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THE FUNDAMENTAL GROUP AT INFINITY

by Ross Geoghegan

Let G be a finitely presented group which has one end. There are three

flavors of the question : homological, homotopical, and geometric.

The homological flavor

Question 33.1. Is it true that the abelian group H2(G. ZG) is free

Remarks 33.2. (i) //"(G, ZG) and HiG. ZG) are trivial.
®) H2(G, ZG) is either trivial, or is infinite cyclic, or is an infinitely

generated abelian group ([5]).
(iii) H"{G, ZG) need not be free abelian when n > 2 [1], [4],

(iv) H2(G,ZG) need not be free abelian when G is only finitely generated.

Perhaps FP2 could replace "finitely presented" in Question 33.1.

The homotopical flavor

Let X be any (one-ended) complex on which G acts cocompactly as a

group of covering transformations.

QUESTION 33.3. Is it true that the "fundamental group at infinity" of X
is semistable (aka Mittag-Leffler)

An inverse sequence of groups {Gr} is semistable or Mittag-Leffler if,
given any n, the sequence of images of the groups Gn+k in G„ is eventually
constant. We choose a proper ray W. [0, oo) -a X and a filtration of X by finite
subcomplexes K„. By reparametrizing uj we can assume tc([r, oo)) c X — Kr
for all r. Let G„ denote the fundamental group of the complement of K„
based at tv(n), and let /„: Gn+j -> G„ be induced by inclusion using change
of base point along w. Question 33.3 asks if this {Gr} is semistable.
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Remarks 33.4. (i) The answer only depends on G, not on X nor on the

filtration nor on the base ray; so I can rephrase the homotopical question as

Question 33.5. Is G semistable at infinity

(ii) The answer is known to be yes for many classes of groups. For example,
all of the following imply that G is semistable at infinity:

• G sits in the middle of a short exact sequence of infinite groups where

the kernel is finitely generated [7],

• G is a one-relator group [9],

• G is the fundamental group of a graph of groups whose vertex groups are

finitely presented and semistable at infinity, and whose edge groups are

finitely generated [8],

(iii) There are positive answers coming from topology. Assume X admits

a Z-set compactifying boundary. Then the answer is yes if and only if this

(connected) boundary has semistable pro-7Ti in the sense of shape theory
(the technical term is "pointed 1-movable"); examples are Coxeter groups [3].
This 7Ti-condition holds if the boundary is locally connected; examples are

hyperbolic groups [2], [10],

(iv) The answer is unknown for CAT(0) groups (as far as I know).

The homological Question 33.1 is equivalent to:

Question 33.6. Is it true that the inverse sequence of integral first
homology groups of the spaces X - K„ is semistable

Thus Question 33.1 is the abelianized version of Question 33.3, and is

perhaps more likely to have a positive answer.

The geometric flavor

Question 33.7. Is it true that any two proper rays in X are properly
liomotopic

This is so deliciously simple and "right" that it hardly needs comment 3)

except to say that it is equivalent to Question 33.3 [7],

3 My book [6] contains a much more detailed account of what I summarize here.
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Final remark. There are lots of eontractible locally finite 2-dimensional

complexes X having one end whose fundamental groups at infinity are not:

semistable; for example the infinite inverse mapping telescope S associated

with a dyadic solenoid (suitably coned off to make it eontractible). The problem
is to know if any of these admit a cocompact, free and properly discontinuous

group action. We know that S does not admit such an action.
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