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RELATIVE COMPLETIONS OF LINEAR GROUPS

by Kevin P. KNUDSON

Here is a question that I've thought about a lot, but I can't seem to solve.

The classical Malcev completion of a group is well known. It has a universal

mapping property that allows one to generalize the definition as follows.
Let k be a field and let G be a group. The unipotent k-completion of G is

a prounipotent k-group U that is universal among such groups admitting a

map from G. The Malcev completion is the case k — Q.
One possible problem with this construction is that it might be trivial;

that is, the group U may consist of a single element. This happens, for
example, when H\(G,k) — 0. To get around this, there is a generalization
(due to Deligne) called the relative completion. The set-up is the following.
Suppose G is a discrete group and that p : G -4 S is a representation of G

in a semisimple algebraic k -group S. Assume that the image of p is Zariski
dense. The completion of G relative to p is a proalgebraic k -group Q that
is an extension of S by a prounipotent k-group U :

1 —* U —i G —? S —? 1,

along with a lift p: G -> Q of p. The group G should satisfy the obvious
universal mapping property. If S is the trivial group, then this reduces to the

unipotent completion. Full details about this construction may be found in

[1], [2].
Consider the group G Sl.„<£|/|i with the map p: SL„(£[f]) —> SIm(k)

induced by setting t — 0.

Question 43.1. What is the completion of G relative to p

There is an obvious guess, namely the group SL„(£[[r]]), and this turns

out to be correct sometimes.
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I proved this when k is a number held or a finite field, and n > 3 [2], The

proof goes like this. Let K be the kernel of p ; this is the congruence subgroup

of the ideal (t). Filter K by powers of (t): K - \A p K : A I mod /'}.
Then it is easy to see that for each K'/K'+l si„(k). Moreover, the: filtration
K' turns out to be the lower central series in this case, and so it follows that

the unipotent k-completion of K is Ihn K/K' — ker{SL„(k[[r]])7—> SL„(k)}.
General properties of the relative completion (e.g., it is always a split extension)
then imply that the correct answer is SL„(£[[F]j).

This approach fails for other fields though. Here's why. Denote the lower
central series of K by F*. For any field, there is a short exact sequence

1 —» K2/T2 —* HfK, Z) —» K/K2 —» 1

The last group is s\n{k), and most of the time, the kernel K2/F2 sur-

jects onto the module: Q^z [4], Recall that this is tire k-module generated

by symbols df, where the / range over k, subject to the relations

d(fg) — fdg T g df for /, g e k, and dr — 0 for r Z (here, we

mean the image of r under the map Z —> k% For finite fields and number

fields, this is no obstruction since it is easily seen that Q^z 0, but for

k — C, for example, we see that K2/T2 is very large. So K' differs wildly
from T* and it is therefore not easy to compute the unipotent completion
of K.

Still, I conjecture that SL„(£[|T]]) is the: correct answer all the time. In

fact, I make the following, more ambitious, conjecture.

Conjecture 43.2. Let k be a field and let C be a smooth affine

curve over k. Denote the coordinate ring of C by A and assume

that C has a k-rational point with associated maximal ideal m C A. Let

p: SL„(A) —> SL„(£) be induced by the isomorphism A/m —> k. Finally, let A
be the m-adic completion of A. Then the completion of SL„(A) relative to p
is the group SL„(A),

I proved [2] that this is true if we replace A by the localization of A
at m. And, not surprisingly, it is true when k is a number field [3].
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