalley that the

homogeneous space

F(C) - GL#(C)/H(C)

of the corresponding complex algebraic groups is a complex quasi-projective
variety (see [Bo], §6 or more precisely Theorem 6.8). However, it is in

general false that the real points F(R) of F(C) form the homogeneous space

GL#(R)/iT(R). To see this let us consider the following examples:

• The quotient of GLi(C) by its finite subgroup {4-1,-1} can naturally
be identified with GLi(C) in such a way that the quotient mapping is given
by

GLi(C) —> GLi(C)

2 2^
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But in the real case, the quotient GLi(R)/{-t-l, — 1} is of course not

diffeomorphic to GLi(R). In fact, it is diffeomorphic to one connected

component of GLi(R).
• More generally, the quotient of GL„(C) by its orthogonal subgroup

0(n, C) is naturally identified with the space of nondegenerated quadratic
forms over C, or equivalently, the space of symmetric nondegenerated complex
valued (n x n) -matrices. But the nondegenerated quadratic forms over R,
contrarily to the complex case, are not all equivalent, so that the action of
GLb(R) is not transitive : it has precisely n + 1 orbits corresponding to the

signature of the nondegenerated symmetric matrices. The homogeneous space

GLb(R)/0(ä, R) actually is diffeomorphic to the orbit of the identity, that is
the set of symmetric real valued (n x n) -matrices for which all eigenvalues
are strictly positive. It can thus be viewed as a semi-algebraic set.

The problem in the above two examples is that the projection map

GLtf(C) —>• GU(C)/H(C) - F(C),

which is defined over R, is no longer surjective when restricted to the

underlying real varieties:

GLa<R) —> F(R).

Equivalently, the action of GL# R on F(R) is not transitive.

Let 1 denote the image of the identity via the projection map GLat(C) —)

F(C) and let X(R) be its orbit in F(R) under the action of GLv(R). The

stabilizer of 1 is then clearly

H(C) n GLa<R) - H(R),

so that

BGg £* GLn(R)/H(R) ^ X(R).

Because X(R) is a finite union of connected components of F(R), it is semi-

algebraic. Indeed, it is an easy consequence of Theorem 14 that connected

components of semi-algebraic sets are semi-algebraic.
For further use, define n(BGq) to be equal to the dimension of the

affine space to which BGq belongs. (In particular, BGq then belongs to

S(n(BGq),c,d) for some c,d.)
Because of the universal property of the quotient (see [Bo], §6), it is

readily seen that the projection map -tt : PGq — FrB(RA') —> X(R) - BGq is a

semi-algebraic map.
As for the classifying map / described in the previous section, in the

case where the bundle £ is flat, the transition functions relative to the open
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covering described in Section 3 can be chosen to be locally constant. This

means that on every q-dimensional open simplex Int(k) of K, the classifying

map / takes the form

(h, tq i——f(t')
hg\o

Lqiß<fJJ q
where the g,o's are constant elements of G defined by g$ — gto(t), for any t
in Int(k). By continuity, the map / actually has the above form on the whole

(closed) simplex k. We claim that it is semi-algebraic of uniformly bounded

complexity when restricted to any simplex of K. To see this, consider its lift
to PGq -Fr«(RiV)

Go, j h—»

j to I dn ^
hgio

\ tq9cßJ

which clearly is an affine map, now that the g^'s are constant. It is thus

semi-algebraic of uniformly bounded complexity, where the bound depends

only on the dimension, thus on n and q. As mentioned above, the projection
PGq BGq is a semi-algebraic map, so that the claim follows.

5. Proof of the simplicial version

Theorem 5. Let G be a real algebraic subgroup of GL«(R) and
ß Hq(BG) be a characteristic class. There exists a finite subset I c R
such that for every flat principal G-bundle £ over a finite simplicial complex
K the cohomology class ß(Q Hq(K) can be represented by a cocycle whose

set of value on the q -simplices of K is contained in I.

Proof First observe that it is enough to prove the theorem for simplicial
complexes of dimension at most equal to q. Indeed, a simplicial q -cocycle is

defined on the ^-dimensional simplices and two (j-cocycles represent the same

cohomology class if they differ by a coboundary, which also only depends on
the <2-skeleton.

Now, any principal G-bundle over a $-dimensional simplicial complex,
can be obtained as the pull back of the approximation to the universal bundle

BGq, where BGq is as in Section 3.1.
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The space BGq was shown to be semi-algebraic in Section 4.3, so that
in particular its closure BGq admits, by Theorem 14, a finite semi-algebraic

triangulation T which we can choose in such a way that it restricts to a

triangulation of the boundary of BGq. To simplify the notation, we identify
BGq with the geometric realization |F| of its triangulation T. Upon replacing T
by its first barycentric subdivision we may assume that any open simplex
contained in BGq has at least one of its vertices in BGq. Also recall that
the classifying map /: \K\ —> BGq exhibited in Section 3.2 was proven in
Section 4.3 to be semi-algebraic, and furthermore of complexity bounded

independently of the bundle £ or even of the simplicial complex K, when
restricted to any simplex of K.

Our next aim is to find a simplicial approximation of the classifying map

f'.\K\~¥ BGq \T\ (or to be precise, actually an approximation to a map

f: I FT I —» BGq |r| homotopic to /) such that the homotopy between / and

its simplicial approximation has image in BGq. Of course it is a well known
fact that upon passing to an arbitrarily fine subdivision of K this is always
possible. Our main point is now precisely that we only need to refine K in a

uniformly bounded way. This will follow at once from the following Technical
Lemma.

Lemma 15 (Technical Lemma). There exists a triangulation L of K and

a continuous map f: |FT| —> |F| — BGq homotopic to f such that

• each simplex of K is triangulated by at most d simplices of L, and the

bound d is independent of £ and K,
• the interior of every simplex I of L is mapped by f inside the interior of

some simplex t of T whose interior is contained in BGq,

/(Int(é)) C Int®.

We postpone for the time being the proof of the Technical Lemma and show

how the theorem can now be proven. Let Fmax be the biggest subcomplex of T
contained in BGq. The simplicial approximation can be defined as follows:
For every vertex v of L, define p(v) to be any vertex of the only

open simplex of T containing f(v). This indeed defines a simplicial map

tp- l —4 Fmax

since if v\,...,vq generate a #-simplex of L, then f(vi)-, -f(vq) belong
to some (closed) simplex t of T. As the only open simplex containing fOif),
for i {1,... ,q}, is necessarily contained in t, it follows that pivi) must be
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one of the vertices of t, so that -pivf)...., p(vq) indeed generate a simplex
of T, namely a face of t. Furthermore, as all pivf 's belong to Fmax, the

simplex generated by them also lies in Fmax.

The simplicial map p> is easily verified to be a simplicial approximation
to the continuous map f : \K| |L| BGq «-> |r| : One can check that for

every vertex v in L°, we have

For our purposes it is however enough to know that the maps \tp\ and / are

homotopic, which is obvious since for every point x in |L| its image fix")
belongs to the same simplex of T as |^|(x), so that the (positive) convex
linear combination of the two maps \p>\ and f is well defined, thus providing
the desired homotopy. Note that by construction, it is clear that the whole

homotopy lies in BGq.
Let b Zg(BGq) be an alternating cocycle representing the cohomology

class corresponding to the characteristic class ß. We have

since |^| is homotopic to /, and the latter map is itself, by the Technical

Lemma, homotopic to /. Let Ij be the set of values taken by the cocycle b

when evaluated on #-dimensional simplices of TmaK. Of course It is a finite
subset of R since the simplicial complex Fmax is finite. Set

where d is as in the Technical Lemma. It is clear that the set I is finite.
Observe that the cocycle p>*(b), considered as a simplicial cocycle on L,
clearly enjoys the property that its evaluation on $-dimensional simplices
of L is contained in It- A simplicial cocycle on K, representing ß(Q, is now
obtained as follows: the value of a q-dimensional simplex k of K is the sum

of the values of tp*(b) on the simplices of L appearing in the triangulation
of k, and is hence contained in I, which finishes the proof of the theorem.

Of course, the bound thus obtained is by no means sharp. Observe that

it is composed of two parts: the possible values of a cocycle on BGq — |F|

representing the characteristic class ß evaluated on the fixed triangulation T,
and the number of simplices (the d from the Technical Lemma) needed to
refine the simplicial complex K so as to have a simplicial approximation of
the classifying map. The latter bound can actually be computed effectively.

/(star(-ih) C star(^OO).

ß(o \ro» (b')\ e Hq(K),
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Proof of the Technical Lemma. We will prove the lemma inductively
by showing that for every 0 < i < q there exist constants ci}di and mt
depending only on i, the group G and the dimension q of the si mplici al

complex, a triangulation L,- of the i -skeleton ff of K and a continuous map

f: |isT| —> 17*| — BGq homotopic to / such that

1. each simplex of K* is triangulated by at most m* simplices of L,-,

2. the image by f of the interior of every simplex of L, is contained in the

interior of some simplex t of T,

3. every simplex I of Li is semi-algebraic of complexity S(i, Cj, dj),
4. the map f restricted to any simplex of ff is semi-algebraic of complexity

S(i + n(BGqfchdi).
The first two properties are exactly the conclusion of the Technical Lemma

for i — q, and the last two are added for inductive purposes. For i — 0, there is

nothing to prove : Take fo — f and Lq — K° (so that cq — n(BGq),do — 1 and

mo — 1). Let us thus assume that a triangulation L,_i of the (i-~ 1)-skeleton
of K and a continuous map f\ : \K\ --> |F| satisfying the above properties

are given.

The strategy of the proof is the following: We are going to triangulate
each i-dimensional simplex k of K m such a way that the triangulation on
the boundary dk of k is precisely the first barycentric subdivision of L;_i.
We will thus automatically obtain a triangulation of the i-skeleton of K.
To do so, we subdivide every i-dimensional simplex k into two subsets k-mt

and kext. After defining the map f and checking that it satisfies the above

property 4 we prove that there exist triangulations of kmt and kext which agree
on k-mt H /text and correspond to the first barycentric subdivision of L,-_ i on
dk. We show that both the triangulation of £;nt and kext satisfy the above

properties 1, 2 and 3, thus proving the Technical Lemma.

The. subsets £mt .and kext. Let k be an i-th dimensional simplex of K
and consider the two following subsets of its geometric realization: Choose

e with 0 < s < 1 and define

h. £
.7=0

¥'] «fcjyrVy«6:

and

£
.7=0

Ij {0,... J} with L <
1 4- i
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where of course vo,..., -i-v are the vertices of k. The subset ktxt is the closure

of some sufficiently small neighborhood of the boundary of k so that kext

is homotopically equivalent to dk. The subset kmt is the closure of k\kext,
that is, a homothetic copy of k centered at the barycenter of k and with
contraction factor strictly smaller than 1.

The MAP ft. Define a continuous map a*: |&| —> |&| to be, on k-mX the

natural affine homothety between kmt and k, and on kext the projection from
the barycenter of k onto the boundary dk. More precisely, we have

Clearly at is well-defined, continuous and semi-algebraic. Also, since for
every i-dimensional simplex k, the map at is the identity on dk, it defines

a continuous map a: (A7] —> |iv!j. Furthermore, it is obvious that it extends

to a continuous map \K\ —> |Xj, still denoted by a, which we can moreover
assume to map every simplex of K to itself and to be semi-algebraic of
complexity S(2q,ca,da), when restricted to any simplex of K, where the

constants ca and da do not depend on anything else than i and q. Such a

map a is clearly homotopic to the identity.

Since f-i is homotopic to /, the same is true for f and by Corollary 13, the

map fi is, when restricted to any simplex of K, semi-algebraic of complexity
S(q T~ n(BGq), Cj, dd, where c,. dj o (q, n(BGq), ca, da, ci, 4-1), and thus

Ci, di <\ (q, G, i).

The TRI.ANGULATION of kmi. The map a is, when restricted to kml a

homothety from k-mX to k. Thus the first barycentric subdivision (L,'_i of
the triangulation Li......i restricted to the boundary of k naturally induces, via a,
a triangulation by semi-algebraic simplices of complexity of
the boundary of kmt. We would now like to have a semi-algebraic triangulation
of £jnt agreeing with the following two families of semi-algebraic subsets:

Define

fi — f .-1 o (x : \K\ ——I T\ — BGq



52 M. BUCHER-KARLSSON

• The simplices of the triangulation of dkiat induced by (Lj_i)bar-

• The pull back by f of the simplices of T.

We are of course going to apply Theorem 14 to kmt and those two families
of semi-algebraic subsets, so let us first check that the above sets all are of
uniformly bounded complexity, and in uniformly bounded quantity. Note that

kim is of complexity S(i, i + 1,1).
• Since each simplex of L;_i is, by induction, of complexity S(i — 1,

it follows that each simplex of (Lj_i)bar is of complexity S(i - 1,

c,'_i, i), and the same is true for the corresponding simplices in dk-mt.

There are at most (i + 1) • nh-\ • i! such simplices.
• Since the semi-algebraic triangulation T of BGq is finite, any simplex t

of T is of complexity S(n(BGq)} cj-.rir), for some cj,dj depending only on G

and q. By Corollary 12 it follows that ff (t) is semi-algebraic of complexity
S(q, C, D), where C, D <\ (q. n(BGq), ch di:, cdj), thus C, D o (q. G, i). By
Lemma 9 we now obtain that (2 kitA is semi-algebraic of complexity
S(i, 2max{z + 1,C}, max{l,D}) for every simplex of T. Of course, the

number of such sets is majorized by the number of simplices of T, which

only depends on q and G.

Let us now apply Theorem 14 to kjnt and its two above given families of
semi-algebraic subsets. We thus obtain a semi-algebraic triangulation Lnlt of
kint fulfilling the following properties:

1. * The triangulation Ltnt restricted to the boundary of k-mt is a refinement
of the triangulation corresponding to the first barycentric subdivision
of the triangulation Lf-__i restricted to dk.

• For every simplex î of T, the semi-algebraic set is a finite
union of simplices of L-Ut, so that the image by fi of the interior of

any simplex of LitA is contained in the interior of some simplex of T.
2. The number of simplices of L;nt is bounded by mitA, where mlfA is a

constant depending only on q, G and i.
3. Each simplex of Lmt is semi-algebraic of complexity S(n, c-mt.dmô, where

cmt, dixit are constants depending only on q, G and i.

The tri .angulation of kext. It now remains to triangulate kex t in such a

way that the triangulation agrees with the first barycentric subdivision of Li-1
on dk and with the triangulation L;nt on kext n kmt — dkmt. This triangulation
should of course also enjoy the desired properties. To do so, we consider the

homeomorphism between kext and dk x [0.1] given by
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ß: kext —> dk x [0,1]
i f i

x Vj tjVj f—(a(x). —!—min{/o- • • • -U}) •

j=o
e

The boundary dk c kext is thus mapped by ß to dk x {0}, and

ktxt H kint — dkmt to dk x {1}. Denote by Lq the first barycentric subdivision
of the triangulation L$*\, and by L\ the triangulation of dk corresponding to
the triangulation L-mt of kejink-mt — dkml. By construction, L\ is a refinement

of Lq. The triangulation L-mt of k-mt is now easily defined as the inverse

image, via ß of the following triangulation of dk x [0,1] : For every
simplex {i?o < ••• < Vi~\} of Lq (where the ordering of the vertices is

given from Lq being the first barycentric of the simplicial complex L(_i), for
every simplex {-y;o5 • • • ,wn} of L\ such that the geometric realization of the

simplex {-y;o,... -. wn} is contained in the geometric realization of the simplex
{-uo,... ,-iv-i} and for every m {0,..., i — 1} define the simplex

{(ibs0)s (uis 0),..., (iVfl? 0)5 (wq, 1)5...s (m„s 1)} of Lext

to be the join of the simplex {(-uo,0),..., (-iy_i,0)} of Lq x {0} and the

simplex 1 (wn. 1)} of L\ x {1}. It is straightforward to check

that we have thus obtained a triangulation of dk x [0.1] and hence of k-mt

Moreover we have :

1. A rough bound for the number of simplices of Lext is the number of
simplices of Lq plus 1 multiplied by the number of simplices in L\ plus 1.

But now, by induction, the number of simplices of Lq is at most M;_i times

i, since dk has i faces of dimension i — 1, and the number of simplices
of L\ is surely strictly smaller than the number of simplices of Ljnt, which
is bounded by m-mt. We thus obtain that the number of simplices of Lext is

bounded by
mext - (i rrii-i + l) (mint + l).

2. Observe that the diagram

£ext —tL-j, Qk X [0, 1]

ji j,
|r( dk,

where of course proj i stands for the projection on the first factor, is

commutative. The interior of any simplex of Lext is by construction mapped
inside the interior of some simplex of the first barycentric subdivision of L,_i
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and as by induction the image by fi... i of the interior of any simplex of L,-_ i
and hence also of (L,_i)^ is contained in the interior of some simplex of T

the conclusion follows.

3. As Lo is the first barycentric subdivision of L,-_i its simplices are

all semi-algebraic of complexity S(i — Also, L\ being the

triangulation L;nt on it is semi-algebraic of complexity S(i — 1, c-mi,d-mt).

By Lemma 10, the join of any simplex of Lo and L\, and thus any simplex
of Lext is semi-algebraic of complexity S(i. cext. dtxt), where cext, dext <\

(c,-_ 1, di-1, cint, rfint) and thus cext, <1 (h G, q).

We prove now a slightly stronger version of Theorem 5, where we show

that if the bundle £ is induced by a classifying map F : |LT| —> Bfß, then the

simplicial cocycle can furthermore be chosen in the image of the induced map
F* : CfjngCBtW) —y C^impl(K). We assume that our space of singular cochains
consists of alternating cochains, so that the map F* admits the following
natural description: For c in C%ing(BG^) and k an oriented ^-simplex of K,
that is, a $-simplex of K together with an ordering of its vertices, we have

F*(c)(k) — sign(r)c(F o |r|),

where r: -f k is an isomorphism between the two oriented t?-simplices
A? and k.

Theorem 16. Let G be a real algebraic subgroup of GL« R and
ß Hq(BGa primary characteristic class. Then there exists a finite subset

I c R such that for every finite simplicial complex K and every continuous

map F: |Aj —> BGd there exists a cochain b Cf^(SGd) such that the

simplicial cochain F'*(b) Gfimp[(K) is a cocycle representing F* (ß) and

taking values in I when evaluated on q -simplices.

Proof. We start the proof with the following claim, which, as we will show

below, is a consequence of the easy Lemma 8 and the proof of Theorem 5.

Claim 17. There exists a cocycle b C^impl(K) representing F*(ß) taking
values in I when evaluated on q-simplices of K such that for every affine

isomorphism a: \k\| \kf\ between the oriented simplices k\.of K, if
Fjj£i| — F|j£2j o |aj, then b(k\) — sign(oßbikf).

Proof of Claim. First note that by Lemma 8, it is enough to prove the

claim with F replaced by a classifying map /: |W| —> BG as in Section 3.2.
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Second, observe that the triangulation L of K and the simplicial map
ip\ L ~¥ rmax constructed in the proof of Theorem 5 being defined inductively
on the skeleton of K in such a way that they depend only on the classifying
map /, can be chosen so that a maps the restriction to k\ of the

triangulation L to the restriction to k2 of the triangulation L and furthermore

(p (poa: L|a, —> rmax, whenever a is as in the hypothesis of the claim. It
is immediate that the resulting simplicial cochain on K, constructed as in the

proof of Theorem 5, will satisfy the claimed assertion.

To finish the proof of the theorem, define a cochain b' C|ng(SGd) as

follows: If a: A? —» BG^ is a singular simplex such that there exists an

isomorphism r: A'7 -> k, where k is an oriented g-simplex of K, such that
<7 F or, then set

b'(u) — sign(r)&(r(A9)).

Otherwise, define b'(o) to be arbitrary. By the claim, the cochain 1/ is well
defined. Indeed, suppose that Fori — FQT2, for isomorphisms rf. A9 —>
where i — 1,2. Then a — t21t\ : k\ -¥ k2. furnishes an isomorphism between

k.\ and k2 with sign (a) =sign(ri)sign(r2), so that by the claim,

sign(ri)Kri(A9)) - sign(n)fe(lT) - sign(ri)sign(a)&(^2)

- sign(r2)&(r2(A'?)).

By definition, we have F*(£/) — b. Thus, the simplicial cocycle b satisfies

all the requirements of the theorem.

6. Proof of the singular version

We are now almost ready to give a proof of Theorem 4, which will be

a simple consequence of its simplicial version (Theorem 16) by an argument
of inverse limit. We start by recalling the elementary definitions of inverse

systems and limits.
A directed set is a nonempty, partially ordered set (A, >) such that

V X,ß A, 3 v A with v > À, v > j.i.

An inverse system of sets over a directed set A is a family of
sets (X).)x£A together with maps : X\ Xß whenever À > ß satisfying
the two conditions tïw — Id^A, for every A in A, and nU(tnttx — for

ß> v. The inverse limit of the inverse system (Xx,) is defined as
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ljmXA - {(gx) e JJ XA | Tïffxigx) - g,,. V A > g,}.
AA

The following proposition is a well known and straightforward consequence
of Tychonov's theorem. It gives a simple criterion for inverse limits to be

nonempty.

Proposition 18. If (XA-,rg>.x~) ls an inverse system of nonempty compact

spaces over a directed set A, then

lim XA f 0

Our main example of directed set .and inverse system. Let X be

a nonempty topological space. Set

A <(X>)
K finite simplicial complex,
a: |Xl -aX continuous

It is nonempty since X is nonempty. Put the following partial order on A :

Let (K\, <7i), (K2.02) A, then

(X2, <72) > (K\.o\) if da simplicial injection i: K\ K2

such that <72 o \i\ — o\.
It is readily seen that A is a directed set. Indeed, for (K\, <7i), (X2,<72) in A,
define <7: |Xi UX2I — X as a(x) — ofx) if x belongs to |X,j. It is clear that

(X» > (Xj, o{), for i — 1.2.
Let X be a topological space, ß H%mg(X) a singular cohomology class

on X and I a compact subset of R. For every (X. <7) in A, define

r z, m am b e ^(cfing(x)), 1

*(K,<r) ^ - ^simpl JX' b{r) e j y ^simplex keK J

If (Xi,<7i) < (X2, <72), the simplicial inclusion i: K\ —> X2 induces a map

i* - h(^2><r2) —¥ Y(Kuct\)

Note that from the requirement that any cocycle of Y(k,<j) belongs to the image
of <7* it follows that the map i* does not depend on the choice of simplicial
injection i. Indeed, suppose j: K\ X2 is another simplicial injection with
(72 o \j\ — ai — (72 o |i|, then

i* O <72 — (<72 <5 \i\)* — <7| — ((72 O |yj)* arf O a'2

so that Y and j* agree on the image of in which Y^2 ,ri) is contained.

Observe moreover that



HN1TENESS PROPERTIES OF CHARACTERISTIC CLASSES 57

* for every (K, a) in A, the map F(jç» Y(k,<t) is the identity since it
is induced by the identity on K,

* if (K\,(7i) < (iva,of) < (K$,<73) with simplicial injections i: K\ K2,

j. K2 > iter -mi, „ 7,2) ,3).

We have thus proven that {Y(k,<t)} forms an inverse system over A.

Proof of Theorem 4. Let G be a real algebraic subgroup of GL» R
and 8 Hq(B(~ß) a primary characteristic class. Let A be the directed set

constructed above for X — BCß, and { Y(k,<X) } the inverse system obtained

from X — BGâ, ß Hq(ßGand the finite subset I of R from Theorem 16.

The conclusion of Theorem 16 is exactly equivalent to Y(k,o-) being nonempty
for every (K,a) in A. Moreover, the Tye» 's are compact: Indeed, for every
(K,o) in A, the space Y(k,<t) is the subspace of the finite dimensional vector

space Z|impl(iT) formed of the intersection of an affine subspace (the image of
the coboundary 6), a linear subspace (the image of «7*), and a compact subset

(since b takes its values in the finite set /). It now follows from Proposition
18, that the inverse limit of the inverse system {Lye»} is nonempty:

0 f
Let thus (b(K_cr)) be an element in the inverse limit, and define a singular
cochain b Cfing(X) by b(o) — b(a«,<t)(A9), for every singular simplex
<7: A9 X. It is clear from the definition of b, that the cochain b takes its
values in I on singular simplices.

It remains to show that the cochain & is a cocycle representing ß. Let
thus c be an arbitrary cocycle representing ß. By the Universal Coefficient
Theorem, it is enough to show that b and c agree on integral singular cycles.
Let z — Xri=1a.iOi Zq(X) be such a singular cycle on X, where we may
assume without loss of generality that the coefficients 04 lie in {-1,4-1}.
We now want to represent the homology class [z] by a continuous map from
the realization of a finite simplicial complex K into X :

Claim 19. Let z — a,-ay be a singular cycle in X with ai — ±1. Then

there exist a closed q -dimensional simplicial complex K and a continuous

map Ç : |iT| -4 X such that the induced map

C ' Csins,alt(X) —Csimpl(K)

satisfies the relation

C(c)([K]fmc(z),
for every singular, alternating cochain c in C]sino a!t(X).
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Intuitively, one would like to build up the simplicial complex K from

r copies of the standard simplex A9, define £ on each of those as 07, for
i — 1,..., r, and glue up the {q — 1)-faces of the standard simplices according
to the cycle relation of z. However, for the glued up object to be a simplicial
complex with the desired property, we need to add sufficiently many simplices
between the copies of the standard simplices. This will be made more precise
in the proof of the claim, at the end of this section.

Assuming the claim, we are now left with checking that the cochain b

and the cocycle c agree on z : We first show that

(1)

To see this, let k be an oriented ^-dimensional simplex of K and recall that

by definition of the induced map £*, we have

Cmk)^b{Qo\r\),
where r is an orientation preserving isomorphism r : A9 k, so that

£ o |r| : A9 —» X is a singular simplex. By definition of b, we further get

b(Ç o |r|) - &(A4,<o|T|)(A9) •

Let now i : A9 k K be the simplicial inclusion given by the composition
of r with the canonical inclusion k c K. Clearly, the simplicial inclusion i

gives us

(K,Q > (A9,£ o \r\),
so that, since (b(K,<x)) belongs to the inverse limit of the V(K,cr) 's

..Çcj\T\) — ï*0(K,<))•

As U(A9) — k, we finally conclude that

^(A«,CQ|T|)(^9) ~ b(K,o(%)

which proves Equality (1).
Recall that by definition, b(K,Q C*0) is a simplicial cocycle representing

Ç*(:3) — £*([c]). In particular, the evaluation of £*(c) and Ç*(b) on the

simplicial cycle [i?] must agree:

(2) C(b)([K])^C(c)([tQ).

Applying now Claim 19 to both the cochain b and the cocycle c, we see

that Equation (2) becomes

b{z) - c(z)

Thus, modulo Claim 19, the Theorem is proven.
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Proofof Claim 19. We inductively construct triangulations Tq, for q > 0,
of the standard -simplex A9 together with simplicial projections pq : Tq —> tq

onto a favorite simplex tq of Tq such that the triangulations Tq restrict
to triangulations T?, for i 0of the i-th (</ — 1)-dimensional
face of A9 which are isomorphic to F9-1 under the i-th face inclusion

r\i: A9"1 ~ |F9"i| A9. The subtriangulations of F9 arising from y-
dimensional faces of A9 (in short, y-faces of A9) will be called j-faces

of F9. Furthermore, F9 will be shown to satisfy the following two properties :

1. For every simplex f in F9 and for any 0 < j < q — 1, the boundary dt
of t intersects at most one /-face of F9.

2. For every (/-simplices l. s in F9, if there exist i f= j such that 10 Ff f 0
and sHTj f 0 then t possesses a vertex in the interior of A9 — F9 which
does not belong to 5.

For q — 0, take F° — {*}. Assume now that p,: V /,• are constructed

for i < q. View the ./-simplex A9 as

A9 ~ A9 Uôai d\9 x [0,1],

where dAq is identified with VA9 x {0}.
Inductively choose an order of the vertices F9"1 which restricts to the

order on its /-faces given by the /-th face inclusion of the inductively chosen

order on F92. Let S91 be the canonical product triangulation of A9"1 x [0.1]
given by the triangulation F9"1 of A91 and the triangulation of [0.1] in
one 1-dimensional simplex together with the chosen order on F91 and the

order 0 < 1 on [0,1].
Consider now the equivalence relation on S91 defined by

("i's 0) ~ (-«;, 0) pq i (tO pq~\(-«?).

and let i?9-1 be the refinement of the quotient simplicial complex Sq"""1 /W
obtained by subdividing once more all ^-simplices of S9""1/^ by adding
one vertex on their barycenter. Thus, a (/-simplex of S9^1/^ is in Rq~'1

triangulated into q + 1 simplices of dimension q, while its boundary
remains unchanged. The triangulation F9""1 of A9"1 x [0,1] restricts to the

triangulations

A9"1 on A9'1 x {0},
F9-1 on A9-1 x {!}, and
Rq~"2 on ((q — 2)-face of A9"1) x [0.1].

In particular, it glues up to a triangulation of $A9 x [0.1]. Denoting by tq

the middle simplex A9 in A9 $A9 x [0,1], we have thus obtained a
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triangulation F9 of A9 ~ A9 Uim $A9 x [0,1]. Note that the favorite simplex

tq comes with a canonical isomorphism îq ~ A9.

The product triangulation S9-1 admits a canonical projection S9"1 F91
and by definition of the quotient 59"1/~, the composition of this projection
with tq... i factors through 591/~ :

Let rq....\ : 1S9~1/~ denote the simplicial projection obtained

by sending those vertices of F9""1 which were initially in S91/~ to

themselves, and the new vertices to any of the vertices of the $-simplex
in Sq""1 of which they are the barycenter. Observe that the composition

sq.„„i o rq,„„i: F9-1 tq-i restricts to sq......i o rq.,„2'. Rg~2 tq~2 on the

subtriangulations Rg~ 2 of the ((q — 2)-face of A9"1) x [0,1] 's. In particular,
it glues up to the desired simplicial projection

Let us further check that the claimed properties are satisfied :

1. Let f be a simplex in Tg. If t — tq, then dt is in the interior of Tg and

does not meet any proper face of Tg. If t ^ tq, then t belongs to $A9 x [0,1]
and hence to one of the triangulations Rg l of A9-1 x [0,1] c #A9 x [0.1].
But then, dtDdTg is included in A9"1 x {1} which is triangulated by F9-d,
so that the assertion follows by induction.

2. Let t,s be <3"-dimensional simplices in Tq. Suppose that there exist

i ^ j such that t O if ^0 and siï Tj ^ 0. In particular, t and s belong to
two different copies of the triangulation Rq"~l of A9""1 x [0,1] c <9A9 x [0,1]
(corresponding to the i-th and j-th (q — 1)-faces of A9). By construction of
Rq'"""1, the ^"-simplex t has a vertex in the interior of Rq"""1 (and hence in the

interior of F9), namely the one which is the barycenter of a $-simplex in
g9_i/^ since s belongs to a different copy of Rg l, this vertex of t can

not belong to s.

Let z — 2t=1<3j-<7j- be a singular cycle in X with a, — ±1. Set L, F9

and Ly — Tj, for i — 1,.... r and j — 0,..., q. Define

S9~~i

Sg...lh

Pq \ Tg ~¥ tq

L — L\ II • • • II Lr

and a: |L| X on every |L,j as the composition
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o[lUj! \Li\ - \Tg\ \tg\ S* A9 * > X

where |îç| — A9 is the canonical isomorphism described above. Because
S

dz — 0, there exists a finite (in general nonunique) partition S — JJ Sk of the
k=\

set S — {(Ly) I i— 1,..., r, j — 0,..., q} such that for every k in {1,... .s},
the set Sk contains two elements (i.j) f- (i',/) for which we have

ai o rjj — Of o Tjf : A9""1 —f X.,

(-1yai - -(-îy a?,

where ry : A9-1 c-> A9 is the y'-th face inclusion.
For every y-face Ly of Li, there exists a canonical isomorphism Ly ~ A9""1

such that the composition

Ly ££ A9-1 **"'
> A9 ^ Lj-

is the canonical inclusion. Define an equivalence relation ~ on L generated

by the relations

v ~ w 3 £ such that v Ly, w Lff, for (i,j),(i',/) Sk

and the isomorphism Ly A9-1 L?f maps v to w,

where the isomorphisms Ly ~ A9"1 ~ L?f are the canonical ones described
above.

LeîvUvIA 20. v ~ w implies either v — w or v, w belong to different
j-faces of L.

Proof. Suppose v ^ w and v, w belong to the same y-face F c L, of L.
This means that there exists a finite sequence of isomorphisms

Tr- pir jr —

with CirJr)-Xi'r-.fr) e f°r some k, and i'r ~ ir+1, and such that

w ~ TR O • • • O To(v)

Observe now that tr o • • • o to induces an automorphism of the face F.
Let fo,... ,fj e {eo, •••,%} be the vertices of F c Li A9. By definition
of the equivalence relation each of the isomorphisms rr preserves the

order by numbering of the vertices {eo,... ,ejr,.,., eq} c Ly jr A9 and

{ê0; • • • 5£)'>>eq} C Ljïjv ^ A9. In particular, the automorphism of the face

F induced by trq- • • oto preserves the order of the vertices {fo, - - ,fj} and

has hence to be the identity, so that v — w.
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Define K — L/~ and let p : L —> K denote the canonical projection.

Lemma 21. The projection p: L K induces a one-to-one correspondence

between the q-simplices of L and those of K.

Proof. First, we check that p maps ^-simplices to f-simplices. To see

this, we show that if (v,w) is a 1-simplex of L then p(v) f p(w). Suppose

v ~ w. By Lemma 20 and since v f w this implies that v and w belong to
different i -faces of L. But this contradicts Property 1).

Second, we verify that for any ^-simplices kj, of L, if p(k) — p(£) then
k — I. Let va.......vq be the vertices of k and WQ....,wq be those of I.
If p(k') ~ p(t) then up to renumbering the un 's we have xy ~ vu for every
0 <i <q. By Lemma 20 this means that either xy — Wi or -ly and Wi

belong to different y-faces of L. Up to permuting the index set {0,.... q),
we can suppose that Vi Wi for i < iq and Vi f Wi for i > iq for some

-d < io < q. If io — q, then k — I. If io < <?, then vq and wq belong to
different y-faces and hence also to different (closed) (q — 1)-faces Ly and

Lff of L.
If i f=i!, then k belongs to L, and I belongs to L,v f= Li, so that none of

the vertices of k and I can agree, and in particular, io — —1. Thus, all the

Vi 's (and wfs) belong to the boundary of L, which contradicts the assumption
that k (and £) is #-dimensional : Indeed, if all the vertices of k would lie

on the boundary of L,- ^ Tq, then they all would have to lie on the same

(q ~. i)-face of Lit since by Property 1) the boundary dt of t, which contains

{-uo,..., Vq} intersects at most one (q— l)-face of L;-. The vertices of k being
contained in a (q — 1)-dimensional simplicial complex, it now follows that
the dimension of k is strictly smaller than q.

If i — i', then k and I are both contained in L, — Tq and we have

vq kP.Lij f 0 and wq I fiLy f 0, so that by Property 2), k possesses a

vertex in the interior of Li which does not belong to I. But then this vertex

can not be equivalent to any of the vertices in I : contradiction.

Thus, K is obtained from L by identifying the (q — 1)-faces Ly with

Li'f for every (i.j), (?',/) in Sk. Note that no other identification can occur.
Observe that since the diagram



HN1TENESS PROPERTIES OF CHARACTERISTIC CLASSES 63

commutes, the map a: |L\-ïX automatically factors through \K\. We denote

the resulting map by Ç: \K\ X.
Let ki,..., kr be the image under the projection p : L K of the r favorite

simplices tq Tq Lj c L, for i — and let kr+i,... ,kR be the

remaining ^-simplices of K. Denote by kj the simplex kj endowed with the

orientation of its vertices giving the affine oriented simplex p"""l(kj) c Li ^ Xq

the same orientation as A9 Lj. For j — define bj in { —1,4-1} as

bj — ^ if kj belongs to p(Lf). Observe that bi — at for i — 1,,r.
R

T emma 22. The chain W bjkj in Cq(K) is a simplicial cycle representing
7=1

the fundamental cycle [iL].

R

Proof. By construction, it is clear that if W bfkj is a cycle, then it
7=1

represents the fundamental cycle [iL]. To check that it is a cycle, note that

its boundary is a sum of (q — 1)-oriented simplices with coefficients in
{—1, -i~l}, where each of the (q— l)-simplices of K appears exactly twice. It
thus remains to show that they appear with opposite sign. For (q—l)-simplices
whose preimage in L belongs to the interior of L, this is clear. If k is not such

a (q — 1)-simplex, then its preimage by p consists of two (q— 1)-simplices,
belonging to L,,^, and L!2j2 respectively, for some (ii,ji) f (hji) <Sk-

Now, k is the mi -th (q — l)-face of an oriented $-simplex kni —

(Vq, }Vq) of K with p"""l(k,H) G L,, and the ra2 -th (q — l)-face of an
oriented #-simplex k,l2 — (pf,... of K with p~1(kni) G L,2. In particular,
the vertices of k consists of the sets

{ 'I'd - • • • s L«, 5 • • • s Tç j — l 'Vo- • • • T'w2 5 • • • l;q } •

Let : A9 —> km, for t — 1,2, be orientation preserving isomorphisms

mapping eqi to vfni. (Such isomorphisms exist by definition of the order

on the 's.) Let rp A9"1 -> /-v|,... ,-i^,... }vq), for i — 1,2, be the

isomorphisms of oriented (q— 1)-simplices obtained by composing the /f-th
(q — l)-face inclusion pj, : A9""1 A9 with rf Observe that

1 — sign(rj) — (—iy«~m«sign(r^), for I — 1,2.

Moreover, we have the equality of oriented (q — 1)-simplices

(-i-d,..., 4,5 • • • * v\ sign(ri)sign(r2) (vp,..., i? "j

Thus, the simplex k appears in d {fLp.]bjkj) as
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ah (- rf1 (4S...S-41S...S ^ + ^2 (-1 )W2 (4, • • • 42

(3) - Kc^ir (*i...?4is...s^).
Finally, we use the defining relation (—1 y'Oj, — —(—1yzcii2 to conclude that
the coefficient in (3) vanishes, which finishes the proof of the lemma.

Let c C*ing aitC-X") be a singular, alternating cochain on X. Let r: X3 —> ki
be the composition of the canonical isomorphism Ag 9= tq c Li c L and of
the projection p: L K. Note that r is orientation preserving and that
Ç o |r| <7,-. We thus obtain

(4) C*(c)<&) - c(C o |r|) - c(od, for i - 1,.... r.

Observe that, by construction, the map Q : \K\ -» X restricted to any of the

ki's, for r + 1 < i < R, factors via a simplicial projection through a strictly
lower dimensional simplex. In particular, it is immediate that

(5) Ç(c)(ki) — 0. for i — r + 1.... SR.

Lemma 22, Equalities (4) and (5) now imply that

r R r
c*(c) ([W|) - C(c)(ki) ~t~ Y2 C(0(ki) - aic(-Vi) + 0 - c (z),

i= 1 i=r-\-1 i= 1

which proves the claim.

Alternative proofs

Boundedness. If one is merely interested in the boundedness of
characteristic classes of flat bundles, then the following argument furnishes a

new proof of Gromov's original result (Theorem 3) : For every closed real

algebraic subgroup G of GL^R, there exists an approximation BGq to the

classifying space which is a compact manifold and has the property that for

every G-bundle over a ^-dimensional simplicial complex K there exists a

classifying map /: |Xj —> BGq which is semi-algebraic of uniformly bounded

complexity on every simplex of K and piecewise differentiable.

Now any cohomology class ß Hq(BGq) can be represented by a closed

differential g-form w. Observe that the simplicial cochain

k h——^ j
fXk)
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where k is an oriented #-dimensional simplex of K, is a cocycle representing

f*(ß) & Because BGq is compact and / is semi-algebraic of
uniformly bounded complexity on every simplex £ of .ST, it follows that f w

/»(*)
is uniformly bounded, so that is represented by a uniformly bounded

cocycle. The bound is independent of K and /.

FlNlTENESS. From appropriate triangulations of the Cartesian products
Gl, for i — 0.... ,q, it is not hard (but rather cumbersome) to exhibit a

triangulation of the model of the classifying space BG given by the join
construction which projects, via the natural projection BG ~¥ A9 onto the first
barycentric subdivision of A9. A classifying map f: \K\ ~a BG* BG having
the property that, composed with the natural projection BG A9, it maps
simplices of K isomorphically to simplices of A9 (such a map can always
be found), does admit a simplicial approximation, upon passing to the first
barycentric subdivision of K. The set I of Theorem 4 is hence potentially
much sharper. However, we are not aware of explicit triangulations of the

products G1 's.
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