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COMPETING PRIME ASYMPTOTIC DENSITIES IN F?[Y] :

A DISCUSSION

by Christian Bai.i.ot

Abstract. We present a discussion on various prime asymptotic densities in
polynomial rings F,j[X] in order to decide which one best emulates the usual concept
of prime natural density in Z.

0. Introduction

Let I I denote the set of rational primes 2,3,5,7,11,... and let S be a

subset of n. The Dirichlet density S of S is defined as

ö 5{S) — lim .^t'tsP— provided the limit exists.
^1+ EpenP~s

For n an integer > 1, denote by IT(«) the number of primes < n and by
S(n) the number of primes < n that are in S. The (prime) natural density d

of S is defined as

(0.1) d — d%(S) — lim 5(/i)/n<ö>, provided the limit exists.
n

Let us focus on various facets of the relationship that exists between these

two kinds of densities.

In general it is known that if d(S) exists then 5(S) exists, with 5(S) — d(S)

(see for instance [Des], Chap. 8). The converse may be false. But sets of
primes in arithmetic progressions, or sets of primes that split completely in
some normal number field, not only have a Dirichlet density, but also a natural

density ([Des], Chap. 8 and [Pra], Chap. 5). More generally, any set of primes
defined by an Artin symbol prescription, as specified in the Chebotarev density
theorem, has a Dirichlet and a natural density ([Nar], Theorem 7,10*).
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So let S be a set of primes in the ring Z of rational integers. Suppose

we make a theoretical calculation, say using the Chebotarev density theorem

or some of its corollaries, that shows that S possesses a Dirichlet density 5.

It is often reassuring to compute successive ratios S(n)/Tl(n) and see that they
do seem to approach 5. And in our experience, if the theoretical calculation
of S is correct, relatively small sets of primes often suffice to yield a close

agreement to 5, thereby providing a practical check on the theory. In other

words, the (prime) natural density d of S often turns out to be a better

computational tool than the Dirichlet density.

From what was said above, sets of primes having a Dirichlet density and

no natural density are somewhat unusual. There is an interesting example due

to Bombieri. Indeed, Serre [Ser], p. 76) reports that Bombieri showed him
a proof that the set of rational primes whose first decimal digit is 1 has

Dirichlet density log10 2, but no natural density.

In 1958, Sierpinski [Sie] raised the question Of the proportion of primes

p for which 2 has even order (mod p). Several authors tackled the question
before Hasse [Ha] fully settled the Sierpinski question : this set of primes has

Dirichlet density 17/24. And it is not hard to show that this set also has a

natural density (necessarily the same). The integer 2 may be replaced by a

general a e Z, \a\ >2 and various densities be obtained, so the Sierpinski
question yields sets having both Dirichlet and natural densities.

A similar situation holds for Artin's conjecture, but modulo some Riemann

hypotheses. It is then known that sets of primes having a prescribed integer
as a primitive root have both a Dirichlet and a natural density.

This paper is concerned with finding a notion of (prime) natural density
in tire ring F3[X], where F? is the finite field with q elements, with
properties that best match those described above for the ring Z. By "best",

we mean that the selected notion must be as consistent as possible : properties
of prime natural density in Z, both in its computational aspects and in
its relationship to Dirichlet density, have to be preserved. Also, should a

set of primes in Z possess, or not, a natural density, then we expect
its most obvious analogue in F?[X] to have, respectively not to have, a

natural density. In particular, the Sierpinski question, an Fs [A]-analogue
of which we treated in [Bal], the Bombieri example mentioned above,

sets of primes related to Artin's conjecture and the Chebotarev Sets, i.e.

sets of primes to which the Chebotarev density theorem directly applies,

are used as special guides. In fact, four types of asymptotic densities

defined in relation to sets of primes in F?[A] are considered. Two of
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these notions are shown to be equivalent, so that essentially three distinct
notions are being studied and compared. Of course, each of these three

notions is conceptually sound, i.e. applying the principle by which it is

defined to the ring Z yields the common prime natural density (0.1)
in Z.

The paper contains three sections and a conclusion. The main discussion
is in Section L We have decided to retain in part the order of ideas as they
occurred to us rather than to give a more concise and less naive re-written

account. The technical lemmas that sustain the discussion have most likely
appeared in other contexts. They are often elementary results of classical

analysis, but since their proofs are short and to the point, we included them in

our text. We also hope that this will appeal to a broad readership. Occasionally
we will point to a reference that could have been used to supersede our original
result. One of the asymptotic natural densities studied turns out to be equivalent
to the Dirichlet density. Section 2 is dedicated to proofs of this theorem.

Therefore we are left with essentially two notions of asymptotic density that

differ from the Dirichlet density. Section 3 examines the relationships that

sets of primes related to Artin's conjecture and Chebotarev sets have to these

remaining two asymptotic densities. The results concerned with the comparison
Of our various densities appear at several places in the paper, but are gathered
in Theorem A in the conclusion.

It is possible to grasp the main ideas of the paper and avoid the technical
lemmas. Read Definition 1.3 where the: four asymptotic densities are defined,
skim through Discussions 1.5, 1.9, 1.15 and Section 3, and read Theorem A
and the conclusion.

In the analogy between F?[A] and Z, we consider the set of monic

polynomials as the analogue of the set N of natural numbers, and the set I of
monic irreducible polynomials as the analogue of the set, n of rational primes.
The degree of a polynomial P is written degP and the size of the quotient
ring Yq[X]/P, i.e. the norm of P, is denoted by |P|. If S is a set of primes
of F3[X], then we define S„ as the number of primes in S of degree n.
Thus /„ denotes the number of monic irreducible polynomials of degree a
in F3[A], Die classical prime number theorem says that ir(x), the number of
rational primes p < x, is asymptotic to ,v- log.v as x -> to, Here we will
often use the fact that I„ ~ q"/n. Diis result is seen as an analogue of the

classical prime number theorem and is called the prime number theorem for
polynomials. Note that q" is the number of monic polynomials of degree n

in F3[X] and that putting x — q" we have 1„ e* x/logJE, See [Ro], p. 14 for
further details.
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We recall here that a non-zero integer a is said to be a primitive root of a

prime p if the class of a (mod p) generates the multiplicative group {Z/pZ)*.
Artin's primitive root conjecture is that any non-square integer a different from
— 1 is a primitive root for infinitely many primes p. The conjecture is still
unproved for any given such a. However, conditionally to Riemann hypotheses,

more was proved by Hooley since for such a's the set of primes p having a as

a primitive root is not only infinite but has a positive natural density. Similarly
a polynomial A in F?.[X] is said to be a primitive root of a prime P e F3[X]
if the powers of A (mod P) cover all of the cyclic group For
instance X is a primitive root of the prime X2 + X+ \ g FofX],

In the famous paper [Bi] in which Bilharz proves an equivalent öf Artin 's

conjecture for function fields, modulo the function-field Riemann hypothesis

(not yet proved at that time), Bilharz shows (pp. 490-492) that if the set of
primes having a given polynomial as a primitive root has a Dirichlet density,
it may not have a natural density, where natural density is defined as

Bilharz attributes this interesting observation to Davenport. In [Ten], p. 203,

Lenstra recalls this same observation and adds that his results when applied to

the number field case remain valid if Dirichlet density is replaced by natural

density, but that this is not true in the function field case.

In this paper we challenge the idea that prime natural density should
be defined as above. Were other equally sound definitions of prime natural

density considered? Our own doubts about this came from studying the

Sierpinski question for F?.[JQ in [Bal], where we found that the successive

ratios S{n)/I{n) in (0.2) do not converge to the Dirichlet density given by the

theory. For instance, the set {p e Z; p j 2" +1 for some «} has Dirichlet and

natural densities equal to 17/24 [Ha], whereas the set {P e F3[X]; P \ X" + 1

for some n} also has Dirichlet density 17/24, but no natural density as defined
in (0.2). However it has ds -natural density 17/24 (see Definition 1.3).

Identifying a notion of asymptotic density in F3[X] such that sets of
primes, defined in analogy to sets of primes in the classical setting, possess
a density is not: just a mind game : it has consequences. In fact, the present

paper led us to discover an elementary method for computing some densities

that, unlike the classical case, avoids any use of either algebraic means or the

Chebotarev density theorem (see [Bal], Section 4, and [Ba2]). This was done

with explicit error terms and we foresee more consequences, in particular if
Hie results of [Ba2] can be proved in more generality.

r Sin) ulim —— where
n n

(0.2)
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However, from the simple point of view that we adopt in this paper, sets of
primes have, or don't have, a given form of density, regardless of error terms.

But it is worth mentioning that the strongest form of density we consider here

(the d\ -density ; see Definition 1.3) can be split into further relevant categories

depending essentially on the asymptotic size of the error term. Such types of
prime densities in F?[X] have been compared to each other in [Ca], Prop. IV.2.

Acknowledgment, I thank Jean-Paul Bézivin, Mireille Car and Patrick
Morton for reading early versions of this paper and for their interest and

comments, in particular for Jean-Paul'S help with formula (2.1), I am also

grateful to Carl Pomerance for sending me an outline of a proof he had shown

someone some fifteen years earlier, that analytic density implies logarithmic
density. I'd like to mention Bodo Volkmann's help in translating [Shp] from
the Russian in July 2006 in Saint-Étienne. I also thank the anonymous referee

for a very careful reading and for pointing out the reference [FrJa].

1. Main discussion

First we recall

Définition i.l. A set S of primes in F3[X] is said to have Dirichlet
density Ö if the limit below exists and

ran
£Pes\P\ '

s^i+

To sort out various plausible competing notions of natural density, we will
make use of tire set T of all primes of even degree in F?[X].

Proposition 1.2. The set T has Dirichlet density 0{T)~ -

Proof. Note that for s > 1,

Y - / - - log(l - q1^5) ~ log —as g «_|, i+^ n flms-O 1 ' °s-l
T 1

(l'Hôpital's rule will do). Replacing q by q~ above yields log ~

E„>i j^=ïï- • tJ,e Previous equivalence says that

~ \ log ^-j- Put u„{s) /«/#*. Since I„ m q"/n, the sequences
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of functions u„(s) and v„(s) are uniformly asymptotic to each other, i.e. there

exists a sequence, say e„, independent Of v, such that e„ —> 0 and for all £4

Hn(s) — (l+e,,H(X>. Since both E„>i p«(s) and E„>,i tend t0 +°° as

i' -> 1+ and the functions vn(s) are all continuous at 1 and positive, we have

Y utA-** Y and Y ~ Yas 4 1+

«>1 «>1 «>1 «>1

Therefore

Sper M "'"is) ü„. : '' >3v! 1

—— 1— ~~ - as 4 —> 1 ;

J2pei l-fj S«>i u»(:s) Sn>i l'n(s) 2

thus <5(7") =1/2.

A priori at least three or four kinds of prime natural density can reasonably

come to mind. We define four of them.

Definition 1.3 (Of four kinds of prime natural density). Let S be any
set of primes in F?[X], We say that

i) S has a cl\ -density if there is a real number di($) such that

S nS
(1.2) lim — =j,/. i.V) or, equivalently, such that lim—- di(S);

» fa » q"

ii) S has a d2-density if there is a real number dn(S) such that

n n

(1.3) lim (£&)/(£&)n
k—i k—i

or, equivalently, such that lim V)/(Xl=i i)
iii) S has a -density if there is a real number </-,!.S3 such that

(1.4)
n— 1

or, equivalently, such that lim -J- ds(S) ; and
N N "-i #

iv) S has a -density if there is a real number (U(S) such that

N N

(1.5) lim (£ S„/q") j (J2 W) ^4(5)
n— 1 «=1

or, equivalently, such that lim —— S„/q" —
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Each dj, 1 < i < 4, is defined as the limit of some sequence of ratios rN

as iV —i oc.. We will call such a ratio rN an approximant to dj {rN being the

approximant of order N).

Remarks, i) These asymptotic prime densities cf, d2, d$ and d4 can

be referred to respectively as local, global for cumulative), average and

Dirichlet average.

ii) The second equality in (1.2) comes from the fact that I„ & q"/n.
iii) The second expression for do in (1.3) holds because

1 ^ ~
53=i <f/k- Apply Lemma 1.6 with uk — // and vk — qk/k to see this.

iv) The validity of the second equality in (1.4) can be deduced from
Lemma 1.4 below.

v) Since I„/<f ~ l/n, Lemma 1.6 applied to u„ I„/q" and vn - l/n
yields E!Li7«/«" ~ E!Li l/n log (V, whence the second equality for dfiS)
in (1.5).

Lemma 1.4. Let x„ and y„ be bounded sequences of non-negative real
numbers. Define for all N > 1, the arithmetic means % (V-1 E«=iar,d
Ym ~ N-1 E„=i V«. Supposé there is a sequence e„ converging to 0 such

that x„ — (1 +-£,,))>,( for all n > 1. Then the arithmetic means %n and yn are
either both convergent or both divergent; in case of convergence they share

the same limit.

Proof. By hypothesis, there is a sequence e„ —i 0 such that xn l+e„)y„.
Therefore % yN + (V-1 V>; e„y„, and hence

N

|% — vn I ff B ' N ' ^ '
J En I —y 0 as h —y oo,

n— 1

where B is an upper bound for y„.

Discussion 1.5 : Evidence in favour of d\ and do.

Several analogues to classical density results are true with respect to

the cl\ -density. This is for instance the case of Dirichlet's theorem on primes
in arithmetic progressions. Indeed, if A,M are two relatively prime elements

in F3[X], with deg M > 1, then the set S of all primes of the form A + Mx,
x G KfcPkU satisfies

71-^CSO /„ ffi( M
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where 0(M) is the number of non-zero elements in F3[A] of degree less

than deg M and prime to M. The Dirichlet density theorem for primes in

F?[A] states that S possesses a Dirichlet density equal to (<E>(M)) 1. Rosen

([Ro], p.40) writes that i 1.6! constitutes a natural density analogue of the

Dirichlet density theorem. That is, one may consider d\ -density as a rightful
polynomial analogue to rational prime natural density as defined in (0.1).

The prime natural density defined in (0.1) is akin to the notion of integer
natural density, which for a set M of natural numbers is defined, provided
the limit exists, as

« n

where M(n) counts natural numbers in M that are < n. Many classic integer
natural density results, such as the prime number theorem which states that

the ratio U(n)/n is asymptotic to 1 / log n, or the fact that as n -»• oo, the

ratio of the number of square-free integers < n to n has limit 6/tt 1 /Ç(2),
have beautiful corresponding statements in F3[X] stated in terms of the ratios

S„/q" having appropriate asymptotics or limits (see [Ro], p. 14). Here S is a

set of monic polynomials in F3[A] (5 / or S — set of square-free monic

polynomials in the two former examples). The ratio S„/q" is the number of
monic polynomials of degree n in S divided by the total number of monic

polynomials of degree n in FJJQ, And taking lim„S„/q" is akin to the

d\ -prime natural density notion. Thus, the fact that lim„S„/q" makes a good

F?[X] -analogue of the Z-notion of integer natural density suggests that the

d\ -density might be a fruitful F? [A]-analogue of the r/z -prime natural density.

However, a priori, the d% -density seems more faithful than the â\ -density to

tire original definition of natural density, since it is the cumulative asymptotic

proportion of primes in S among all primes up to a certain size. The following
two lemmas will help to show that S has a d\ -density if and only if it has a

d2 -density, with d\(S) — d2(S) if S has such densities. Thus it makes sense

to choose the d\ rather than the d2-definition since it is simpler.

Lemma 1.6. Let (u„)„>j and (vn)„>\ be sequences of real numbers

satisfying

i) v„ > 0 V« > 1,

ii) V„ J2l=i l'k ^ oo as n oo.

Then u„/v„ J e R m n -? m a„ —r £ as n -»• oo, where

a" ' ^2k-1 Uk/ Sjt=l %•
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Proof. Let e > 0. By hypothesis, 3 n0 > 1, V« > %, j a„ - lx% \ < sv„.
Put C Xli'S1 \"k ~ *&$] • Then f°r n >n0, we have

n n

I a„ - I < F"1 \uk - |h] < V~l [C + e^ vk] < CjVn + «.
k— 1 k—no

Since V„ ->• oo, we get lim sup \ a„ - t\ < g, Vg > 0. Therefore lima,,

Remark. For ~ 1, Ht, Lemma 1.6 is the Cesàro (or arithmetic) mean
theorem.

The next lemma is a converse of Lemma 1.6 which is valid provided
the rate of growth of the v„-sequence is fast enough so that % is at least

comparable in size: to VB_i.

Lemma 1.7. Using the notation of Lemma 1.6 we assume that

i) a„ converges to some a R

ii) is a bounded sequence.
v„

Then the Sequence u„/v„ converges to a.

Proof. Note that for n > 2 we have

L/y— I (iL On—i) — V), Vn)üji Vn — 1 — 1

— 1'ly0n 1'ly — 1 ON—] Cnün

Mfl v„a„.

Hence — - a„ (ö„ - —> 0 as n -t oo, which yields the
V,i v„

conclusion. U

Proposition 1.8. Let S be a set of primes of F3[X], Then dfS) exists

if and only if rfeJS) exists. And dfS) — dr(S) in case either density exists.

Proof. Take u„ — S„ and v„ — q"/n. Assume dfS) exists and apply
Lemma 1.6 to deduce that ch(S) exists and is equal to d\ (_$). For the converse,

by Lemma 1.7, all that is needed is to show that V„-i/v„ is bounded. Since,

for any prime power q, both functions x —> qx/x and X —* qx/xr are strictly
increasing on the interval [3,+og) c (2/logg,+oo) we can write, for any
integer n > 4.

"~1 nk rt- rk+1 n' f" nr
V„-i ^ — < <7 -I- — + >

' / -r dt < <r + - dt,
k=l 8

k—3 ' « '
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and integrating by parts

I>n

log q L
>n

4 dt < + 2—^ • 4 < 5———f2 Dg? It log? log? «

Hence — < -ttt + -, 5- 1 + -,

q" - log q log q
< 4

Discussion 1.9: Why consider d3 and d4

The set T of Proposition 1.2 has a Dirichlet density and clearly no

d\ -density, since the approximants to d\(T), S„/I„, are alternatively 0 and 1.

The complement of T in I is Sq(0], in the notation of [Bal], and it was
shown there (see the proof of Theorem 3.1) that primes in Sq(0) can be

described by splitting conditions in a normal finite extension of the field
of fractions F3(2) of F?[2], As mentioned in the introduction, sets of
rational primes determined in this manner have not only a Dirichlet, but
also a natural density. Hence we would expect T to have a natural density in

F?[2]. Again T has no d\ -density, but clearly T has a d3 -density and

di(T) 1/2. In fact T is not exceptional in this respect. For integers
k > 0, the sets Sq(k) -{Pe F9[2]; P prime and degP 2k (mod 2k+l)}
and their subsets Oq(k) — {P e Sq{k); order of X (mod P) is odd} have

Dirichlet and d3 -densities, but no d\ -density. These sets arose in [Bal] while
counting primes P in F3[2] for which the order of X (mod P) is even

(or odd). This counting problem is an analogue of the Sierpinski question
mentioned in the introduction. Mimicking the method of Hasse [Ha], we
found that Sq(k) and Oq(k) are in a precise way (see Remark 3.4 of
[Bal]) Fg[2]-analogues of the Hasse sets S(k) and Oa(k), where for each

integer k > 1. S(k) — {p N; p prime and p 1 + 2k (mod 2Ä:+1)} and

Oa(k) — {p S(k); order of a (mod p) is odd}, with a e Z\{0, ±1}. These

sets of rational primes have a Dirichlet density, but it is not hard to prove
that they also have a natural density.

Moreover, d3 -density is compatible with the notions of d\ or d3 -density,
since by the Cesàro mean theorem, any set having a d\ -density has a

d% -density. And as we shall prove, any set with a d3 -density has a Dirichlet
density. So there is a better match between Dirichlet S and d3 -densities than

between d\ and 5 -densities. In fact there is an even better match between

r/4 and 8 -densities since, as we shall prove, sets with a à-density d have a

r/4-density equal to d, and sets with a r/4-density d have a Dirichlet density
equal to d.
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As generalizations of the t/z -notion of natural density in use for sets

Of primes in the ring Z (see (0.1)), we are about to show that the d% and

d4 -definitions are as consistent as the 1/3 -notion. Rather than giving each prime
the same weight, regardless of its norm, as is done in d% -approximants, in

and 1/4-approximants each noiw is given a weight between 0 and 1

proportional to the number of primes having that norm. For sets in Z,
both points of view coincide, because there is only one (monic) integer

for each norm, and therefore either 0 or 1 prime having a given

norm.

For sets S of rational primes, one way to interpret the approximant of
order N to dz(S), ir§ S{N)/H(N), is that S{N) is the sum of weights s„
associated to each norm « up to iV, where

^ ^
number of primes of norm n in S

" number of (monic) integers of norm n in Z

Of course $„ is either 1/1 if n is a prime in S, or 0/1 if not. The denominator

ll(.\0 of t~fi is interpreted identically but with S — n, the set of all rational

primes.

Carrying over this interpretation to F3[A] yields s„ - S„/q" and
M N

t'N % the approximant of order N to r/4

n— 1 n— 1

In practice, to estimate dx(S) we often consider only approximants of
prime order. That is, given N > 1, we gather the list pi — 2, P2 — 3,..., Pn
of the N smallest primes, test each pk for membership in S, count how

many lie in S and divide that count by N, since N measures how many
lie in II. Non-prime natural integers are ignored, and this suggests another

interpretation in which only norms containing at least one prime are assigned

a weight

number of primes in S of norm p„
(1*8) '*Cfj — \ 7 ; • n 7number ol primes m Fl ol norm p„

Note that we do have S(pn) — In F?[A], every norm contains primes.
Therefore, S being a set of primes in F3[X] and following (1.8), we have

S„/I„, which yields rN ELi^«/7«)/ELiI7«/7«) ^E!Liw«'
the approximant of order N to 1/3.

Some of the claims made in the foregoing discussion will now be proved.
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Lemma 1.10. Let u„ be a sequence of real numbers such that Un/N
Converges to some de R as N -e oo, where Un - E»=i. "«• Tf}en

N

rN - V — converges to d as N —¥ oo.
log IV ' n

n— 1

Proof. For a function / of class C1 in [1,1V], we have the integration
by parts formula

N N wv pN

Y Y ~ / f'Wdt} UNf(N) - / f'(t)U,dt,
71 1 71 1 **

where Ut J2i<n<tli» (see IAp], Theorem 4.2). So

(1.9)
Z-*r „ M fin N J, t-
n— 1

'1
dt — M I -—-dt — d{ 1 + 0(1)) logiV,

Since Ut ~ id and J] t dt — logIV -> oo as N —> oo, we may write

./i t

and by (1.9) we get (logiV)"1 EliC«»/«) OfaogAO"1) +d(l +o(l)) -a r/

as IV —s- oo. Note that for d — 0, one should replace d by o(l) in the above

calculation.

Proposition 1.11. Let S be a set of primes in F?[X] with a d? -density.
Then tfiS) exists and d^S) — il-xS).

Proof. By hypothesis there exists d e [0,1] such that

N

limiV-1 Y, (tSn/q") d.
n—1

By Lemma 1.10, we have d — lim (logAO-1 E!Li($»/<?'),. which says that

d.\(S) exists and is equal to d.

To show that a set with r/4-density has Dirichlet density, we first state

a lemma on power series that closely resembles Lemma 1.6; the hypotheses

are stronger. We intentionally choose a proof that closely mimics the proof
of Lemma 1.6.
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Lemma LIZ Let (m„)„>i and (v„)„>i be sequences of real numbers

satisfying

i v„ >0 V«. > 1,

Ü) V. V., :;-, W&'00 x " 1

•

iii) the series y««</ converge on [0,1).
Then u„/v„ —> I G R iw « —F oo ==> a* -»• & as x —> 1~, vt'/tcrp

% — Sh>1 9» L'/ S„>1 % X"

Proof. Let g > 0 and x G (0,1). By assumption, 3«0 > 1, V« > m,
\u„x" - fv„.v" - :r„.v". Put G - 5Zh=Îj Im« ~~ i*\ x" Then we have

|fl, - £ I < VT_1 [C, + e v» **] < Ci!v* + « •

«>«0

By ii), Vx —I +oq as x —I 1~ so that, f being arbitrary, lima, i as

x-> 1".

Proposition 1.13. Let S be a set of primes in F?[X], If S has

d4-density d, then S has Dirichlet density 5 - d.

Proof. Using the notation s„ S„/q", t„ I„/q", u„ £Li «a
v„ - Yj'k=j,& and x i/f* ' our hypothesis becomes: u„/v„ -y d as

n hp oo. And we wish to show that

y^ %,v" / %.u —> ri as x -> i~,
»>i «>i

We first check that u„ and v„ satisfy the hypotheses of Lemma 1.12. For

X G (0, 1), Vx > X^7f>l taI#. Since L ~ l/n, there is some «o > 1 such that

2* tn x" > 2 En>n0 X"/n. But Y,n>na x"/n -y Zoo as x -y 1 since

J2„>ix"/n >= — log( 1 - X) +oo as x -*> 1~. Hence Lemma 1.12 ii) holds.

Since 0 < s„ < t„ < l/n and \Xt'/n converges on (0,1), the series

J2„>isnX" and Yjn>itnX" converge on (0,1). But for any x G (0,1), we
have

(1.10) u„x"+1 s„ X' and V_x — E +,.T"+1 Er-Ew.
«>1 «>1 «>1 «>1 «>1 «>1

So that Lemma 1.12 iii) also holds. Therefore, by (1.10) and Lemma 1.12,

we have for all x G (0,1) that V,( s„.v" V„,„; ;„.v" is equal to the ratio

2«>i 'h,x"/ J2n>i v»x", which converges to d as 'x-y
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Remark. Since ch(T) — 1/2, we now have a second proof of Proposition

1.2.

As we mentioned in tire introduction, Bombieri showed Serre a proof that

the set of rational primes whose first decimal digit is 1 has Dirichlet density

logw2, but no natural density. Inspired by this example, the next proposition
shows that the converse of Proposition 1.11 does not necessarily hold. Note that

the set Y defined below is essentially the set of primes whose degree expressed
in base 4 has first digit equal to 1.

Proposition 1.14. ne set

Y — {P prime in F?[X] ; 3n > 0, 22" < degP < l2n+l}

has d4-density equal to 1/2, but no d^-density.

Proof. Let u>„ be the weight function uj„ Y„/I„ defined in (1.8).

If Y has a d4 -density then d4(Y) — lim^r^A), where, by (1.5), r4(A)
is We claim that ck(Y) exists if and only if
lim/logA/T1 Y^n~twnfn exists and that in case of existence the previous
limit is d4(Y). Indeed I„ ~ cf/n means there: is an s„ -+ 0 such that

Y„/q" — (1 + en)uj„/n. Therefore

(Lii) Irdm- biÂê TI - îiv ê i£"i ^ ^ biÂêw»>
n— 1 n—1 n— 1

since uj„ [Q, 1 ]. Now |s„| —> 0 ==> ^-1 l£«l 0' which hy
Lemma 1.10, implies that (logA)-1 l£«l/w 0 an(i hie claim then

follows by (1.11).

Thus we have shown that ckiY) — lim#X4(A)/log A, where A4(A)

yf,-i üj„/n. Since —— < f,"
1

— < - for k > 1, we get for m > 06~m=l M I +1 - Ji t - j - «? -
22/n+l 2^+1 \ 2^m+l ^

Tm V I =>" Y — < - =1°82 <:
"

y - < -L + rffl,
k V k+l-J, t e - 4^ k - 22m

22m ^ 22m z 22m

whence

n—1 n—1 n—1
^ ^

(1.12) ^rm<«log2 and > «log2 - ^ > wlog2 --,
m—0 m—0 m—0
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By the definition of T, we have X4(22") for n > 1. Hence,

by (1.12), X4(22n) log2 and X4(lu+1) ~ (n + l)log2 ~ wlog2. But for

any N > 4, there is a unique n > 1 with 22" < N < 22"+2 and since X4 is

an increasing sequence we have X4(N) ~ «log2. Moreover logIV 2n log2,
therefore limjv X4C/V>/ logA? 1/2 — (k{Y).

Let Xà(iV) and assume that c/3(T) exists. Then 1/2
and therefore Xj(lV) ~ N/2 as N ->• 00. In particular, 22* ~ (22Ar"1"1

A3(22Ä:+2) ~ 2lk+l as k ->• 00 whence 2=1. Therefore, c/3(T) does not
exist.

Remark. Both Bombieri's result and Proposition 1.14 can be obtained

as special cases of respectively Théorème 2.1 and Corollaire 1.7 of [FuLe],

Discussion 1.15: ch is more adequate than r/4.

In Discussion 1.9 we presented reasons why the and cl4 -densities

might be more analogous to the usual prime natural density in Z than the

Si or ch -notions. Now we will argue that the ch -notion provides the best

analogy, despite the fact that d4 -density is one step closer to 5-density than

is d\ -density.

First from a practical point of view, it is likely that r/3 -approximants,

N_1J2n=will settle around S(S) faster than d4-approximants
(lOgN)~1Y^lI=i(Sn/q") do. Indeed, both numerators and denominators in
d4 -approximants grow on average as the logarithm of corresponding numerators

and denominators in c/3 -approximants. Hence, if primes in S of small

norm do not obey the asymptotic pattern that yields 5(S), it will take

d4 -approximants of much higher order than corresponding <23 -approximants
to re-adjust to the asymptotic value. And that means more computing
to do.

Also from a conceptual point of view, the r/3 -notion is more satisfactory :

it seems more natural to make each norm equipollent, i.e. to assign to each

norm, or to each degree, a weight potentially equal to that of any other norm.
In d4 -approximants the weight of primes in S of degree n is s„ S„/q"
and s„ < I„/q" < l/n if n > 2, since for n > 2 not every element of
the finite field is of algebraic degree n over F3 so that I„ < q"/n.
Thus larger degrees n are given potential weights that are bounded above by
1 /n and therefore contribute less than smaller degrees. On the other hand, in

r/3-approximants the weight assigned to degree n is w„ S„/I„ which may
reach the value 1 no matter what the size Of n is.
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Thirdly, as indicated before stating Proposition 1.14, the set Y is an

analogue of Bombieri's example. So we would expect Y not to have a natural

density and to have a Dirichlet density (perhaps even equal to log4 2 And Y

has no ck -density, but has a cU -density. Therefore it has a Dirichlet density
and its value is indeed 1 /2 — log4 2.

The Bombieri example points to a simple scaling property associated to
tire dz-density:

Let m be an integer > 1 and S be a set of rational primes having a

natural density d > 0. Then because H(N)/Ii(mN) ~ ^ as N -4 oo one has

S{mN)

^ —> m as N -> co

The: corresponding ratio for a set of primes S in F?[A] having positive
di -density d is

X3(mN) _ Un mNi
_ u

S„

mm ZLxUn~ Nd Werea;'! I,,'

this ratio also converges to m as N-i so.. Using this simple property, one

sees immediately that the set: of rational primes with first decimal digit 1

does not have positive natural density (take N — 2 x 10" and m — 5 for
instance), and Proposition 1.14 uses this property to show that Y does not
have a d^ -density. None of the approximants to d\, d% or ds shares that

property. Tor dk and the set Y, we saw in Proposition 1.14 that if N — 22",

then X4(4N)/X4{N) converges to 1 rather than to 4.

Moreover, there is yet another reason to prefer d$ to r/4 since as we are

about to see, Dirichlet density and r/4-density are equivalent notions in F3[A],

2. Dirichlet density implies asymptotic Dirichlet average density

Theorem 2.1. Let S be a set of primes of F?[X] with Dirichlet density
5 e [0,1]. Then S has ck-density 5.

We have two radically different proofs of Theorem 2.1. The second proof
will be given in detail, while our first proof will only be sketched. It uses a

result of Tauber [Tau] as improved further by Littlewood [Li], namely
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Proposition 2.2. If a real power series £a„x" converges to some real
number £ as x—» 1~ and na„ — 0(1), then the series £a„ converges to !»

Brief outline of a first proof of Theorem 2.1. Using the notation of
Proposition 1.13 and the equivalence of tn with 1 /«., our hypothesis says that
ö - limMl- gÉJi where q(X) is the analytic function on — 1,1) defined by

- E„m. To show that Proposition 2.2

applies to the series q(x), we studied the coefficients c„ of the series

£-< D'„.v" 1 /£„>x (a" x/ri). An integration in the complex plane led

to the formula, valid for all n > 2,

f*m dt
(2.1) cn —

flog' / • -Oil • 0"
'

Formula (2.1) was used to obtain that all c,f s for n > 1 are negative. Then,

from the relation

X s»+i-T' Xc" Xq" •*" '
«>0 «>0 «>0

we got ^~~j~ < <7« <
n
~ 1

and nq„ 0(1). Hence, by Proposition 2.2,

Y= Ö. Then it is easy to show that s„ is asymptotic to

^EX^M* yielding Jlrn(E!Li s«)/(EX f») 5> which says that s

has a 1/4-density.

The complete proof of Theorem 2.1 we present is based on observing that

d4 -density can also be viewed as an analogue of the notion of logarithmic
density for sets of rational primes. If S is a set of primes in Z then its

logarithmic density is defined as

(2.2) lim p-x^— provided the limit exists.
*+« E,:,/'

Now for any x > q, there is a unique natural number N — Nx with

(2.3) tf<x<tf+ii
And one readily checks that if a set S of primes in FS[X] has a d4 -density
then

d4(S) lim
L'P~S' EliXj.^ Ei^ol^1

an obvious analogue to (2.2). This proof is an adaptation of an outline of a

proof Carl Pomeranee showed uS, to the effect that prime Dirichlet density
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implies logarithmic density for sets of rational primes, a fact which

appear to be very well known.

Letting S be a set of primes in F5[X] and using the notation

we begin by stating and proving three short lemmas.

Lemma 2.3. We have the estimates

V|Pfs ~ |iog(i-1)|, öiy^l+,
P

log log x, as r-too,
\p |<s

\ log |P|
and 2_^ —P— ~ log .v, as x -a do

jP|<,r M

Proof. We saw in Proposition 1.2 that ~ c„!-d m |log(i-l)|,
as s —) 1+. But Ze\rr E»>i J| Applying

Lemma 1.12 with x — g1_s, u„ — I„/q" and v„ l/n yields the first
estimate since u„ m v„. The second estimate is easily seen to hold since, by
Lemma 1.6,

N N

log log x ~ log log <p w log N E — as x —y oo.
71 1

"
77 1

'l

But 4/4" — SiPKt \P\~ The last estimate holds since from I„ ~ q"/n
and Lemma 1.6, we have

|Pf<* 77 1
7

77 1
7

77 1

does not

in (2.3),

LEMMA 2.4. The sum Si(x) Eipi<* P
1

1 - IP — 1 / log X 0(1).

Proof Let P be a prime. Using the mean value theorem with the function

fp(u) |Pp, one gets for u> 0,

1 - |P]"a < log |P| -U.
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Therefore we have

5i£x) Y, lpl_1 [: *f)ml
' |P|<r

'

by the third estimate in Lemma 2.3.

Lemma 2.5. The sum S2(x) E|p|^ |p|_1_1/l08 x 0(1).

Proof. Since /„ < <ffn for any degree n, and 1 - q~l/u ~
have as a —i oo

—n/ log x

we
u

jug x /,</ " " lc® ' - x
n>N n>N

< 1_ « i_g-(iy+i)/iogv. (i — d(~i/Dg•r)_i
n>N

« Lq-#+i'/te-dog 4/log X)"1 < l.q-Mm+nhg « t^+^Qgg

< ije-N '

Hence $%(%) 0(1).

Our second proof of Theorem 2.1. Since Y^\p\ log log x, we
need to show that

(2.4) XI lpl_1
\p\<x, pes

is asymptotic to S log log x as x —i oo, if ö f 0, and is o(log log x),
if § - 0. By hypothesis, the sum of |P|~S for P e S is asymptotic to
<5 I log (s - 1J| as s approaches 1 from the right (or is o(|log(5 - 1)|) if 5 0).

Let s 1 + 1 / log x, so that, by hypothesis, the sum of |jP|~1_1/108-v for p
in S is either asymptotic to 5 log log x as x goes to infinity if <5 ^ 0, or is

oilog log x) if <5 0. Now this sum differs from the sum in (2.4) by 0(1).
Indeed, the contribution of the gap between |P|_1 and pj~1-1/log * for |f|
up to X is 0(1) by Lemma 2.4 and the contribution from |P| > x is also

0(1) by Lemma 2.5. The result follows. O
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3. Artin's conjecture and natural density

Let a be a non-square integer different from -1. Hooley [Ho] showed,

provided the Riemann hypothesis holds for certain number fields, that the set

df primes p having a as a primitive root possesses a density. His work is

valid for natural and Dirichlet density.

However, as mentioned in the introduction, the argument Bilharz uses at

Hie end of his paper [Bi], pp. 490-491) shows that, given a prime p and

the polynomial A — X of FP[X], the set S of primes P f Fp[X] having X
as a primitive root does not have: a natural density, where this density was

"naturally" taken to be the do -notion, despite the fact that this set has a

Dirichlet density.
Let us rewrite the Bilharz-Davenport argument in the next proposition using

Hie equivalent d\ -notion of density and replacing p by any power q of p.
The letter £ will denote a prime and S the set of primes of F?[A] having X
as a primitive root.

Proposition 3.1. The set S of primes in F3[X] having X as a primitive
root does not have a d\ -density.

Proof. Note that a prime P of degree n is in S if and only if X^~l 1

(mod P) in F?[X], but Xk ^ 1 (mod P) for any proper natural divisor k of
q" -1. That is, if and only if each of the n roots a of P satisfies F3(a) ~ F^,
or each such root is one of Hie ip(q" - 1) generators of the group FS,. Hence

we have shown that S„ is equal to ip{q" - 1 )/n. Therefore

S„ (cf - 1 )y„ /nt ~ —T.— ~ y» 'In cf/n
where y,, is the product rLv-i(l ~ l/lfjL To show that S does not have

a d\ -density we exhibit two sequences of integers (nt) and (ns) such that

y„, H» 0 and y„s -ft 0.
For an integer t > 1, define nt as the product f] [order of q (mod fll.

t<i. Mp
Then

y«> - II _ lf£)
£<t..Mp

Since the product Px — ] ],. 1 - 1 /£) satisfies

f L-Vi+:1

Pf — ]^[(i - i/Lr Q ^ l~k > 2_1 K / u~ldu > log.t,
1:<X tKx k>0 B 't* '

we have Px < (log.v! and therefore y„t - 0((logf)—1 —> 0 as t m oo.
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On the other hand for ns — ps, the v-th prime distinct from p, primes £

dividing q"' — 1 are not overabundant, so that y„s -ft 0 as s —> oo. Indeed,

I I qPs - 1 implies, for one thing, that either \ q - 1 or £ I (mod ps), but
also that £ < qPs. So

logv,, Y. log(l - 1/1) > - +
£\qPs-l £\qPs-l

whence

- log V„5 < V tin- Od! X] (1/^ + 0(1)
fei (mod pP

Hgi#
< C(loglogqps)/tp(ps) + 0(1),

for some absolute constant C. We used the fact that the estimate

an £ a/n«1^
£=c (mod b)

£<x

holds uniformly in, say, the range x > 80 and 1 < e < b < \fx with c and

b coprime. Here: x — (f' and b — ps — log x/ log q < 21ogx < fx. Note that

(3.1) is easily deduced from the Brun-Titchmarsh inequality [MoVa]

7t(x, b, c) <
logtv/fc)1

valid for x > 2, b < x and gcd(b,c) — 1, where tt(x; b, c) counts primes

congruent to c (mod b) that are <x.
Now

o, asxfeoo,
ff&f Ps

so — logy„s 0(1) and therefore y„s ft 0 as s —» oo.

However we show that the same set S has a ch -density.

Proposition 3.2. The set S of primes in F5[X] having X as a primitive
root has a ch -density.

Proof. Theorem 3 from the Russian paper [Shp] states that

(3.2) N-1 Y ^+bl!"d+in— 1

for Some positive constant el, where a,b,g e Z, g >2 and gcd(ag,b) 1.
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Taking <7=1, g — q and b — -1, we: get that lim N 1 $//!=!9W~—ö
N—yoc

exists. And since
<pUf - 1)

^
<p(cf - I )/» ^ y(g" - 1)/" _

?" -1 ?"/« In In

Lemma 1.4 yields that N~lY^,=jfßW&i converges as A —g oo. Thus i^jjf)
exists.

Remark. The result of Shparlinski (3.2) is a special case of fairly
general asymptotic estimates of averages of arithmetic functions evaluated

at consecutive terms of recurrence sequences. See [LuSh],

We end this section with a final remark.

Remark 3.3 (Chebotarev sets of primes in F3[X]). Recall that any
Chebotarev set of primes in Z has a natural density. So we ask whether

it might be true that any Chebotarev set of primes in F3[X] has a ch -density.

By a Chebotarev set we mean tire set of primes whose Artin symbol
is a given conjugacy class C of the Galois group of some finite Galois
extension F over F^fX). There is a large class of such extensions, the so-
called geometric extensions, for which corresponding Chebotarev sets have a

di -density (see [Ro], Theorem 9.13B, p. 125). But as we will show, the set

T is a Chebotarev set and has no cl\ -density. So not every Chebotarev set

in F?[X] has a d\ -density. However even for non-geometric extensions such

sets have a ch -density.

Indeed, if L is the algebraic closure of F? in F then all elements of C

restrict to the same element a" of the cyclic Galois group of L/Fq, where a
is the automorphism of L/Fq that sends x to x?. Now call S the set of
primes P of F3[X] whose associated Frobenius automorphisms lie in C. Then

Proposition 5.16 of [FrJa] shows that S„ — 0 if n ^ a (mod u), where ti is

the degree extension [L : F.;], while if n a (mod u), then S„/I„ r*j id/®
as n —> oo, where v is the degree extension [F : LF,-;(.V)|. Therefore ch(S)

exists and is equal to \C\/uv.
For S T, consider a field F ~ F^fX), so that I. — Iy, u 2, g 1.

Let C — {id} be the conjugacy class of the identity automorphism of F/Fq(X)
so that a — 0. Then P e T if and only if tp — id, where tp is the Frobenius

automorphism of P. Indeed, for a prime P of degree n and a a primitive
element of F^./F,r we have TP(a) ~ id{a) if and only if <alpl or* a,
which holds exactly when n is even. So T is a Chebotarev set. Of course we

again find that ch(T) — 1/2 since \C\/im — 1/2.
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4. Conclusion

We summarize our results in a theorem accompanied by the synoptic

diagram

(V/i —> (li —3 di —> (V/4 •-—> S).

Theorem A. Let S be a set of primes in F3[X], Then the statements

below hold true.

i) Should S possess any two of the five kinds of densities defined above

(d\, d%, ïfe, d4 or Dirichlet 5-density), then their values necessarily coincide.

ils S has a d\ -density if and only if S has a d2 -density.

iii) If S has a d\ -density, then S has a d% -density. The Converse is false t
for instance, the set T of Proposition 1.2 has a 1/3 -density equal to 1/2,
but no d\ -density.

iv) If S has a 1/3 -density, then S has a d4 -density. The converse is false ;

for instance, the set Y of Proposition 1.14 has a d4-density equal to 1/2,
but no ck -density.

v) S has a d4-density if and only if S has a Dirichlet density 6.

Therefore of the five types of FS[X] -prime densities considered, three are

essentially distinct.

Taking into account the three discussions of Section 1 and the results

of Section 3 it is our belief, based on conceptual, computational and

qualitative properties that the afe -notion represents, within the few candidates

we examined, the most viable analogue of prime natural density in Z.
By qualitative properties we mean again that: sets of primes linked to the

F?[A] -analogue of the Sierpinski question, sets related to Artin's conjecture and

Chebotarev sets Of primes in F3[A], have a dj, -density, but do not necessarily
have a d\ -density, while our F9 [A] -analogue of the Bombieri example has a

Dirichlet density but no 1/3-density. So it is tempting to adopt the following
terminology: a set of primes in F3[X] will be said to have a (prime) natural
density if it has a dj -density. A set of primes having a d\ -density should be

viewed as having a strong form of natural density, which could be referred to
as uniform prime natural density. The d4-density appears to act as a faithful
analogue of the logarithmic density in use for sets of rational primes. It can

be used as a tool, as it was in Proposition 1.14, to determine whether some

set of primes with no natural density has a Dirichlet density, or not.
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Other examples should be tested to confirm, or invalidate, ch as a rightful
analogue of prime natural density in Z.

We conclude by a general question pertaining to the density theory in
number systems presented in the book [Bu], Consider a class K, of finite
structures and a property V. Define, for each n > 1, /C„ as the subset of
these structures of size n. Define p„ as the proportion of structures in JCn

that have property V, and P„ as the proportion of structures in |Jfc4 that
have property V. In [Bu], the function p„ (resp. P„) is referred to as the local
[resp. global) counting function and is somewhat akin to the d\ (resp. d2)

approximant of order n. General results [Bu] have been proved in which the

existence of a limit for p„, or P„, as n -> oo has been established. Suppose

we define an average counting function p„ as i YH=iPk- Are there classes of

structures such that neither p„, nor P„ have a limit law, but p„ does Can we
build a general theory of limit laws based on the function p„ Ulis function

being similar to the r/3 -approximant of order n, Propositions 1.11 and 1.13

of our paper suggest that if p„ converges there are general hypotheses under

which the associated Dirichlet density also exists.
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