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ON THE QUANTIZATION OF CONJUGACY CLASSES

by Eckhard MEINRENKEN

ABSTRACT. Let G be a compact, simple, simply connected Lie group. A theorem
of Freed-Hopkins-Teleman identifies the level k > 0 fusion ring Rt(G) of G with
the twisted equivariant ^-homology at level k+ hv, where hv is the dual Cöxeter
number of G. In this paper, we will review this result using the language of Dixmier-
Douady bundles. We show that the additive generators of the group Rk(G) are obtained
as A-homology push-forwards of the fundamental classes of pre-quantized conjugacy
classes in G.

1. Introduction

A classical result of Dixmier-Douady [10] states that the integral degree

three cohomology group li'(X) of a space X classifies bundles of C* -algebras

A —> X, with typical fiber the compact operators on a Hilbert space. For any
such Dixniier-Douady bundle A —> X, one defines the twisted K homology
and K -cohomology groups of X as the K -groups of the C* -algebra of sections

of A, vanishing at infinity :

Ktf(X. A) Kq(To(X, A)) K\X, A) î= K/VAX, A)).

If a group G acts by automorphisms of A, one has definitions of G -equivariant
K-groups.

The twisted K-groups have attracted a lot of interest in recent years, mainly
due to their applications in string theory. For the case of torsion twistings,



34 E. MEINRENKEN

they were pioneered by Donovan-Karoubi [11] in 1963, while the general case

was developed by Rosenberg [36] in 1989. Rosenberg also gave an alternative

characterization of K<](X. ,4) as homotopy classes of sections of a bundle of
Fredholm operators ; this viewpoint was further explored by Atiyah-Segal [4]

(see [6, 43] for alternative approaches).

One of the most natural examples of an integral degree three cohomology
class comes from Lie theory. Let G be a compact, simple, simply connected

Lie group, acting on itself by conjugation. The generator of Hq(G) — Z is

realized by a G-Dixmier-Douady bundle A —> G. Let hv be the dual Coxeter
number of G, and k > 0 a non-negative integer (the level). A beautiful result of
Freed-Hopkins-Teleman [13, 14, 15, 16, 17] asserts that the twisted equivariant
K -homology at the shifted level k+ hv coincides with the level k fusion ring
(Verlinde algebra) of G :

(1) Kq (G, At+hV Rjt(G).

Here RAG) may be defined as the ring of positive energy level k representations

of the loop group I.CI, or equivalently as the quotient RAG) — R((1)/1A( '<)

of the usual representation ring by the level k fusion ideal. The quotient map
R((l) —> RAG) is realized on the K -homology side as push-forward under

inclusion {('} —s- G, while the product on RAG) is given by push-forward
under group multiplication.

As a Z-module, the fusion ring RAG) is freely generated by the set A)
of level k weights of G. In tins paper die isomorphism RAG) — Z[A|] is

realized as follows. Given ß G Af C t*, (where t is the Lie algebra of a

maximal torus), let C be the conjugacy class of the element c\p(/i/k) G G,
where the basic inner product is used to identify t* S t. We will show

that there is a canonical stable isomorphism between the restriction Ai+h c
and the Clifford algebra bundle Clf/'C). This then defines a push-forward

map in twisted A'-homology, and the image of the K -homology fundamental
class [C] Kq(C,0(TC)) under the push-forward is exactly the generator
of RAG) labeled by /i. This is parallel to the fact that the generators of
R(('r) — Z|A^ | are obtained by geometric quantization of the coadjoint orbits

through dominant weights. In fact, as shown in [15] the generators of RAG)
can also be obtained by geometric quantization of coadjoint orbits of the loop

group of G. Hence, our modest observation is that tlfis can also be carried

out in finite-dimensional tenns. In a forthcoming paper with A. Alekseev, we

will discuss more generally the quantization of group-valued moment maps
[1] along similar lines.
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A second theme in this paper is the construction of a canonical resolution
of R/AC') in the category of R{G) -modules,

(2) 0_>Ci AC,.! A ••• 4 C04^(G) ^0,
where I ~ rank(G). In more detail, let {0,...,/} label the vertices of the

extended Dynkin diagram of G. For each non-empty subset /C {0,...,/},
let Gj C G be the maximal rank subgroup whose Dynkin diagram is obtained

by deleting the vertices labeled by I. These groups have canonical central
extensions 1 —è-U(l) —f Gi —> Gi —f* 1 (described below). Let R(G/)i, denote

the Grothendieck group of all G/-representations for which the central circle
acts with weight k. Define

(3) Cp= 0 R(G,)t.
\'\=p+1

The differentials d in (2) are given by holomorphic induction maps relative

to the inclusions G/ —r Gj for ./ C / As we will explain, the chain complex
arises as the /:' -term of a spectral sequence computing K?(G,Ak+h

and tire exactness of (2) implies that the spectral sequence collapses at the

Ii2-term. Since R/JG) is free Abelian, there are no extension problems, and

one recovers the equality K(f(G. _4/'~h — Ri, (G) as R(G) modules, and hence

also as rings.

This article does not make great claims of originality. In particular,
I learned that a very similar computation of the twisted equivariant K -groups
of a Lie group had appeared in the article Thorn prospectra for loopgroup
representations by Kitchloo-Morava [25]. The argument itself may be viewed

as a natural generalization of the Mayer-Vietoris calculation for G SU(2),
as explained by Dan Freed in [13]. Independently, the chain complex had

been obtained by Christopher Douglas (unpublished), who used it to obtain
infonnation about the algebraic structure of the fusion ring R/fG).

ACKNOWLEDGEMENTS. I would like to thank Nigel Higson, John Roe and

Jonathan Rosenberg for help with some aspects of analytic K -homology, and

Nitu Kitchloo for his patient explanations of [25]. I also thank Christopher
Douglas, Dan Freed and Reyer Sjamaar for very helpful discussions.
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2. Review of twisted equivariant AT-homology

Throughout this paper, all Hilbert spaces H will be taken to be separable,
but not necessarily infinite-dimensional. All (topological) spaces X will be

assumed to allow the structure of a countable CW-complex (respectively
G-CW-complex, in the equivariant case).

2.1 Dixmier-Douady bundles

[10, 35, 36] For any Hilbert space H, we denote by l ('H) the unitary

group, with the strong operator topology. Let K('H) be the C* -algebra of
compact operators, that is, the nonn closure of the finite rank operators. The
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conjugation action of the unitary group on K(W) descends to the projective
unitary group, and provides an isomorphism, Aut(KCH)) — PI ÇH). A Dixmier-
Douady bundle A —> X is a locally trivial bundle of C* -algebras, with typical
über K('H and structure group PlfH for some Hilbert space H. That is,

(4) ,1 V X p( j K(H)

for a principal IT ('H)-bundle V —> X. Dixmier-Douady bundles of finite
rank are also known as Azumaya bundles [26, 27]. A gauge transformation
of A is a bundle automorphism inducing the identity on X, and whose

restriction to the fibers are C* -algebra automorphisms. Equivalently, the group
of gauge transformations consists of sections of the associated group bundle,

Aut(A) — V XpicH) Aut(K(7f This group bundle has a central extension

(5) 1 -xXxU(l)^Aut(A)^Aut(A)->' 1,

where Aut(A) — V KßQQfyU(H).
If A\. Ai are Dixmier-Douady bundles modeled on K('W.| K('H2), dien

their (ûberwise) C* -tensor product At X A2 is a Dixmier-Douady bundle
modeled on K('H.t A, 'Hi). Also, tlie (ûberwise) opposite Aopp of a Dixmier-
Douady bundle modeled on K.ÇH) is a Dixmier-Douady bundle modeled on
K('H"n'). Here the Hilbert space 'H'w is equal to H as an additive group,
but with the new scalar multiplication by z C equal to tlie old scalar

multiplication by %

A Morita isomorphism between two Dixmier-Douady bundles Ax, Az -x A
is a lift of tlie structure group YUfHi) x PU(7/.°pp) of A% 0 A°pp to

tlie group P(l CHi) x f ('f/."pp)). It is thus given by a bundle £ —> X of
A2 — At -brmodules, modeled on tlie K(7i2) — K(7i( )-bimodule K('H t H2)
We will write A\ —z A2 if £ defines such a Morita isomorphism, and

Ai ~ A2 if Ai, A2 are Morita isomorphic for some £ Morita isomorphism
is an equivalence relation: In particular, if At —s A2 and A2 A3, then

tlie bundle T £ (a completion of tlie algebraic tensor product over A2
defines a Morita isomorphism between Ai, A3. The set of Morita isomorphism
classes of Dixmier-Douady bundles over X is an Abelian group, with sum

[AJ-HA2] 0 |A| ' I2I- neutral element 0 [C], and inverse —[A] [Aopp].

In particular, a Morita trivialization C A is a Hilbert space bundle £

together with an isomorphism A — K(cc). The obstruction to tlie existence

of a Morita trivialization is given by the Dixmier-Douady class1) [10, 35]

DD(A) e H3(X).

1 We take all cohomology groups with integer coefficients, unless indicated otherwise.
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The Dixnfier-Douady class descends to a group isomorphism between Morita
isomorphism classes of Dixmier-Douady bundles A —r X and H3(X).

EXAMPLE 2.1. Let V —> X be an oriented Euclidean vector bundle of
rank k, and let Cl(V') -a X be the complex Clifford algebra bundle. If k
is even, the bundle C1(V) is a bundle of matrix algebras, and hence is a

Dixmier-Douady bundle. A Morita trivialization

C —s C1(V)

is equivalent to the choice of a spinor module S —> X, which in turn
is equivalent to the choice of a Spinc structure on V. For details, see

Flymen [34], The canonical anti-involution of C1(F) defines an isomorphism
C1(F) Cl(V)°pp thus

DD(C1(V)) - DD(Cl(y)opp) - - I)I)(C1(\')),

showing that DD(C1(V)) is 2-torsion. The Dixnfier-Douady class I)I)(C1(\'))
is the tliird integral Stiefel-Wlfitney class W3{V) II3(X) of the bundle, i.e.

the image of nAV) II2(X. Z2) under the Bockstein homomorpliism. In the

case of k odd, the even part C1+(V) is a Dixmier-Douady bundle, and a

similar discussion applies.

If both £. £' —r X define Morita isomorphisms Ai — A2, then the bundle

of bi-module homomorphisms L — Hom^_^,(£, £') is a Hennitian line
bundle. We will call £, £' equivalent if tliis line bundle is isomorphic to
the trivial line bundle. Conversely, if £ is a Morita isomorphism then so is

£' — £ g.É, for any line bundle L. Thus, if A'tfJk. liave the same Dixmier-
Douady class, then the equivalence classes of Morita isomorphisms A1 A2
are a principal homogeneous space (torsor) over II1 (X. Z). (In the example

A C1(E), this is the usual twist of Spinc -structures by line bundles.)
Given a compact Lie group G acting on X, one may similarly define

G -equhariant Dixmier-Douady bundles. All of the above extends to this

equivariant setting: In particular, there is a G -equivariant Dixnfier-Douady
class DDg(A) Hq(X), which classifies G-Dixmier-Douady bundles up to

G -equivariant Morita isomorphisms. The extension of the Dixmier-Douady
theorem to the G-equivariant case was proved by Atiyah-Segal [4],

Still more generally, one can also consider Z2-graded G-Dixmier-Douady
bundles A —)• X. Here, isomorphisms and tensor products are understood in the

Z2-graded sense, and the bimodules in the definition of Morita isomorphism
are Z2-graded. We continue to denote by DDg(A) the Dixmier-Douady class
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of A as an ungraded bundle. If l)l)(,(Al) — 0, so that C ~t- A, there is an

obstruction in H (X, Z2) for the existence of a compatible Z2-grading on £.
Hence, the map from Morita isomorphism classes of Z2-graded G Dixmier
Douady bundles to those of ungraded G-Dixmier-Douady bundles is onto,
with kernel // ' (X. Z2). See Parker [32] and Atiyah-Segal [4] for details.

2.2 DIXMIER-DOUADY BUNDLES RELATED TO CENTRAL EXTENSIONS

We assume that G is compact and connected. Then //^(pt) — 0, while

//g(pt) is tlie group of G-equivariant line bundles over a point, or equivalently

//g(pt) — Hom(G,U(l)). The group //^(pt) is realized as tlie isomorpliism
classes of central extensions of G by 1(1),

(6) 1 -A; U(l) -tGoG^l.
For any such extension there is an associated G-equivariant line bundle

L — G C —y G from wliich G is recovered as the unit circle bundle.

The group structure is encoded in an isomorpliism

Mult* I. A pi-] /. 00 pu

where Mult : G x G —> G is group multiplication, and pr, are the two projec¬
ts Mb

tions. Tor any 1 0 Z, tlie / power G of tlie extension is defined in tenns

of the /th power of the corresponding line bundle. More generally one defines

products of central extensions of G by U(l) in tenns of the tensor products
of tlie conesponding line bundles. The group of gauge transformations of a

given central extension G (i.e. group automorphisms covering tlie identity
on G) is FI%(pt) - Hom(G, U(l)).

From the interpretation via Dixmier-Douady bundles, the identification
of Hq(pt) with isomorpliism classes of central extensions may be seen as

follows: Given a G-equivariant Dixmier-Douady bundle A —f* pt, the action

of G defines a group homomorphism G —) Aut(H), and hence a central

extension of G by pull-back of (5) (in the case X — pt Conversely, given
a central extension G, choose a unitary representation G -a \.\£) where

tlie central circle 1(1) acts by scalar multiplication. Then K(£) r pt is a

G-Dixmier-Douady bundle with tlie prescribed class in Hq(pt). Note that we

may take £ to be of finite rank, reflecting that H3G(pt) is torsion. (Recall that

//g(pt, R) - ItABG, R) - 0 for p odd.)
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Suppose X is a connected space, with //'(X) torsion-free, and with the

trivial action of G. The Künneth theorem [38, Chapter 5.5] for H'G(X) —

H\X x BG) gives a direct sum decomposition,

H3g(X) - H3(X) ® {H-1 (X) 0 //f,(pt)) > ilUpt).

For any G-Dixmier-Douady bundle A —> X, we obtain a corresponding
decomposition of DDg(AI). The first component is the non-equivariant class

l )D(yl). The last suimnand is the class of the central extension of G, defined

by the homomorphism G —> A ut (.4 ,0 at any given base point .to G X. To

describe the middle suimnand, note that the family of actions G —f- Aut(_4,)
defines a family of central extensions, by pull-back of (5),

1 -> L(!) -A Gw -> G —) 1.

For any t' G X, tliere exists an isomorphism G(X) —> G(x') of central

extensions, unique up to I Iom(G, F( 1 & HG(p[). Since the latter group
is discrete, it follows that the family (i(<:) carries a flat connection : Any
path from a base point to to t defines an isomorphism G : — G(Vo) -A G(,,.
depending only on the homotopy class of the path. We therefore obtain

a holonomy homomorphism r: tt ifAT; .\:0) —) //2(pt), hence an element of
//' (A) ® //2 (pt) c Hg(X). Tliis element is identified with the corresponding

component of DDg(A).

REMARK 2.2. Any element of Hl(X) 0 HG(pl) is realized in this way.
Indeed, let % - L2(G) with the left-regular representation of G. The

homomorplhsm r: ~i(A) -x HG(pt) - Hom(G,U(l)) defines a unitary action
of 7Tx(A) on 7-f, where A G 7Tx(A) acts as pointwise multiplication by the

function r(A). The actions of G and tti(X) commute up to a scalar. The

bundle A ~ I x,,® KÇH) associated to the universal covering X —> X is

a G-equivariant Dixmier-Douady bundle, witli DDg(A) tlie prescribed class

in //' (X) 0 //2 (pt). Note that the component in H3(X) is zero, since non

equivariantly A — K(£) for £ — X x .l(S') H.

2.3 Twisted AT-homology

The input for the twisted equivariant K -homology of a G-space A is a

Z2-graded G-Dixmier-Douady bundle A A'. From now on, we will usually
omit explicit mention of the Z2-grading (which may be trivial), with the

understanding that all tensor products are in the Z2 -graded sense, isomorphisms
should preserve the Z2 -grading, and so on.
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Given A —> X, the space A — r0(A. A) of continuous sections of
A vanishing at infinity is a (Z2 -graded) G — G*-algebra, with norm
||î|] - supreX ||Yv||a • Following J. Rosenberg [36], we define the twisted

equivariant K-homology and K-cohomology groups as the equivariant
C* -algebra K-homology and K -cohomology groups of A :

K?(X, A) := XS(r0(X, A)%, K^X, A) K%(T0(X, A)).
In tins paper, we will mostly work with the K-homology groups. See

Appendix B for a quick review of the K-homology of C*-algebras, and

some examples. We list some basic properties of the K-homology groups.

(i) Morita isomorphisms. Any Morita isomorphism Ai A2 of
G-Dixmier-Douady bundles over X induces an isomorphism in K -homology,

KfaAO^KfaAz).
(ii) Push-forwards. The morphisms in the category of G-Dixmier-Douady

bundles (X,A) are the equivariant C -algebra bundle maps A\ —> A2 for
which the induced map on the base /: ,\'t • AG is proper. Any such morphisffi
induces a morphism of G-C*-algebras /* : ro(X2. A2) —X Fo(A|, Af), hence

a push-forward in K -homology

Kfif) : K^Xy ,AA •> K%(X2, A2).

In this way K(.' becomes a covariant functor, invariant under proper
G-homotopies.

(iii) Excision. For any closed, invariant subset Y C X, with complement
U — X\Y, there is a long exact sequence2)

• • • K%(Y, A\r) -* A) -) K^(U, A\$ -> A\v) -» • • •

Here the restriction map K(,{(X. A) —> K^(U,A\o) is induced by the

C* -algebra morphism Tod/, A n) —X Fo(A, ,4), given as extension by 0.
More generally, one obtains a spectral sequence for any filtration of X by
closed, invariant subspaces.

(iv) Products. Suppose A —F X and B —x Y arc two G-Dixmier-
Douady bundles. Then the exterior tensor product düß -} ï x F is

again a G-Dixmier-Douady bundle. Its space of sections is the C*-tensor

product of tire spaces of sections of A, B. As a special case of the

Kasparov product in K -homology, one has a natural associative cross product,

K'AX. A) AK?(Y, B) -§h K?(X x fj AMB).

2) Note that ^-homology is analogous to Borel-Moore homology (homology with non-
compact supports), rather than ordinary homology.
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(v) Module structure. The group Kq (pt) is canouically identified with the

representation ring R(G). The ring structure on //'/(pt) is defined by the cross

product for C Kl C —»• pt xpt. Similarly, if A —> X is a G -Dixmier-Douady
bundle, the cross product for CM A —> pt xX makes X.G(X, A) into a module

over R((i). The maps Xg(/) are R(G)-module homomorphisms.

If M is a manifold, one has the Poincaré duality isomorphism relating
twisted /\-homology and K -cohomology,

(7) K'jiM, A) m K%(M, Aopp ® CM'I'M)).

Here Cl{TM) is the Clifford algebra bundle for some choice of invariant metric.
For A C the Poincaré duality was proved by Kasparov in [21, Section 8];
the result in the twisted case was obtained by J.-L. Tu [41, Theorem 3.1].
(See also [9, Section 2].) The image of 1 G K^(M) under this isomorphism
is Kasparov's K-homology fundamental class [24],

[M] e K';(M. CM'I'M)).

REMARK 2.3. Note that CI(TM) is a Dixmier-Douady bundle only if
dim M is even. However, the definition of the twisted K-groups works for
arbitrary bundles of C* -algebras, and the isomorphism (7) holds in this sense

(but with A a Dixmier-Douady bundle). Alternatively, one may state the result
in tenns of Dixmier-Douady bundles, using Cl(ZM) — CM ('I'M) 0C1(R) and

the isomorphism K^+1{M, B) ~ K^iM. B 0 C1(R)).

The following basic computations in twisted equivariant K - homology may
be deduced from their K -theory counterparts, using Poincaré duality.

(a) If M pt. the twisted X-homology is

<'(pt..4)-/riC)_,

while K\'(p\.. A) — 0. Here G is the central extension defined by the action
G —r A lit (A), and R(G)-i is the Grothendieck group of G-representations
where the ceiUral IJ(1) acts with weight —1.

(b) Suppose H is a closed subgroup of G. For any //-Dixmier-Douady
bundle B -A Y, there is a natural isomorphism

Ig: KfiY, B 0 Cl(£t/fj>) A K°(G xH Y, G xH B),

winch is Poincaré dual to the isomorphism Kq(G xH y, G xH B°PP) S
K'U(Y. Bopp). If Y - pt, tlie left hand side may be evaluated as in (a).
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If // C //' C G are closed subgroups, we have

1G — Tg o \hlH ~ lW ° lH

Here we are identifying Cl(g/f)) Cl(g/V) ' CI(fo'/h), and we are using the

canonical Isomorphism If x // Cl(g/h') — H'/H x "1 (g/h') -

(c) Let A —> pt be a G-Dixmier-Douady algebra as in (a), and let H
be a closed subgroup of G. Then G /// A is canonically isomorpliic to

-"'A, tlie pull-back under the map 7r: G/H pt. By composing the map

I# with the push-forward Kg(it), we obtain an induction homomorphism,

indg : A>t. 4 r- CKg/h)) -A /</(pt. A).

An II invariant complex strucmre on g/h defines a spinor module S, hence a

Morita trit ialization C c±s Cl(g/h)- In tliis case the induction map simplifies
to a map

ind;y: <(pt,A) AY//)-, -fs <'(pt, A) - A(C)-i

known as holomorphic induction.

For other examples of calculations of twisted /(/-groups, see [6, Section 8|.

3. The Dixmier-Douady bundle over G

For the rest of this paper, G will denote a compact, simple, simply
connected Lie group, acting on itself by conjugation. Then ///(G) is canonically
isomorphic to Z. Hence there exists a G-Dixmier-Douady bundle A —> G,
unique up to Morita isomorphism, such that DD<j(G, A) corresponds to the

generator 1 G Z. Any two bundles A, A —> G representing the generator
are related by a G-equivariant Morita isomorphism, unique up to equivalence
(since Hq(G) — 0). The quickest construction of A is as an associated bundle

A - PJ.i xuli K(V).

where l',.G is the space of based paths in G, LeG - LGC\PeG the based loop

group, and 'H a representation of the standard central extension LG of LG
where the central circle acts with weight — 1. The construction given in this

section is essentially just a slow-paced version of this model for A, avoiding
some infini te-dimensional technicalities. Our strategy is to give first a direct
construction of the family of central extensions of the centralizers Gg C G,
corresponding to their action on A.
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3.1 PüLL-BACK TD THE MAXIMAL TDRÜl

Let le G be a maximal torus of G, with Lie algebra t. Consider the

map

(8) /4(G) -4 "/ CO

obtained by first restricting the action to T and then pulling back to '/'. We will
compute the image of the generator of /4(G) under tins map. Denote by A C t
the integral lattice (i.e. tire kernel of exp: t —> T). Recall that the basic inner

product B on the Lie algebra g is the unique invariant inner product, with
the property that the smallest length of a non-zero element À G A equals \/2.
One of the key properties of B is that it restricts to an integer-valued bilinear
form on A. That is, B t g A" : A'' where A* Hom(A, Z) C t* is the (real)

weight lattice.

Proposition 3.1. ne map (8) is infective, and takes the generator of
Hq(G) to the element

(9) -B\t G A* g A* /4(pt) m H\T) c jSf£r)

given by minus the basic inner product.

Proof. Since //g(G) and ///('/') have no torsion in degree < 3, we may
pass to real coefficients, and hence work with Cartan's equivariant de Rham

model QfG(M) <S> Q'(M))g for tlie equivariant cohomology
!l(,(M. R) of a G-manifold, with differential (d(,«)(<() - da(0 — /(Aw )<">'((

where Am is the vector field defined by A G g. Note that R)
I' ,//'( /') .• //'( /'. R) since the T-action on T is trivial. Let 0L,6R G Q' (G, g)
be the left-, right invariant Maurer-Cartan forms. The generator of /4(G) is

represented by an equivariant de Rham fonn,

(10) miO \e\ 0L]) - \B{9l +64 A).

Its pull-back to T is ifflad) — —B(0r. f), where Or G C1 ('/'. I) the Maurer-
Cartan fonn for T. Thus

i§m WWi)1 g c //'(T.R) c iflÇr.R).

The identification Hl{T, R) — t* takes [/+(((/ | to B\t G t* 0 1*.
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3.2 THE FAMILY OF CENTRAL EXTENSIONS %)

Âs discussed in Section 2.2, any element of pt) \ //'(/) is realized
as tlie holonomy of a family of central extensions. For any fi 0 A" let
T —J- U(l), I §'• be tlie corresponding homomorphism. Let tlie lattice A
act on T — T x 1(1) as

Axfof, A. (h,z) (h,h~Bhxh),

Then tlie holonomy of the family

(11) f xÄ f-+t/A 3?

is tlie element B| t. The action of the Weyl group W — N(T)/T on T lifts to

an action on this family, by

(12) w. |(i://. ;:)I |(<: «-//.Ml.

Let Tm be the liber of (11) over t £ T. The choice of | with expÇ t

defines a trivializatioii

(13) h h- [(Ç;A, 1)] e t xA f.
Sliifting I by À s A changes the trivialization by the homoniorphism
/' -Id), h hA/î-#(A).

3.3 SlMPLICIAL DESCRIPTION

It will be useful to have tlie following equivalent description of tlie bundle

(11). Let t+ E t be the choice of a closed Weyl chamber, and let A C t+ be the

corresponding closed Weyl alcove. Recall that A labels the IT-orbits in T, in
the sense that every orbit contains a unique point in exp(A). Label tlie vertices

of A by 0— rank(G), in such a way that the label 0 corresponds to the

origin. For every non-empty subset Id {0 /} let A/ denote the closed

simplex spanned by the vertices in I, and let IT/ C W denote the subgroup

fixing exp(A/) C T. Then tlie maps W/Wi X A/ —> (ivW/. Ç) H- uiexp^
define an isomorphism

(14) r ^ JJir/W/x A//~
I

using the identifications

(15) (v.'/(!;)) -(u/'fvl.i). J d J.

Here ij : A/ 4 A/ is the natural inclusion, giving rise to an inclusion
of Lie groups and hence to the projection c/ : W/Wi —r W/Wj.
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Let À/: Wi A be defined by wAj — A/ — A/(u>). It is a group cocycle,
Ai(uv) — A/(m)+m-/\/(u), and A/I»?, A/ for ./ C /. We thus obtain compatible
actions of u'/ on T — T x U( f :

(16) w {% z) {wh,

Lemma 3.2. The isomorphism (14) extends to an isomorphism of the

family (11) of central extensions,

(17) [J T' t x A - 11^ x^ J x A/h
ÜBT I

Proof The maps TxAj —> i/.\T. (h,z,0 H- |(£. /;, r)| are Wj-cquivariant,
by the calculation (for e A/, w G Wj\

w. K|;?L45] [(w£;w/t,z)] ]]§f - A/(ty);sfîtz)]

- |(L»-//.((r//),;'(A;('r,L)| I(f;!/•//. // (V('r ;>L)|.

They hence extend to W-equivariant maps (W Xw, T) XÂ/Af T, which
glue to the desired isomorphism.

3.4 The centrai.!/ers <5/ and their central: extensions

For any g G, we denote by Gg its centralizer. For any given I, the

centralizer Gexpç for £ in tlie interior of A/ is independent of the choice

of Ç, and will be denoted by G/. Equivalently, G/ is the closed subgroup
of G fixing expA/. Each G/ is a connected subgroup containing and we
have W/ — Ng,(T)/T. For ./ C / we have G/ C Gj. The description (14) of
the maximal torus extends to the group G :

(18) G^JJG/G/X:A//~
/

using the equivalence relations (15) for the natural maps ft/' : G/Gi —> G/Gj
for ./ C /. In this section, we generalize (17) to define a G-equivariant
collection of central extensions,

(J Gg Sf Jj(G xG, G/) x A//~.
see i

(Of course, this is no longer a fiber bundle.) Our construction of â —r G will
realize Gg as the opposite of the central extension, defined by action of G„
on the fiber Ag.
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Lemma 3.3. There are distinguished central extensions

1 -a 1(1) —s- G/ -> G/ —> 1,

together with lifls t\ : G/ —> Gj of the inclusions if : Gi <-t Gj for J c /,
such that

(a) G,,,....,, /\
(b) the lifted inclusions satisfy the coherence condition Tf — ïf o TT /or

KcJc r,

(c) là« Wi-action on T c G/ (cf. (16)) & induced by the conjugation action

of NGi(T).

Proof. Recall that 7Ti(G/) — A/A;, where A/ is the co-root lattice of G/
[8, Theorem (7.1)]. But

A G A/, IÈ exp(A/) t* ffib(A) 1

(see [28, Proposition 5.4]). Hence, for any given t G exp(A/), tliere is a

homomorphism

ßu n(G/) A/A/ -^U(l), A + A/ rfib(A).

We tlierefore obtain a family of central extensions — G/ x -,((„) 1 (1

parametrized by the points of exp(A/). Since exp(A/) — A/ is contractible,
we may use the flat connection on the family of central extensions (cf.
Section 2.2) to identify all G/ (f). The resulting G/ has the desired properties.
In particular, if ./ C / and I G exp(A/) t exp(A/), die homomorpliism a,j
is given by the inclusion 7Ti(G/) —¥ 7Tj(G/) followed by q,j Tliis defines

an inclusion G/.(f> *st G/.((), compatible with the fiat connection and (hence)

satisfying the coherence condition. Fix t G A with expr£ — t. The inclusion
of T — T x 1(1) into G/ — ('la) is explicitly given as

(19) i1 : (exPr C, Z) mi [(exPg; £ e-lir^lB^°zj\,

for Ç G t, •; I If I If g G NcfT) lifts w G W;, we have

9 KexPo; C, e'^^^h)} [(exp5/(uu/), e~2lt^m^°z)\

/'(cxp/Hr 0, o.;))

i/(w.(exprC, z)),

proving tliat / ' is equivariant for the actions of IT/ and Ng,(T).
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REMARKS 3.4. (i) The central extension G/ admits a trivialization if and

only if the affine span of B'(Ai) c t* contains a point in the weight lattice, A*
In particular, tins is the case whenever 0 G I. If G is of type A„ or '„, then

all G/ are isomorphic to trivial extensions.

(ii) The choice of any t G exp(A/) gives a trivialization 0/ QtM — fl/x K,
by the definition of Gjm, as a quotient of G/ x U(l).

3.5 Construction of the Dixmier-Douady bundle A—> G

Our construction of the Dixmier-Douady bundle A —r G involves a suitable

Hilbert space H.

Lemma 3.5. There exists a Hilbert space H, equipped with unitary
representations of the central extensions Gr such that

(i) the Central tl(l) acts with weight -1, and

(ii) for .1 c_ / the action of Gj restricts to the action of Gj.

One can construct such an H using the theory of affine Lie algebras. Let

£(0) — 0f ®C[z,z_1] be the loop algebra associated to g. For all roots a of
G, let cr, G 0 be the corresponding root vector. Then q) is spanned by tc
together with the root vectors such that {<->. f) G Z for (gA/. The map

Il ' flf "3s' given by Sp 1 for | G tc and

ea ha c„ Sg) Z{o-Â)

for (o.O G Z is an injective Lie algebra homomorphism (independent of Ç).

Consider the standard central extension ,(q) £(0) © Cc, with bracket

[Ci Afi + MC, (2 <3/2 + V2CI — ([Cu C2I &/1/2) + R(Ci,C2)Res(/id/2) c

Its restriction to constant loops is canonically trivial, thus tc is embedded

in £(0C) by the map s) H- © .vc. The inclusions // lift to inclusions

jl : 0/ HI £(0) extending the given inclusion of t' To see this, take | G A;
(defining a trivialization 07 07,(expi) — 0; x R Then the desired lift reads

Jl.f'- 0/,(exp0 —" -2(0) f jl,ç(Cl5') —jl(0 + + R(ÇûC)) C '

By the theory of affine Lie algebras [20], there exists a unitarizable £0-module
where the central element c acts as — 1. Unitarizibility means in particular
that the t-action exponentiates to a unitary T -action, and hence all p/ -actions

exponentiate to unitary Gi -actions.
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With A as in the lemma, put Ai — G Xgj K(H). For J C /, the

map (j)f : G/Gi —¥ G/Gj is covered by a homomorphism of Dixmier-Douady
bundles, A/ A Aj. Hence we may define a G-Dixmier-Douady bundle,

(20) A m XJOt X A/)/~
/

with identifications similar to those in (18). By construction, the central

extension of G/ defined by the restriction _4|exP(A,) coincides with the opposite
of G/. Hence, the family of central extensions defined by the action of
T on A r is the opposite of the family We saw that the class in

//y (pt) / //' ('/') C ///('/') is tlie class defined by —Bt, and hence coincides

with the image of the generator of Hq(G) — Z. It follows that l)D(,(H) is a

generator of Hq(G).

4. CONJUGACY CLASSES

As is well known, coadjoint orbits O C 0* carry a distinguished invariant

complex structure, hence a Spinc-structure. If Ö admits a pre-quantum line
bundle L —>• G (i.e. a liue bundle with curvature equal to the symplectic form),
one may twist the original Spinc-structure by this line bundle. The resulting
equivariant index is the irreducible representation parametrized by Ö. In this

section, we will describe a similar picture for conjugacy classes C C G.

4.1 Pull-back to conjugacy classes

Given t A, define a G-equivariant map

TOG/r^G, gT i—> Ad9(exp£).

The pull-back admits a canonical Morita trivialization, defined by the

Hilbert space bundle G x y H. More generally, for any leZ and any weight
jU G A* there is a Morita trivialization,

(21) C ~ey*Al, £ Gxt(H' #C;t),

where C/( is tlie 1-dimensional r-representation of weight ft. Equivariant
Dixmier-Douady bundles over G, together with Morita trivializations of their

pull-backs by 'I', are classified by the relative cohomology group //^('I').
(See Appendix A.) The map 'I' — : 'I'| is equivariantly homotopic to the

constant map 'I'o: gT H- e, by the homotopy '['[(gT) ~ exp(f Adfl(^)). Hence
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H%{W) - //?,('I'o) _ H2g(G/T) © H%(G). Identifying H2(G/T) - H2{pt) A*
and Hg(G) — Z, we obtain an isomorphism

/40P) A*©Z.

The element (//. I) £ //^('I') is realized by the Morita trivialization (21).

Now let C be the conjugacy class of exp(Ç), and <f>: C —> G the inclusion.
Let 7r: G/T —> C be the G-invariant projection such that 'I' — <f>o7T. We

obtain a map of long exact sequences in relative cohomology,

0 H2G(C)

H2G(G/T)

)(<b) HQ(G)

H%(G)

H%(C)

From the identifications

H2g(C) Hom(Gexp,,U(l)) and H2(G/T) I Iom(/'. l 1

it is evident that the second vertical map is injective. Hence the 5-Leimna

implies that the map HG(<S>) —à> HGÇ¥) is injective. Hence we obtain an

injective map,

H3G(<S>) H3G(W) <= A* © Z

By a parallel discussion with real coefficients, there is an injective map
H%(<ï>, R) -> ll^V. R) t R

4.2 l'KI. <V>1 ANTI/ATIi )N OF CONJUGACY CLASSES

We return to Cartan's de Rliam model for H'G(M, R) (cf. the proof of
Proposition 3.1) with rjo £ £2g(G) representing tire generator of H3;(G).
The conjugacy class C carries a unique invariant 2-fonn u) £ Q2(C)'' c L2©(C)

with the property [1, 18] that

(22) âGu) a

The triple (C. (I>) is an example of a quasi-FIamiltonian G-space in
the terminology of [1]. Equation (22) together with dG>iG — 0 say tliat

(w,ï/g) G S2q(<I)) is a relative equivariant cocycle. Let [(w,?7g)] be its class

in HU®, R).
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Lemma 4.1. The inclusion //g(<5, R) —» t* ©R takes the class [(w, ?7g)]

to the element (/>"(;'). 1).

Proof. Let h, : Q'fli) —> Q'f~1(G/T) be the homotopy operator defined

by homotopy 'I',. Thus d o /;, © /;, o d — 'I'* - 'I',',. Then

QgW) Qg(^o) («, ß)^ (a- li,(3). ß)

is an isomorphism of chain complexes, inducing the isomorphism H'G<fVt, R) —>

H'fVo. R). In particular, the isomorphism //?,('!'i, R) —f //*;(lIr0, R) takes

IP, ho)] to BN ~ /!r??G,fe)] •

The family of maps lI'f is a composition of tlie map f: G/T —> g,
gT I—r Adfl(£) with tire family of maps g —> G, £ M» cxp(tÇ). Let

/, : Q'g(G) —s Q"~ 1

(g) be the homotopy operator for the second family of
maps. Then h, — f* ojt. By [28], we have j\ rp, — mo, where —<, G L?^(g)
is of tire form tuoiOli — w\i ~ 'TL •)• It follows that the image of [(to,i)g)]
under tire map to t* © R is (P'(f). 1).

As a special case of pre quantization of group-valued moment maps [2],
we define :

Definition 4.2. A level IéZ pre-quantization of a conjugacy class C

is a lift of the class k |(x, //(,)] G //^(4>. R) to an integral class.

By tire long exact sequence in relative cohomology, if C admits a level k

pre-quantization, then the latter is unique (since HG(C) has no torsion).

Proposition 4.3. ne conjugacy class C of the element expÇ with £ G A

admits a pre-quantization at level k if and only if (É°{kÇ),k) G A* x Z.

Proof. According to the lemma, £[(©,rye)] maps to (B^(k^),k) G t*xR.
Since all maps in the commutative diagram

H%(<L) a A* © Z

HG{®, R) a t R

are injective, it follows that k |©\ /;(,)l is integral if and only if
(lt'tkk).k) i A" x Z.
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Geometrically, a level k pre-quantization is given by a G -equivariant
Morita trivialization of <&*Ak. Tltis can be seen explicitly, as follows.

Lemma 4.4. Let { <g -kL, and suppose that Bv(kf) G A*. Then the k'h

power of the central extension of Gi admits a unique trivialization Gi -a Gj
extending the map

(23) T -A T[k) T x U(l), /; hA (h,hB"m).

• it)
Proof. By G/-equivariance, a trivialization G/ -a Gj is uniquely

determined by its restriction to T. For existence, recall that t — expÇ determines

an identification G/ Gixo — Gj xVl(G,) U{1), using tlte homomorphism

Qtj : 7Ti(G/) A/A/ -A U(l), À + A/ i-> The powers G* '
are obtained

similarly, using tlte Ith powers of the homomorphism o,j. Since B'(kf) is a

weight, we have

(&,/)*(A + A/) _ 1

This defines a trivialization,
Mit) -(.<)

G/ — G; (f) — G; x U(l).
m§J - it ;

By (19), tlfis trivialization intertwines the standard inclusion T -A G, with
tlte map

i r X 1(1) .• G> x L(l). (//.Z) t-A (//.//

The composition of tlfis map witli (23) is h ha (/?, 1), as required.

Let O: C A G be the conjugacy class of t — e\p§, and let I be the

unique index set such that £ lies in the relative interior of A/. If C is pre-
quantizable at level k, so that G A*, the lemma defines a trivialization
of df1. Hence, its action on Mk descends to an action of G/, and the Hilbert
bundle £ — G x(;( %k defines a Morita trivialization of T ' A'.

Proposition 4.5. Tire relative Dixmier-Douady class DILTA', £) g //|(<h)
(cf. Appendix A) is an integral lift of the class £[(<© i]g)] g IiffG- C. R).

Proof. We have to show that the image of l)l)(,(A. £) in IIffV) ~ A* ©Z
is (IP(ki).k). But tlfis follows from the discussion in the last section, since

the pull-back of £ under the map tt: G/T a is

n*£ G xTCHk ®CBHko).
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4.3 The h - in power of the Di.wiii.k I )< >t \m btinqle

For any coadjoint orbit O C b\ tlie compatible complex structure defines

a G -i mariant Spinc-structure, i.e. Morita trivializatiou of CI(TO). We show

that similarly, for all conjugacy classes C (_ G, there is a distinguished Morita
isomorphism between Cl(CC) and c, where hv is tlie dual Coxeter
number. That is, conjugacy classes carry a canonical 'twisted Spin, -structure'.
There are examples of conjugacy classes that do not admit Spinc-structures,
let alone almost complex structures.

EXAMPLE 4.6. The simplest example of a conjugacy class not admitting an
almost complex structure is the conjugacy class C — Spin(5)/Spin(4) ~ S4 of
the group Spin(5). (Its image in SO(5) is the conjugacy class of tlie matrix
with entries (— 1, — 1, — 1, — 1,1) down the diagonal.) Similarly, tlie group
G — Spin(9) has a conjugacy class Gj 11 with H — (SU(2) X Spin(6))/Z2 that

does not admit a Spinc-structure. Indeed, if such a Spin,, -structure existed it
could be made G-equivariant (since G is simply connected), hence it would
give an //-invariant Spinc-structure on g/h. Since H is semi-simple, this

is equivalent to the condition that tlie half-sum of positive roots of H is a

weight of H. But by explicit calculation, one checks that this is not tlie case.

I thank Reyer Sjamaar for discussion of these and similar examples.

We will need some further notation. Let ©o — {sjg« • • • n-}. I rank(G),
be a set of simple roots for g, relative to our choice of fundamental Weyl
chamber. We denote by o,0 — — om;lx minus tlie highest root, and let

© ©0 {no} {no. Q;/}

Thus A C t+ is the /-simplex cut out by the inequalities {a;+ <f;.o 2 0

for i — 0...../, and t+ is cut out by the inequalities with / > 0. The roots

of Gj are those roots a of G for which (a.f) G Z for § G A/, and a set of
simple roots is

6/ s= {a; G © [ 'I $ /}
That is, the Dynkin diagram of G/ is obtained from the extended Dynkin
diagram of G by removing tlie vertices labeled by f G I. Let p be the

half-sum of positive roots of G, let p" — with If — (/i')_l, and let

hy 1 + (cw,/)
be tlie dual Coxeter number.
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Theorem 4.7. For any conjugacy class (I>: C (I, there is a

distinguished G-equivariant Morita isomorphism Cl(TC) m 4>*^4h

Proof. Let t i he the unique point of the alcove corresponding with

exp/ G C, and I the index set such that / e int(A/). Thus C ~ G/G] and

Clf/'C) — G Xg, 0(0^), where 0/- is tlie orthogonal complement of 0/ in g.
By construction, <f>'dh — G x K( Hh Hence it is our task to construct

a Gi -equivariant Morita isomorphism

CHg, a K(«hV).

^ I

Let Gj be tlie central extension of G/ de lined by its action on Cl(g/ It fits

into a pull-back diagram,

Gi * Spin^flf)

I I
G/ j. SO(0^).

Equivalently, Gj - G/ X -|((,f) 1(1) where G/ is the universal covering group,
and the homomorphism 7Ti(G/) —? U(l) is defined by the commutative diagram

i -- i Gi y Gj t l

1 + U(l) » Spiling,1) » SO(0f) » 1.

Let A/ be the co-root lattice of G/, so that 7Tx(G/) — A/A/. By a direct
calculation (cf. Sternberg [40, Section 9.2]), the homomorphism 7Ti(G/) —f- U(l)
is

(24) tti(G/) A/A/ —> U(l), A M- <*2^^(p-P/A) ^ ±1

where p is the half-sum of positive roots of G, and [>/ is the half-sum of
positive roots of G/, relative to the given system 6/ of simple roots. Let

(25) ip ^(p - pi), 4 =* ßit(^)

The element pj is contained in the tlie interior of tlie face A/ (see e.g. [30]).
Hence, the homomorphism (24) is just the — hv-tli power of the homomorphism

q,j, t ~ expz/f in the definition of G/./g — G/. That is, we have identified
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v ^ — hv
Recall that G/ acts with weight — hv on % or equivalently Gj
acts with weight 1. Hence, if S/ is any spinor module over ("H0/' the

('1(0/' — K('Hh )-bimodulc

Hom^, Si)
» • • » » • • » I I V
is Gi -equivariant, and gives the desired Morita isomorphism 'Kg/ ~ K(?f
An explicit spinor module S; for ('1(0/' is constructed as follows. Let
)4_| C gf and U; + c flf be the sum of root spaces for positive roots of
G and G/, respectively. (Here positivity is defined by the respective sets

©o, ©/ of simple roots.) Then S — /'\ n_ is a spinor module for Cl(t1 and
S' — /\ n/ _ is a spinor module for ('1(0/ H t

'

(Cf. [40, Section 9.2].) We

define

(26) S/ Homcl(0;ntj_)(S/, S).

The spinor modules S, S'' are T-equivariant, since they are constructed

using invariant complex structures on ty, 0/flt^ Hence S/ is T-equivariant
as well.

Proposition 4.8. Let C be the conjugacy class of e\p</ £ g A. The pull-
back of CI f/'C) under the projection map

it: G/T —s- C, gT p4 Adff(exp(^))

admits a canonical G-equivariant Morita trivialization

(27) C ~ it* Cl(TC).

Proof Let I be tire index set such that G/ is die stabilizer of exp£.
We have it* Cl(TC) - C\(-*TC) - G xT ('1(0/ )• Hence we need a

T-equivariant Morita trivialization of ('1(0/' and tliis is provided by S/.

If the conjugacy class C is pre-quantized at level k, the Morita equivalences

CI('/'(') ~ TM/1 and C s '\G combine to a Morita isomorphism

(28) Cl{TC) zs d>*Ak+hV

Recall tliat 4' — <t> o it: G/T -a G. The composition of the Morita isomorphisms

(27) and Cl(TC) ~ 4>"74h is tlie Morita trivialization C m 'I'"y4h

defined by tlie bundle G Xj jjh' It is thus labeled by (0, hv) A* ffiE.
Hence, in tlie pre-quantized case, the composition of (27) and (28) is the

Morita trivialization of lI''i4/+h parametrized by (B'(kf k + hy g A* © Z.
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4.4 1 REE!) I Ii H'KINs I I EEMAN

The twisted equivariaiit K -homology group

K?(G,Ak+hV)

cames a ring structure, with product given by the cross-product for G x G,
followed by push-forward under group multiplication Mult: G x G —§• G.
Indeed, since Mult* 1 — pr] jf + pri .V for all x G //^(G, Z), tliere is a Morita
isomorphism,

pr, Ak+h '
S> pf ^A:+hV fs Mult* Ak+b"

The Morita hi module is unique up to equivalence since Hq(G x G) - 0.

It dehnes a product structure

K?(Mult) : K?(G, Ak+hV) ® K?(G, Ak+W'' —E K?(G, Ak+hV)m

given by the cross product

K['(G. Ak+hV S> K?(G, Ak+bV -À K?(G x G, pr* » pr* ^+hV

followed by K'.'(\ lult). The product is commutative and associative, again
since the relevant Morita bimodules are unique up to equivalence. (For non-

simply connected groups G, the existence of a ring structure on the twisted

K-homology is a much more subtle matter [42].)
The inclusion / : {c} G of the group unit induces a ring homomorphism

(29) K'.'(i : R(G) - K'.'(pl) -» ]<['((}. j!'-h "

Theorem 4.9 (Freed-Hopkins-Teleman). For all non-negative integers
k > 0 the ring homomorphism (29) is onto, with kernel the level k fusion
ideal Ik(G) c R(G). That is, Kf{G,Ak+hV) - 0, while K$(G,Ak+hV) is
canonically isomorphic to the level k fusion ring, RAG) - R(G)/I/AG).

We will explain a proof of this theorem in Section 5. The ring Rk(G)

may be defined as the ring of level k projective representations of the loop

group LG or, iu linite-dimensioual terms (cf. [3]) :

Let

A| A* n B\kA)

be the set of level k weights. Identify R(G) with the ring of characters of G.
Then A'/.(G) — jR(G)/4(G), where 4(G) is the vanishing ideal of the set of
elements {/„ G v e A/.}, where
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It turns out that as an additive group, /4(G) is freely generated by the images
of irreducible characters ;\;/( for /if Thus /4(G) — Z[A|] additively.

Remark 4.10. If G has type ADE (so that all roots have equal length),
the lathee If (A" C t is identihed with the set of elements ë t with

expf G Z(G), the center of G. Hence hie ideal 4(G) may be characterized,
in tins case, as the vanishing ideal of the set of all g G Greg such that

/+hVez(G).

Remark 4.11. Freed-Hopkins-Teleman compute twisted A'-homology

groups of G for arbitrary compact groups, not necessarily simply connected.

The case of simple, simply connected groups considered here is considerably
easier than the general case.

Remark 4.12. It is also very interesting to consider hie non-equivariant
twisted A-homology rings K.(G,Ak+h These are studied in the work of
V. Braun [7] and C, L. Douglas [12].

4.5 Quantization of cONJUGAcy glasses

Suppose <f>: C M6 G is hie conjugacy class of exp£, £ G A, pre quantized
at level k> 0. Thus /x Rb(A."0 is a weight. The Morita isomorphism (28)
defines a push-forward map in A-homology,

(30) AG(<I>) : Kl'(C.,C\(TC)) -a AqTG, Ak+hV

where <f>: C «-fr G is the inclusion.

Theorem 4.13. The push-forward map (30) takes the fundamental class

[C] G Kq(C, Cl(TC)) to the equivalence class of the character Xß
/4(G) - A\G)/4(G).

Proof Let n: G/T —> C and T' — <f>07t: G/T —> G be as in Section 4.1.

The Morita trivializations

C e Cl(T(G/r)), C ~ w* d(TC)
dehned by G xj- S resp. G Xj S/ (cf. Proposition 4.8) dehne a push-forward

map

A0g(tt): Ag (G/T, C](T(G/7'))) 2r A0g(G/T) -a K^C,Cl(TC))

with AG(7r)([G/T]) \C\. Hence

AG(4>)([C|) -Ag(T')([G/7'|).
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Recall now that '1' — 'i'i is equivariantly liomotopic to the constant map T'o

onto e G G. That is, tlie diagram

G/T — C

pt — G

commîtes up to a G-equivariant homotopy. As discussed at tlie end of
Section 4.3, the composition of tlie Morita isomorphisms C ~ tt' Cl(TC) and

CI f/'C) ~ A1'^ (see Equations (27) and (28)) is the Morita trivialization,

W*Ak+h
/
& K(G xT (Cß0 Hk ",,V

On the other hand, i*Ak+h' — K(Hk+hV) by construction of A, hence

M\Kl' ' ' ^ p*K(Uk+h ') - K(G \/ Hk+hV).

The two Morita isomorphisms are thus related by a twist by tlie line bundle

G xy C/(. It follows that K'(j'(yV) is the aiitomorphism of Ko(G/T) defined by
tlie class of the line bundle G Xy C;j, followed by K^'(/P0) — Kq(l) o Kq(p).
But Kq(p) is just the equivariant index map for G/T. As is well known,
it takes [G/T], twisted by G xyCp to the class [\'/( | G /f'j(pt) of the

irreducible G-representation labeled by p. We conclude that

<'(T)([G/7j) - <'(/)([V';, |).

The identification /f,'j(pt) R(G) takes [ Vj, | to the character x.ß Q

4.6 Twisted K -homology of the conjüöacy classes

Suppose <t>: C <—i G is an arbitrary conjugacy class (not necessarily

pre-quantized) corresponding to § G A. Let I be tlie index set such that

Ç G int(A/), thus C G/G/. Write B - K{%) so that Ai G xG; B.
» » » » » I I V

In 4.3 we constructed a Q/ -equivariant Morita isomorphism hg, B

or equivaleiitly C s BhV A Cl(g, )- since Cl(g^) Cl(gjL)opp. We have, by
2.3(a) (e).

Kf(C,<î>*Ak+hV) Kq(G/Gi, G xG, Bk+hV)

A'/Tpt. G'"1 : 1(0/ »
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M-k)This vanishes for q — 1, and is equal to R(Gj )_/ for q - 0. But a
- < /. i

representation of G} where tire central circle acts with weight — 1, is the

saine as a representation of G/ where the central circle acts with weight k.
Thus

(31) K£(C, <TJ#+hV) Kq(G/GI, G x(;. Bk+hV ^ R(G/k

as R(G) -modules. (The module structure is given by the restriction horno-

morphism R(G) —§• R(G;) — R(G/h, which acts on R(G/) by multiplication.)
If ./ C /, we have a natural map : G/Gj —> G/Gj covered by a map of
Dixmier-Douady bundles Gxg,B —> G\g,B. Hence we obtain a push-forward

map,

(32) K%(4): Kq(G/Gi, G xG, Bk+h") K^G/Gj, G xG] Bk+h").

The naturality of tlie maps (cf. 2.3 (b)) and the definition of ind' iiid^'
(cf. 2.3 (c)) gives a commutative diagram,

<"(pt. Bk+hV(§Cl(o/0/)) <"(pt, Bk+h^ Cl(£i/g/))

IGj

K$>{Gj/GiAGj xö, 8*+fcVgj)) f (pt. B' 'n <1(0 ci/»

3 H
KQ(G/Gi, G x G,

Bk+hV K$(G/Gj, GXGj Bk+h").

That is, Kq(4>Jj) o Vf — V('}j o ind/. The entries on tlie top row are identified

with R(Gi)ic and R((!/)/, and (cf. 2.3(c)) the map ind/ is tlie holomorphic
induction map

(33) md; : R(G,)k -r R(G,)k

relative to the complex structure on Gj/Gi Gj/Gi defined by the collections

of simple roots 6/ C ©/. To summarize,

Proposition 4.14. Hie identifications Kfî(G/Gh G x Gl Bk+h
'

R(G/)k

intertwine the push-forward maps K^(<pk) with the holomorphic induction

maps ind/.
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5. Computation op K'JiG.A1''

The Dixmier-Douady bundle A —> G, as described in (20), may be viewed

as die geometric realization of a co-simplicial Dixmier-Douady bundle, with
non-degenerate p-simphces the bundle J] =H_i Ai over U|/|=P+i G/G/. This

defines a spectral sequence computing the A'-homology group K?(G,Ak+n
in tenns of tlie known K-homology groups KfÇGfGj, A1^ ''

— R(Gi)ic and

the holomorphic induction maps between these groups. As it turns out, the

spectral sequence collapses at the 1% -stage, and computes the level k fusion

ring.

5.1 The spectral 'sequence for K?(G,

The construction (20) of A —> G as a quotient of

IJ Al l 'Aj -f GjG[ x A;
i i

may be thought of as the geometric realization of a 'co-simplicial Dixmier-
Douady bundle'. See [37] and [31] for background on co-simplicial (semi-

simplicial) techniques. Here the G-Dixmier-Douady bundles

11 -Af ]^[ G/Gi
\i\=p+i \i\=p+i

are the non-degenerate p-simplices ; the full set of p-simpliccs is a union

] [A/([pj) -A j] G/Gf([p]) over all non-decreasing maps

/: |p| ]0 !>) >{0 /[•

By the theory of co-simplicial spaces (see [37, Section 5]), one obtains a

spectral sequence /
> K'\ (G. A' '' where

(34) © Kq(G/Gi,AL[+h
9\=m,

The differential d1 : Expq —> Ex_ lq is given on K®(G/Gi,Aki+h as an

alternating sum,

d1 (-#*?(«**>•
rt#

Here 5,1 is obtained from I by omitting the rth entry : 5,1 — {i»..., .1] /,.}
for I — {i'o,..., ip} with io < • • < ip. Recall tliat -0} : G/Gi —> G/Gj are

tlie natural maps for J C /.
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By mod 2 periodicity of the K-homology, we have /:}, tj — JË
q+%;.

Since tlie groups G/ are comiected, and since dimG/G/ is even, one has

Kf(G/G[,Jl;+h 0, thus E\ =0. Hence, the -term is described by a

single chain complex where

c,- 14M- d^d1.

The map R((l) H» Ak+h defined by the inclusion i: e G may also

be described by the spectral sequence. Think of i as the geometric realization
of a map of co-simplicial manifolds, given as the inclusion of {e} G/G{o}
into G/Gpq The co-simplicial map gives rises to a morphism of spectral

sequences, E' —i*W, where

~x r^G(pt,o d p o.
p,q I 0 otherwise.

At the /;1 -stage, tlfis boils down to a chain map

(35) R(G) G

where R(G) — E0 0 carries tlie zero differential. Our goal is to show that the

homology of <)) vanishes in positive degrees, while the induced map in
homology R{G) —f //o(G. <)) is onto, with kernel 4(G).

5.2 The induction maps in terms of weights

To get started, we express the chain complex in tenus of weights of
representations. Recall that R('I') is isomorphic to tlie group ring Z[A*].
The restriction map /\(G) —£ R('I') is injective, and identifies

A'(G) ÊS Z[A*]W.

Let us next describe R(G/)f. in tenus of weights. Each G/ has maximal toras

T — T \ 1(1). hence the weight lattice is

A* A* x Z C Î* - t* x R.

The simple roots for G/ are («,. 0) with a, G ô/, the conesponding co-roots

are

(36) (af,yt t xR, a; G 6/.
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These define a fundamental Weyl chamber

(37) 11+ {(t/,4 I a?) + söi.o > 0, G 6/}

The elements ip satisfy (opaf) + öj, o 0. Hence, (i>. ,v) t?,+ if and only if
v—svi f.+. Let A) j C A* be tlie intersection of (37) with A* x {k} — A*.
Thus

Ajj. — {v G A" I (v, Oi) + Mtf -> 0, J ^ /}

labels the irreducible G/ -representations for winch the central circle acts with
weight k. The Weyl group W/ of G/ is also the Weyl group of G/. Its action on
A* preserves the levels A* X {k}, hence it takes the fonn w (v. k) — (iv'i-v. k)
for a level k-action v HI m*pv- on A*. Explicitly,

(38) w*i0 — w{v — kvi) + kvi.

Fix k, and denote by Z[A' |11,-118 the anti-invariant part for tlie W/ -action

v ha the shifted level k+ hv., Observe that this space is invariant
under tlie action of Z[A' |u Let

Sk' : Z[A*] —> ZtA*]^-38, v ha (-l)length(u,)
w£.W[

denote skew-syimnetrization relative to the action at level k+ hv For /igA|,
let y', G R(Gi)k be the character of tlie irreducible (1/ -representation of
weight (/t. k).

Lemma 5.1. The map ha Sk7(p + p) extends to an isomorphism

(39) R(G,h t Z|A~ |H'~as.

Under this isomorphism, the R(G) Z[A*]W-module structure is given by

multiplication in the group ring. Furthermore, the identification (39) intertwines
the holomorphic induction maps ind( : R(Gifi —> R(Gj)t for J c I with skew-

symmetrizations

Sk;' -i- Sk7: Z[A*]w'~as -4 7[A*]Wj~as.
\Wi\

Note that tlie statement involves a shift by p, rather than pi. Thus, even
in tlie case 1 — {0,...,/} where G; T and W; — {1}, pi — 0, the

identification R(i')k -A Z[A*] involves a p-sliift.
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Proof. Let l'lc intersection of A* x {T+hv} with int(t/
Since obviously R(Gi\ ZfA/, |, tlie first part of the lemma amounts to the

assertion that

P ^ A.jp ö /t + pG ^/i'+hv
We have ft G A|.* if and only if (pi, of) + köj,o > 0 for i G 1. Since

(p,af) + hvöi.o — 1 tins is equivalent to {/i + p, of) + (£ + hv)(5;i0 > 1, i f. I,
i.e. // I ft G Ajas claimed. The assertion about tlie R(G)-module structure

is obvious. Finally, for f C / tlie holomorpliic induction map iiidf is given
by

if there exists w G Wj with wk(p + pj) — pj G AJ k, while ind'( \'() — 0 if
tliere is no such w. Using (38) together with pi — kip — p — (k+ h ' )v/ (by
tlie definition of u/), tliis may be re-written in terms of the action at level
k + hm :

+ Pj) ~ Pj - + p)~ P-

By combining tliis discussion with Proposition 4.14, we have established

a commutative diagram

Kq(G/Gj,AJ+]" —R(Gj)k —Z[A*]^"as
(40) jind( jsk(

^(G/G/,xf;+hV) RiGih Z[A*]w'-as.

We can thus re-express the chain complex (C., d) in terms of weights :

p

(41) Cp- © Z[A*f'"as, dj>' -^(-l)' SkfV),
/l=/3+1 (•- o

for (ft1 G Z|A*|U iBi. The map R(G) —> Co C C. given by (35) is expressed

as the inclusion of Z[A*] as, i.e. as tlie summand corresponding to / — {0}.
By construction, C. is a complex of R(G)-modules, and the map (35) is an

R(G) -module homomorphism.

5.3 Fusion ring
Let us also describe tlie fusion ring in terms of weights. The subset

IP(kA) C t* defining tlie set A| — A* Pi IP(k/\) of level k weights is cut out

by tlie inequalities
:{u, jgjfj + köifl > 0.
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It is a fundamental domain for the level k action v of the affine

Weyl group, generated by the simple affine reflections

p HË V - {(v, iC) + Söifi) a,, i H...,,/.

Tins is consistent with our earlier notation : tire level k action of W^t restricts

to the level k action of the subgroup W[, generated by the affine reflections

with i (f I.
Let Z[[A*]] be the Z[A" | -module consisting of all functions A* —>• Z,

not necessarily of finite support. Let

Skaff : Z[A* I -a Z[[A*]]w--as, v ^ J2 (-l)length<"'> w-,+hv*
vo Wag-

be skew - s ymme tri/at ion, using the action at the shifted level k + hv The

map ft Mr Sk^(f + p) extends to an isomorphism, Z[A£] —» Z[[A' ||u»'i-as

Tins identifies

(42) Rk(G) - Z[[A ||H ||-lls

as an Abelian group. For any I we have R(G) — Z[AJ \w -module homomor-

plfisms R(G/)i, -> /4(G),

(43) Z[A*]w'~as -4 Z|[A' ||U;— # Skaff h

For I — {0} we may use the obvious trivialization G — G X 1(1) to identify

R(G) — R(G(i)i, The following is clear from die description of the quotient

map R(G) —/ /4(G) (see e.g. [3]) :

Lemma 5.2. The identifications R(G) — ZtA*]^-38 and (42) intertwine
the quotient map R(G) —» /4(G) with the skew-symmetrization map,

(44) i Skaff : Z|A|U _ils -+ Z[[A"||U'ri~as,

In particular,; (42) is an isomorphism of R(G) 7fiA*]w-modules.

In fact, we could define the ideal 4(G) C R{G) as tlie kernel of the

map (44). Let e: Co. —> /4(G) be the direct sum of the morjihisms (43)
for |/j 1.
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5.4 A RESOLUTION OF THE R(G) -MOQUEE R/fG)

Theorem 5.3. For all k> 0 the chain complex d) defines a resolution

of Rk(G) as an R(G) -module.

The proof will be given below. As mentioned in the introduction, Theorem

5.3 is implicit in the work of Kitcliloo-Morava [25].

REMARK 5.4. It turns out that the twisted representations R(Gi)i; are

projective modules over R(G), hence (by the Quillen-Suslin theorem) free

modules over R(G). That is, if) is a free resolution of the R(G) -module
«a «Mi m.IffG). If Gj A Gi x U(l), the R(G) module R(.Gi)t is isomorphic to

R(Gi), and the claim follows from the Pittie-Steinberg theorem [33, 39]. The

general case requires a mild generalization of the Pittie-Steinberg theorem [29].

Remark 5.5. Theorem 5.3 implies the Freed-Hopkins-Teleman theorem

(1): By acyclicity of the chain complex C. the spectral sequence If
collapses at the £2-term, with

Since IffG) is free Abelian as a Z-module, there are no extension problems
and we conclude that I<\'(G. _4/_h — 0, while

as modules over R(G). This isomorphism takes the ring homomorphism
R(G) —» K'fiG. A'' +u to the quotient map R(G) -* R/fG), hence (45) is

an isomorphism of rings.

The statement of Theorem 5.3 can be simplified. Indeed, the chain complex
C. breaks up as a direct sum of sub-complexes (".(/')• p G A|, given as

<> Rk(G) ^ 0

Rk(G) if p — 0 and q even

0 otherwise.

(45) K£(G,Ak+hV) Rk(G)

CP[p)= © ZlWzcfk+uvßf'-
\i\=p+1

Similarly the map e: Go —> R/fG) splits into a direct sum of maps
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Finally the chain map R(G) C. splits into inclusions of Z[ h ' /' IU — as

as the term corresponding to / — {0}. Clearly, (C.(/i), d) depends only on
the open face 5b((£'4- hv)A/) of ß^((A: + hv)A) containing p. Indeed, since

7AWM'i+h p] - Z[Waff/Wj\ we have

The differential d is again given by anti-symmetrization as in (41), but with
O1 now an element of Z[ ItGr/W/ The map e: Co — Rk(G) translates

into the zero map Co(/) —> 0 unless J {0 in wliich case it becomes

a map e: C0(./) —> Z, given as the direct sum for / — 0...., / of the maps

The map R(G) —> C. is again the inclusion of the summand of C()(./)

corresponding to I ~ {0}. Theorem 5.3 is now reduced to the following
simpler statement:

Theorem 5.6. The homology H.(J) of the chain complex C.(J) vanishes
in degree p > 0, while

In the second case:, the isomorphism is induced by the augmentation map
e: C0 (./) —> Z.

5.5 Proof of Theorem 5.6

Throughout this section, we consider a given face A/ of the alcove. We may
think of Wrff/W/ as the Waff-orbit of a point in the interior of the face A/,
under the standard action of Waff on t. To be concrete, let us take the point i/j.
Denote its orbit by

We introduce a length function length. V Z, defined in tenns of the

function on Waff as

lengthCt) min{length(w) | w e Waff, SE s= w. vjJ, x e V.

Geometrically, length(.r) is the number of affine root hyperplaties in the Stiefel

diagram, crossed by a line segment from any point in the interior of A to the

point x.

C,U) © Z[Waff/W/f'-as.
I/I=p+:1

ZtWaff]«7'-38 -> Z „ ^ nww ^ Y. w'»(-l)leng,h(œ>

Waff.A') cf.
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For any I let l/.+ be defined by the inequalities {a,, •} + §iß > 0 for

a, E 6/. (Equivalently, it is the affine cone over A at cf.) Then 1/ __ is a

fundamental domain for the Wi -action. Let V1 C V1 C V be tire subsets

v1 v n int(t/.. v1 vntI:+.
Every W) C -orbit contains a unique point in V Thus, if x G V, we

may choose it E W[ with u.xe V Then

length(M x) < length(x),

with equality if and only if x E v' and hence ti x X.

The elements

(46) i,(x) «= Sk7(x), xeV1
fonn a basis of the Z-module Z[V-'|u>—as. (Note that if X E v'\V' then
Sk7(x) — 0.) Let us describe the differential in tenns of this basis. For

\I\ — p + 1 and XEf', we have :

p

9/i/(x) ^(-l)'Sk'w(x).
r=0

In general, the tenus Sk'5r/(x) are not standard basis elements, since x need

not lie in VSrI. Letting ur E W(yj be tire umque element such that urX E Vs 1,

we have
n

(47) dßAx) y>-r=0

5.5.1 Computation of //„(./). Consider C0(J) ®;=0Z[y]Wi_as.
For all /. / and all x, tlie elements Sk'(x). Sk'(x) are homologous since

they differ by the boundary of Sk'fx) E Ci (./). Together with Sk'(x) —

(—l)length(u,) Sk'(fc.v) for w E Wj, tins implies

Sk'(x) ~ (-i)lengthC") Sk'(®x)

for w E Wj. Since the subgroups Wj generate Wfâ, this holds in fact for all

ïy E Wgff. Thus

Skj(w uj) ~ Sk'(w 4) ~ sk'(u|)

for all i,j, and all w E % .If ./ / {0 /} the choice of any i f_ J gives

Sk\vj) - 0. Tins proves that I Iß.!) - 0. Suppose now that J {0,...,/}.
The augmentation map CßJ) —)• Z is described in tenns of the basis by
ßi(x) I—r (_ i)kn8|h(>) [( jias a j-(ght inverse Z —> C0(./). 11-> Hence the

induced map in homology Z —) Ilß.l) is injective, but also surjective since

Sk'(x) ~ (-l)kngAw ß0(4). Thus //„(./) =5 Z in tins case.
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5.5.2 Computation of ///(./). Suppose <j> e Q(J) Z[V], Then dß 0

if and only if Sk0'" 7

q> — 0 for all i. That is, <fi is invariant under every
reflection a, 0 Waff, hence under the full affine Weyl group Waff. But since <j>

lias finite length this is impossible unless ß. — 0. Tliis shows tliat II (.1 — 0.

5.5.3 COMPUTATION of Hp(J), 0 < p < I. To simplify notation, we will
write C. instead of C.(J). (This should of course not be confused with the

chain complex C. considered in previous sections.) Introduce a Z-filtration

0 i= F_tC. C F0C. C FfC. C

where FffCp is spanned by basis elements (46) with j/j j) — \ and

lcngth(.r) < N. Fonnula (47) shows that for any basis element ßi(x) F^Cp,

(48) dßj{x) Yl(~ D'ÄoW mod F^-iCp-i,
r

where the sum is only over those r for which a: A V"1 ' C V1, i.e. a, — 1 (other
tenns lower tlie filtration degree since length(M,x) < lengthf.r) unless X ~ u,x).
In particular, d preserves tlie filtration. Define operators h. : Cp —> CP+\ on
basis elements, as follows :

hßiix) (-l)rÂu{i}W if ir-1 < i < ir,
0 if i — if, some r.

Note that Af preserves the filtration: hi{F^Cp)/C. F^CP+j.. Let

Ai — id —hid — dhi.

Then A; is a chain map, which is homotopic to tlie identity map.

Lemma 5.7. Let p > 0. For any basis element >i(.x) FnCp we have

Äißi(x) e Fn^iCp unless I g I and x ^ y/_i'C In the latter case,

Aißßx) - ßi(x) mod FN^xCp.

Proof. Write I — {i0,... ,ip} where i0 < • < ip. LTsiiig (48) we obtain

(49) hidfr(x) Y.'(~IWänM mod Fn_xCf,
r

suimning over indices with x G Vs 1 Ç V1. The calculation of .//(.v) divides

into two cases :
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CASE 1: i G /. Thus i — is for some index 5', and (—lyhißgriix) 0

unless r — s, in which case one obtains jij(x). Hence all tenus in the sum
(49) vanish, except possibly for the tenu r s which appears if and only if
X G Vs'1 V'-W. That is,

hit l/(.v)
f ß/(x) mod Fn-iCp if x G V1 ^
\ 0 mod Fn_xCp if X <£ V'~^

(using the assumption p > 0). Since //, i/(x) — 0 this shows 1 >/(x) G /\ |

unless x $ V, in wliich case Aißßx) ßßx) mod

CASE 2: I-, Exactly one of the tenus in dhjßßx) reproduces ßi(x).
The remaining tenus are organized in a sum similar to (47) :

dhjßiix) M \) ~ Y (_1 fhißs'iix) mod FN_lCp
r

where the sum is over all r such that X G y/uM-{'4. But % G Vs 1

X G l//uE}-{'rl ,f since
y&7 _ ylx>{i}-{ir} ^ yl _

Hence the sums V]' and are just the same. This proves tliat

4, J/(x) G hx—\Cp.

Consider now the product A Ad • • • A/. By iterated application of the

lemma, we find that if 0 < p < I, then Aß/(x) G /'V-iCn (because at least

one index i is not in I). Thus

A: FfjCp —> Ffj_iCp

for 0 < p < /. The chain map A is chain homotopic to the identity, since

each of its factors is. Thus, if c G FffCp is a cycle,

~ A<f> ~ • • - AN^<j) 0.

This proves that Hp(J) — 0 for 0 < p < /, and concludes the proof of
Theorem 5.6.

REMARK 5.8. N. Kitcliloo pointed out a more elegant proof of Theorem

5.6, along the lines of Kitchloo-Morava [25]. His argument produces

an inclusion of C.(J) as a direct summaud of S. @z[iy,] Z, where S. is the

simplifiai complex with respect to the Stiefel diagram, and Z[ Wj | acts on
Z by the sign representation. The acyclicity of (".(./) then follows from the

Wj -equivariant acyclicity of S..
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A. Appendix

Relative Dixmier-Douady bundles

For any map /: Y —> X, let cone(/) be its mapping cone, obtained by-

gluing cone(F) — Y \ l/Y x {0} with X by the identiûcation (y, 1) /(y).
Let //'(/) 7/'(cone(/)) denote the relative cohomology of f. Equivalently

//*(/) is tlie cohomology of tire algebraic mapping cone C*(/) of the

cochain map C*(F) Ht C'(X), i.e. Cp(f) C '<>')•: C'(X) with differential

d(a,b) — (da—f*b, dr). If / is a smooth map of manifolds, the cohomology

//"(/. R) may be computed using differential forms, replacing the singular
cochains in the above.

The group H2(f has a geometric interpretation as isomorphism classes of
relative line bundles, i.e. pairs (/,. c.'y), where I is a Hermitian line bundle

over X, and ipy'. Y X C —> f*L is a unitary trivialization of its pull-back
to F. The class of a relative line bundle is the Chern class of the line bundle

L —»• cone(/), obtained by gluing cone(F) X C witli L via

Similarly, H3(f) is interpreted in tenns of relative Dixmier-Douady bundles,
i.e. pairs (A. £y), where A —>• X is a Dixmier-Douady bundle, and £y —> F
is a Morita trivialization of the pull-back f*A.

Given such a triple, one can construct a Dixmier-Douady bundle

A —> conc( / First stabilize : Let H be a fixed infinite-dimensional Hilbert

space, and K — K(H) - the compact operators. Then £f — £y A H defines

a Morita trivialization of tlie pull-back of _4st — A 0 K. Since the Hilbert

space bundle £f is stable, it is equivariantly isomorphic to the trivial
bundle FxH. Define A by gluing tlie trivial bundle cone(F) x K with
f*Ast, using this identification. We define tlie relative Dixmier-Douady class

DD(M, £y) := DD(A) S H3(f).
Tensor products and opposites of relative Dixmier-Douady bundles are

defined in tlie obvious way. A Morita trivialization (A, £y) is a Morita
trivialization C A together with an isomorphism £y — ['£x intertwining
tlie module structures. From tlie usual Dixmier-Douady theorem, one deduces

that DD(A £y) is tlie obstruction to the existence of a relative Morita
trivialization.

More generally, one can define relative equivariant Dixmier-Douady
bundles; these are classified by an equivariant class l)l)(,(A. 4/, :Oy) e //^(/) : —

IIAfc,), where /, : Y(, h X<; is the induced map of Borel constructions. (For
tlie stabilization procedure, one replaces H with the stable G-Hilbert space

Hg containing all G-representations with infinite multiplicity.)
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B. Appendix

Review of Kasparov K-homology

In this section we review Kasparov's definition of K-homology [23 22]
for C* -algebras. Excellent references for this material are the books by
Higson-Roe [19] and Blackadar [5]. Suppose A is a Z2-graded ('* -algebra,

equipped with an action of a compact Lie group G by automorphisms. An
equivariant Fredholm module over A is a triple x — ('M, g, F), where FL is

a G-equivariant Z2-graded Hilbert space, g: A —> I.CM,) is a morphism of
Z2-graded G-C* -algebras, and P e I.CM is a G-invariant odd operator such

that for all a A A,

(F2 - I)g(a) ~ 0, (F* - F)g(a) ~ 0, [F, g(a)] 0.

Here ~ denotes equality modulo compact operators. There is an obvious

notion of direct sum of Fredholm modules over A. One defines a semi-group

Kq(A), with generators J|] for each Fredholm module over A, and equivalence
relations

[a | - ft' I - [A f!*'] and [Au] [xj,
provided Xq, Xi are related by an 'operator liomotopy' x, — CH. Q, F,)
(cf. [5, 19]). One then proves that every element in this semi-group has an
additive inverse, so that /Vj'tA) is actually a group. More generally, for q > 0

one defines Kq{A) — Fg(A®Cl(R9)). This has tire mod 2 periodicity property
K*g~2(A) — Kq(A), which is then used to extend the definition to all (/tZ. The

assignment A —> Kq(A) is a homotopy invariant, contravariant functor, depending

only 011 the Morita isomorphism class of A. It has the stability property,
K$(A Q Kg) — Kq(A), where Kg are the compact operators 011 a G-Hilbertspace

Mq containing all G-representations with infinite multiplicity. With tins

definition, let us now review some basic examples of twisted A'-homology

groups K'jHX. A) — «||T(I(A. A)) for Dixmier-Douady bundles .4 > A'.

Example B.l. Let A ^ fit be a G-equivariant Dixnfier-Douady bundle

over a point. Disregarding the G-action, we have A — K(F) for some Hilbert

space £. As in Section 2.2 the action G —> Aut(A) defines a central extension

G of G by U(l). The group G acts on £, in such a way that the central

circle acts with weight 1. Let F be a G-module where the central circle acts

with weight —T. Then the Hilbert space M ~ LfgF is a G-module. Letting

p : C —? I.CM) be the action by scalar multiplication, the triple CM. p, 0) is a

G-equivariant Fredholm module over C(pt) - C. This construction realizes
the isomorplfism R(G)-1 —> A'(fl'(pt, A).
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EXAMPLE B.2. Let M be a compact Riemamiian 0-mani fold, and D

an invariant first order elliptic operator acting on a G-equivariant Z2-graded
Hermitian vector bundle £ £+ £ £~ Suppose also that a finite rank

Z2-graded G-Dixmier-Douady bundle A —> M acts on £, where the

action is equivariant and compatible with the grading. Let H be the space
of I1 -sections of £, with the natural representation g of r(/V/. A), and

F — IM 1 + D2)~1/2 e I.CH). The commutators of F with elements g(a)
for a G V(M. A) are pseudo-differential operators of degree —1, hence are

compact. Thus CH. g. F) is an equivariant Fredhohn module over T{M,A),
defining a class in K(f(M. A).

EXAMPLE B.3. [24, p. 114] Let M be a compact Riemamiian G-manifold,
and A — Cl(TM) its Clifford bundle. Take £ — f\T*M, H its space of
I? -sections, and g the usual action of sections of r(/V/. Clf/'/V/)). Let D —

d + d* be the de Rham-Dirac operator. By B.2 above, we obtain a Fredholm
module CH. g, F) over r(/V/,Cl(7'/V/)), defining a class [M] K^(M,C\(TM)).
This is the Kasparov fundamental class of M. (Actually, CI(TM) is a Dixmier-
Douady bundle only if dim M is even. If dim M is odd, one can use the

isomorphism Kq(M,CI(TM)) — Kf(M, C1+(7M)) if needed.)

Example B.4. Let H be a closed subgroup of G, and B —> pt an

II -I )ixin i er-I iouady bundle of finite rank. As explained in B.l, any class in
/E'/lpt, Cl(g/f]) v B) is realized by a Fredholm module of the form (£, 0,0),
where £ is a Hilbert space of finite dimension. Let £ (Ixn £ The action of
CI(T(G/H)) defines a Dirac operator, which together with the action of
yields a Fredholm module and hence an element of K'(j'((l/II. I#(£>)). This con-
stmction realizes the isomorphism Kq (pt, B # Cl(g/E)) -E K°(G/H£mà%{B))
if B has finite rank. As remarked in Section 2.1, all //-Dixmier-Douady
bundles over pt are Morita isomorphic to finite rank ones.
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