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A CONTACT GEOMETRIC PROOF OF

THE WHITNEY-GRAUSTEIN THEOREM

by Hansjörg Geiges*)

Abstract. The Whitney-Graustein theorem states that regular closed curves in
the 2-plane are classified, up to regular homotopy, by their rotation number. Here we
give a simple proof based on contact geometry.

if Introduction

A regular closed curve in the 2-plane is a continuously differentiable map

7: [0,27t] -g R2 with the following properties :

(i) 7(0) 7(2tr), 7'(0) 7(2tr),
(Ü) -'(,v) / 0 for all v e [0, 2tr].

If we identify tlie circle .S'1 with R/27rZ, we may tliink of 7 as a continuously
differentiable map M —) R2.

The rotation number rot(7) of 7 is the degree of the map

f _> R2 \ {0}
5 I > j'(5)

*) The author is partially supported by DFG grant GE 1245/1-2 within the framework of the
Schwerpunktprogramm 1154 "Globale Differentialgeometrie".
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In other words, rot(7) is simply a signed count of the number of complete
turns of the velocity vector 7' as we once traverse the closed curve 7, see

Figure 1.

Fiöorb 1

Regular closed curves 7 with rotpy) equal to I, 0, —2, respectively

A regular homotopy between two such regular closed curves 7,,. 7, is a

continuously differentiable homotopy via regular closed curves 77 .S'1 -7R2,
I 7 [0,1]. The rotation number clearly stays invariant under regular homo-

topies. The following theorem is commonly known as the Whitney-Graustein
theorem. It was first proved in a paper by H. Whitney [5], who writes : "This
theorem, together with its proof, was suggested to me by W. C. Graustein."
For alternative presentations see [1, Chapter 0] or [3, p. 47 et seq.].

Theorem 1. Regular homotopy classes of regular closed cun>es 7 : S1 —> R2

are in one-to-one correspondence with the integers, the correspondence being

given by [7] 1-7 rot(7).

Whitney's proof is elementary, but not without intricacies. Here we want
to present a non-elementary proof — based on contact geometry — where

the geometric ideas are actually quite simple.

A homotopy through

Figure 2

regular closed curves with non-invariant rot
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REMARK. The modern terminology 'regular homotopy' describes what

Whitney called a 'deformation' of regular closed curves. He seems to suggest,

erroneously, that it is enough to require that 7r(s) be continuous in s and t

and a regular closed curve for each fixed t, but in the course of Iris argument
it becomes clear that he also wants ~/r(s) to depend continuously on t.
Figure 2 shows a homotopy of regular closed curves (first traverse the big
circle counter-clockwise, then the small circle) with rot(7r) 2 for t £ [0. 1

but rot(7i) 1.

The standard contact structure Ç on R3, see Figure 3 (produced by
Stephan Schönenberger), is the 2-plane field £ ker(r/z T- X(hj. For a brief
introduction to contact geometry see [2]. No knowledge of contact geometry
beyond the concepts that we shall introduce explicitly will be required for the

argument that follows.

A regular closed, continuously differentiable curve 7: S1 —I (R3,0 is

called Legendrian if it is everywhere tangent to |, that is, ~/(s) g |Dj
for all s G .S'1. When we write 7 in terms of coordinate functions as

7(s) (x(i), y(v), z(s)), the condition for 7 to be Legendrian becomes

I? + xy' 0. The front projection of 7 is the planar curve

2. Legendrian curves

Figure 3

The contact structure £ ker(dz + x dy)

-iL) HD. ,:(s)) ;
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its Lagrangian projection, the curve

7l(s) (x(s), yts))

Figure 4 shows the front and Lagrangian projection of a Legendrian unknot
in R3.

z y

y X

Figure 4

A Legendrian unknot

Notice that a Legendrian curve 7 can be recovered from its front
projection 77, since

/ x AS dz*»- A *
is simply the negative slope of the front projection. (Of course this only makes

sense for y'(s) 0. Generically, tlie zeros of the function y'(s) are isolated,

corresponding to isolated cusp points where jp still has a well-defined slope.)
Since x(s) is always finite, «71 does not have any vertical tangencies, and we

can sensibly speak of left and right cusps. These cusps are 'semi-cubical' ;

a model is given by (x(ij, y(s), z(s)) — (s,S2/2, -s3/3).
Likewise, 7 can be recovered from its Lagrangian projection 7l (unique

up to translation in the z- direction), for the missing coordinate z is given by

-:(vi) -:<s») / x(s)y'(s)d$.
J S0

Observe that the integral fxy'ds — fxdy, when integrating over a closed

curve, measures the oriented area enclosed by that curve. Moreover, the

Lagrangian projection 7l of a regular Legendrian curve 7 is always regular:
if v'(v) — 0, the Legendrian condition forces z'(.v) — 0, and then the regularity
of 7 gives x'(x) ^ 0.

The idea for the proof of Theorem 1 is now the follow ing. Given a (regular
closed) Legendrian curve 7 in (R3,0, one can assign to it an invariant
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(under Legendrian regular homotopies, i.e. regular homotopies via Legendrian
curves). Tliis invariant is likewise called 'rotation number'. In fact, the rotation
number of 7 will be seen to equal the rotation number of its Lagrangian
projection Alternatively, the rotation number of 7 can be computed from
its front projection 71:, where it becomes a simple combinatorial quantity
(a count of cusps). Now, given two regular closed curves To- 71 in the plane
with equal rotation number, we can consider their lifts to Legendrian curves

7q. 7-1 (still with equal rotation number), and in the front projection we can

now 'see', in a combinatorial way, a Legendrian regular homotopy between
them. The Lagrangian projection of this Legendrian regular homotopy will
give us the regular homotopy between 70 and 7)

3. THE ROTATION NUMBER

The plane held Ç is spaimed by the globally dehned vector helds §j — <)x

and ('2 — dy —xdz. In tenns of the trivialisation of 4 dehned by these vector

helds, we may regard the map 7' (coming from a regular closed Legendrian
curve 7) as a map

s1 —> R2 \ {0} s

I '—» ~'(.t).

The rotation number rot(7) of a Legendrian curve 7 is the degree of that

map. This means that rotfv counts the number of rotations of tlie velocity
vector 7' relative to the oriented basis <7. ('2 of 4 as we go once around 7.
The rotation number is clearly an invariant of Legendrian regular homotopies.

LTnder the projection (a, 377) h-> (x,y), each 2-plane 4-as) maps isomor-

pliically onto R2, and the basis é\, |j for 4-,(.<) is mapped to the standard basis

dx, dy for R2. So tlie following proposition is iimnediate from the débilitions.

Proposition 2. The rotation number of a (regular closed) Legendrian
carve in (R3,4) equals the rotation number of its Lagrangian projection,

A little more work is required to read off rot(7) from the front projection

7p This, however, is well worth the effort, because it turns tlie rotation
number into a simple combinatorial quantity.
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Proposition 3. Let 7 be a (regular closed) Legendrian Curve in (R3,£)-
Write A+ or A_, respectively, for the number of left cusps of the front
projection yy oriented upwards or downwards; similarly we write p± for the

number of right cusps with one or the other orientation. Finally, we write c±
for the total number of cusps oriented upwards or downwards, respectively.
Then the rotation number of 7 is given by

rot(7) A_ - p+ p- - \+ i(c_ - c+).

Proof. The rotation number rot(7) can be computed by counting (with
sign) how often the velocity vector -f crosses <7 — if as we travel once

along 7.
Since x(s) equals the negative slope of the front projection, points of 7

where the (positive) tangent vector equals if are exactly the left cusps oriented
downwards (see figure 5) and the right cusps oriented upwards.

Figure 5

Contribution of a cusp to rot(7)

Ât a left cusp oriented downwards, the tangent vector to 7, expressed in

terms of c 1. <7, changes from having a negative component in the ('2 -direction
to a positive one, i.e. such a cusp yields a positive contribution to rot(7).
Analogously, one sees that a right cusp oriented upwards gives a negative
contribution to tire rotation number. Tins proves the fonnula rot(7) — A_ — (>-.
The second expression for the rotation number is obtained by counting
crossings through —e\ instead; the third expression is found by averaging
the first two.
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4. Proof of the Whitney-Graustein theorem

First we give a classification of regular closed Legendrian curves up to

Legendrian regular homotopy.

Proposition 4. Legendrian regular homotopy classes of regular closed

Legendrian curves 7: S1 -> (R3. Ç) are in one-to-one correspondence with the

integers, the correspondence being given by [7] rot(7).

Proof. With the help of either of the two foregoing propositions one

can construct a regular closed Legendrian curve 7 with rot(7) equal to any
prescribed integer. Thus, we need only show that two regular closed Legendrian
curves .S'1 —1 (R3. f) with the saine rotation number are Legendrian regularly
homotopic.

FlflORB 6

A front with cusps of one sign only

In the front projection of the Legendrian immersion 7, left and right cusps
alternate. We label the up cusps with + and the down cusps with —. The

following observation will be crucial to our discussion.
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Claim. Up to Legendrian regular homotopy; 7 is completely determined

by this sequence of labels, starting at a right cusp, say, and going once

around J1,

This can be seen by homotoping 7p so that all left cusps come to lie on
the line Jf — 0} and all right cusps on the line {y 1}, say. The cusps on
either line can be shuffled by further homotopies ; in particular, they may be

arranged along these lines in the same order in which they are traversed along
the closed Legendrian curve. This provides a standard model for any given

sequence of labels, and thus proves the claim. Figure 6 shows this standard

model for a front 7p containing cusps of one sign only.

Continuing with the proof of the proposition, our aim now is to simplify
the sequence of labels. Given a pair -— in this sequence, we can cancel it
(unless it constitutes the complete sequence) as follows. Arrange the adjacent
vertices (by sliding them along the lines {v — 0} and {y — 1}, respectively,
as described before) in such a way that we have the situation on the right
of Figure 7, then replace it by the situation on the left. Iltis so-called first
Legendrian Reiclemeister move is in fact a Legendrian isotopy for that local

piece of our curve, i.e. a regular homotopy not creating self-intersections.
There is an analogous move with the picUire rotated by 180°, which can be

used to cancel any pair —(-•

Therefore, this sequence of labels can be reduced to a sequence containing

only plus or only minus signs, or to one of the sequences (+, —), (—, +) ; see

Figure 8 for an example. The formula rot(7) — (c_ - f+)/2 shows that there

are the following possibilities : if rot(7) is positive (resp. negative), we must
have a sequence of 2rot(7) minus (resp. plus) signs; if rot(7) — 0, we must
have the sequence (+, — or (—,+). The proof is completed by observing
that these last two sequences correspond to Legendrian isotopic knots : use a

first Rei deme is1er move as in Figure 7, followed by the inverse of the rotated

move.

Figure 7

The first Legendrian Reidemeister move
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Figure 8

An example of a Legendrian regular homotopy

REMARK. Self-tangencies in the front projection 7p correspond to Self-

intersections of the Legendrian curve 7, since the negative slope of 7y gives
the i-componcnt of 7. Therefore, as we pass such a self-tangency in the

moves of Figure 8, we effect a crossing change. With the orientation indicated
in the figure, this example has rot(7) — — 1.

Proof of Theorem 1. Again we only have to show that two regular closed

curves 70,77: S1 -4 K2 (where we think of R2 as the (À, y)-plane) with
rot(70) rot(7j) are regularly homotopic.

After a regular homotopy we may assume that the 7, satisfy the area
condition jy xdy — 0 and thus lift to regular closed Legendrian curves

7S1 —1 (R3,0 with, by Proposition 2, rot(7,) — rot(7;). By the preceding

proposition, 70 and 71 are Legendrian regularly homotopic. The Lagrangian
projection of this homotopy gives a regular homotopy between the curves y0
and 77 since — as pointed out in Section 2 — the Lagrangian projection of
a regular Legendrian curve is regular. U

REMARK. See [4] for an application of the ideas in the present paper to
the classification of loops tangent to the standard Engel structure on R4.

ACKNOWLEDGEMENTS- The idea for the proof presented here was inspired
by a conversation with Yasha Eliashberg.
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