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COHOMOLOGY OF LIE 2-GROUPS

by Gregory GlNOT and Ping Xff*)

ABSTRACT. We study the cohomology of (strict) Lie 2-groups. We obtain an
explicit Bott-Shulman type map in the case of a Lie 2-group corresponding to the
crossed module A —> 1. The cohomology of the Lie 2-groups corresponding to the
universal crossed modules G —y Aut(G) and G Aut+(G) is the abutment of a
spectral sequence involving the cohomology of GL(n, Z) and SL(n, Z). When the
dimension of the center of G is less than 3, we compute these cohomology groups
explicitly. We also compute the cohomology of the Lie 2-group corresponding to a

crossed module G -A H for which Ker(i) is compact and Coker(i) is connected,
simply connected and compact, and we apply the result to the string 2-group.

1. Introduction

This paper is devoted to the study of Lie 2-group cohomology. A Lie

2-group is a Lie groupoid r2 =t Pj, where both the space of objects IT
and the space of morphisms are Lie groups and all the groupoid structure

maps are group morphisms. This is what is usually referred to as "groupoids
over groups". It is well known that Lie 2-groups are equivalent to crossed

modules [11, 2]. By a crossed module, we mean a Lie group morphism G —? II
together with a right action of H on G by automorphisms satisfying certain

compatibility conditions. In this case, Ker/ is called the kernel, and H/i(G)
the cokernel, of the crossed module.

#j Research partially supported by NSF grant DMS-0605725 & N§A grant H98230-06-1-0047.
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Lie 2-groups arise naturally in various places in mathematical physics,
for instance in higher gauge theory [4]. They also appear in the theory of
non-abelian gerbes. As was shown by Breen [8, 9] (see also [15]), a G-gerbe
is equivalent to a 2-group principal bundle in the sense of Dedecker [13],
where the structure 2-group is the one corresponding to the crossed module
G -A Aut(G), where i denotes the map to the inner automorphisms.

As in the 1-group case, associated to any Lie 2-group L, there is a

simplicial manifold NT, called the nerve of the 2-group. Thus one dehnes the

cohomology of a Lie 2-group T with trivial coefficients R as the cohomology
of this simplicial manifold NT with coefficients R. The latter can be computed
using a double de Rham cochain complex. A very natural question arises as

to whether there is a Bott-Shulman type map [6, 7] for such a Lie 2-group.
LTnfortunately, the answer seems to be out of reach in general. However,

we are able to describe a class of cocycles in Q3r([G —t //1) generated by
elements in 51 [3]), the symmetric algebra on the vector space (g" H

with degree 3. Here we denote by [G —r II | tire Lie 2-group corresponding to
the crossed module G —> //. As a consequence, we explicitly describe, for any
abelian group A, cocycles in Q'([A —> 1]) which generate the cohomology

group II'(\A —r 1]). These cocycles are given by skew-symmetric polynomial
functions on the Lie algebra a of A. Such an explicit map is also obtained

in the case where the cokemel of G —> H is finite. Our approach is based on
the following idea. A Lie 2-group [G —> //1 induces a short exact sequence
of Lie 2 -groups :

1 —•> [Ker i —•> 1] —? [G —I I1 | —y [1 —? Coker /] —? 1

which in turn induces a libra lion of 2-groups. As a consequence, we obtain a

Leray-Serre spectral sequence. Discussions on these topics occupy Sections 4
and 5.

We also use the spectral sequence to compute tire cohomology of a

2-group [G —r Il\ with connected and simply connected compact cokemel

Coker(z') H/i(G) and compact kernel Kcr(z'). In general, the cohomology of
[G —$ H] depends on a transgression homomorphism

T: //3([Ker(z) -f 1]) H- H*([ 1 —> ////(G) |).

An example of such a 2-group is given by the string 2-group [3] for which
we recover computations also independently due to Baez and Stevenson [5].

Next we apply our result to study the cohomology of particular classes

of 2-groups: [G —a AufAG) I and [G A Aut(G) |, where Aut+(G) is tlie

orientation-preserving automorphism group of G. If G is a semi-simple Lie
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group, the result is immediate since both the kernel and the cokernel are

finite groups. However, when G is a general compact Lie group, the situation
becomes much subtler, litis is due to the fact that the connected component of
the center Z(G) is a torus T", and therefore Out+(G) and Out(G) are no longer
finite groups. Indeed they are closely related to SL(n. Z) and GL(n, Z), whose

cohomology groups are in general very difficult to compute : this still remains

an open question for large n. Nevertheless, we obtain a spectral sequence

involving the cohomology of these groups, converging to the cohomology of
the 2-group. For n <3, using a result of Soulé [25], we are able to compute
the cohomology groups explicitly.

One of the main motivations for studying the cohomology of 2-groups is to

study characteristic classes of gerbes. Since G-gerbes correspond to principal

[G -G» Aut(G)]-bundles, any nontrivial cohomology class in //"(IG A Aut(G)])
defines a universal characteristic class for G-gerbes. And a Bott-Shulman type
cocycle allow one to express such a universal characteristic class in tenus of
geometric data such as connections just like in the usual Chem-Weil theory.
This will be discussed in detail in [15].

Note that the constmctions in this paper can be defined in the more
general context of weak Lie 2-groups as defined by Henriques in [16] since

the cohomology and homotopy groups are defined using the nerve.

Acknowledgements. The authors would like to thank A. Ash, L. Breen,
A. Henriques, K. Mackenzie, C. Soulé, J. Stasheff and the referee for many
useful comments and suggestions.

Notations. Given a (graded) vector space V we denote by V\k\ the

graded vector space with shifted grading (V\k\)" V"~k. Thus if V is

concentrated in degree 0, V\k| is concentrated in degree k. The graded
symmetric (or free commutative) algebra on a graded vector space V will be

denoted by S(V). We write ,S"( V)'' for the subspace of homogeneous elements

of total degree q, that is,

S(V)v {vi.,. xr S'(V) I r > 0 and |.v, | H + |x, | q }

In particular, if x G S(Vf and y g S(V)'f, one has x • v (— 1 )'"'y x. Thus if
V is concentrated in even degrees, ,S"(V) is a polynomial algebra. On the other

hand, if V is concentrated in odd degrees, ,S"( V) is an exterior algebra. Unless
otherwise stated, all cohomology groups are taken with real coefficients.
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2. Crossed modules

A crossed module of Lie groups is a Lie group morphism G —• // together
with a right H -action (/;. g) —y gh of // on G by Lie group automorphisms

satisfying :

L for all (h,g) eGx H, i(gh) h~H(g)h ;

2. for all (x,y) C G x G, x,(y) y_1xy.

A (strict) morphism (G2 //; —> (Gj -4- H\) of crossed modules

is a pair (0: G2 —> G1: 112 —> Hi) of Lie group morphisms such that
< t o i2 /] o o and 4>(g)^'(h) 4>{gh) for all g G G2, h C II2

There is a well-known equivalence of categories between the category of
crossed modules and the category of (strict) Lie 2-groups [11]. Recall that

a Lie 2-group is a group object in the category of Lie groupoids, which
means that it is a Lie groupoid F2 =4 F1 where both F2 and Fi are Lie

groups and all structure maps are Lie group morphisms. Such a 2-group
will be denoted by F2 =4 Fi =4 {*}• The crossed module G —? // gives
rise to the 2-group G X H H 14 {*}• The groupoid G A II —, II is the

transformation groupoid : the source and target maps sj. G 0 II —7 II are

given by s(gji) h and t(g,h) ii i(g), respectively. The (so-called vertical)
composition is (g, h) r(g'. h /(//)) (gg',h). The group structure on H is the

usual one, while the group structure (the so-called horizontal composition) on
G xi H is the semi direct product of Lie groups: (g. h) *- (g', h') (gh g'.
Conversely, there is a crossed module associated to any Lie 2-group [11]. In
the sequel we make no distinction between crossed modules and 2-groups.
We use the short notation [G H] for the Lie 2-group corresponding to a

crossed module G —> //.

Definition 2.1. Let (<^, ^>): (G2 H2) —§ [Gr -% Äij be a morphism
of crossed modules, where r/> is a submersion. The kernel of the map (<^,*0) 'N

by definition (see [21]), the crossed module (G2 —f //2 xW| Gi), where i is the

natural group morphism induced by /2 and <f>. The //2 G1 -action on G2 is

induced by the H2 -action: g2l
1

g'L The structure map //2 Xh! G] //2

induces a natural crossed module morphism (G2 H2 Gi) —> (G2 ^0 II2)

A Lie group G can be seen as a Lie 2-group with trivial 2-arrows,
i.e. as the Lie 2-group G 4 G 4 {*}. The associated crossed module is

1 -2 G. It yields an embedding of the category of Lie groups in the category
of Lie 2-groups. As in the case of groups, associated to a Lie 2-group



COHOMOLOGY OF LIE 2-GROUPS 377

F; F2 : Fi {*}, tliere is a simplicial manifold N.T, called its (geometric)
nerve. It is the nerve of the underlying 2-category as defined by Street [26].
In particular, A'(iF {*}, A) F Fi and AG V consists of 2-arrows of F2

fitting in a commutative square :

AG F is naturally a submanifold of r2xF| xT, x T|. For p > 3, an element

of NPT is a p -simplex (labelled by arrows of V such that each subs impi ex of
dimension 3 is a commutative tetraliedron, whose faces are given by elements

of A^r (see (3.5) below or [21, 20, 26]). See also Remark 3.7 below.

The nerve N. defines a functor from the category of Lie 2-groups to
the category of simplicial manifolds. The nerve of a Lie group considered

as a Lie 2-group is isomorphic to the usual (l-)nerve [23]. Taking the fat
realization of the nerve defines a functor from Lie 2-groups to topological
spaces. In particular, the homotopy groups of a Lie 2-group can be defined

as tire homotopy groups of its nerve.
Note that Lie 2-groups embed in an evident way in the category of weak

Lie 2 groupoids (see for instance [2] and [16]). There is a notion of fibration
for (weak) Lie 2-groups due to Henriques [16, Sections 2 and 4] (see also

[27, 28]). We also refer the reader to [20, 21] for an excellent exposition in
the case of discrete 2-groups. In the present paper, however, we use only a

special kind of fibration, which is given by the following lemma :

LEMMA 2.2. Let (G2 -% ÄgJ {Gi Hi) be a morphism

of crossed modules where <j> and fi are surjective submersions. Then

(<) : [GG -% Hi I —t [Gi —> //11 is a fibration of Lie 2-groups. The

kernel of the morphism (as in Definition 2.1), i.e. the Lie 2-group

[Gi —r Hi X//j Gi], is a homotopy fiber of and is equivalent to

|Kcr(<>) Kcr(r)|.

Proof. Let r | and r2 be the Lie 2-groups corresponding to the crossed

modules (Gi -4 H\ and (G2 —? //2) respectively, and <I> : F2 —> F| the map
induced by (e>, v')'- (G2 —> //2) > (Gi —> IL Since 0 and v are suijective
submersions, Af„,fl> : A'„, T2 —> A'„, T1 is a surjective submersion for all m.
Since r2 and Tj are (strict) Lie 2-groups, their nerves A'.F2 and A'. F1 are

simplicial manifolds satisfying the Kan condition for simplicial manifolds as

(2.1)

fi
*• A2.
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in [16, Défini ton 1.2 and Definition 1.4]. Thus, for all m,j, the canonical maps
NmTi Hom(A'.", N.Tf) —> I Iom(A[/», /|.. A'. r2) are suijective submersions for
m < 2 and diffeomorphisms for m > 2. Here A'" is the simplicial m -simplex
and A|/n, /|. its j'll-horn, i.e. the subcomplex generated by all facets containing
the jth-vertex. The same results holds when F2 is replaced by jT'i •

The map NmT2 I IomiA,N.r2) -a I Iom(A[/;;,/|.,N.r2) and tlie map
,Vmr2 I Iom(A'", A'.F2) -A I Iom(A'.", A'.Fi NmT] induced by <t>: T2 —> Ti
yield, for all j, a smootli map from A',,, F2 to the space C[m,j], which consists

of the commutative squares

A[m,j]. > A'. T2

N.<S>

A'!' > /V.l 'i

See [16, Dehnition 2.3]. Note that C[w./| can be identihed with the

über product Hom(A[m,/j.,NT2) KHom(A[tnjumro IIomfA'",A'.T,). By the

definition of a fibration [16, Definition 2.3], it suffices to prove that (for
all m.j the map A'„, T2 —> C\m. j\ is a surjective submersion. Tor m > 2,
Hom(A[w,j[.,A'.T2) A'„,Y2. Thus C[m,j] A'„,T2 and we are done. For

m 1, C[l,j] //1 and the map A] P2 //2 —? (Tfl,/| II\ is ifi. For

m 2, C[2,j] is identified with //2x2 x Gi and the map AA T2 C[2,j]

becomes H£2 x x Gi. The latter is a surjective submersion
since ö is a submersion.

The fiber F. of A'.d> is the pullback pt. x.v.i', A'.r2, where pt. A'. [ 1 —> 1]

is the point (viewed as a constant simplicial manifold). Thus, F. is the

nerve of the Lie 2-groups [Kcr(A) —> Keif x) |. Here the crossed module

structure of Ker(</>) Kcr(; is induced by that of G2 —> //2. The inclusions

Kerfçi) G2 and the map Ker(t/>) //2 q //2 xHl Gi yield a crossed

module homomorphism (Kci'(o) Ker(ip)) —± (G2 -a H2 xH| Gi) which
is an equivalence of crossed modules. See [2, 20, 21, 27, 15] for the

definition of equivalence of crossed modules, or Lie 2-groups. It follows that

A'.[G2 -A //2 xH Gi] is weakly homotopic to F.. Furthermore, the natural

diagram

[G2 Afc H2 Xh1 Gi]

[Ker(ô) Ker( A)| [G2 //2|
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is commutative. Thus [Gz -f Hz /W| G\ | is a homotopy fiber of the map
(O.c) : If,'; ;

> |<r;, > //| I.

As far as tlie present paper is concerned, it is sufficient to consider

Lemma 2.2 as a definition of a fibration of Lie 2-groups. In particular all
fibrations of Lie 2-groups in this paper arise as in Lemma 2.2. That is, they
are induced by a morphism of crossed modules where both j and if
are surjective submersions.

EXAMPLE 2.3. The main examples of interest in tins paper are obtained

as follows (see Section 3). Let G —r // be a crossed module and w : // —> K
be a Lie group morphism such that U'(i(g)) 1 for all g <E G. Then the map

ig 4 m -g [1 —> K] is a map of 2-groups and it is a fibration if
if' is a surjective submersion. The kernel of the map I. v) (as defined in
Definition 2.1) is the Lie 2-group [G -A Kcr(( -)|. which is equal to the Lie

2-group [Ker(l)-A Ker((/.')].

REMARK 2,4. We recall that a 2-group is a group object in the category of

groupoids. Then the Lie 2-group [Gz —? Hz xW| <7| | is tlie (weak) fiber product
(of Lie groupoids, See [19]) [1 —i 1] x y [Gz -A Hz]. In particular it is

|G'l —/Hi I

tlie coiTect fiber product to look at if one is interested in group stacks rather
than Lie 2-groups.

3. COHOMOLOGY OF 1.11. 2-GROUPS

The de Rham cohomology groups of a Lie 2-group F are defined as the co-

homology groups of the bicomplex (Q'(/V. T). d^. 0), where c/ciR : Q'^A^r) —?

QP+1(A^?T) is the de Rham differential and d: Qp(NqT) -*• Q'XA'^-iD is

induced by the simplicial structure on A'. F : d (—Odf » where

dp. N.r —> A'._ I F are tlie face maps. We use tlie shorter notation L2jot(T) for
tlie associated total complex. Hence QJjt(F) 0 Qp(NqT) with (total) dif-

p+q=n
ferential c/dk — Û. We denote by H'(T) the cohomology of T. It is well known
that H'(T) is naturally isomorphic to tlie cohomology of tlie fat realization of
its nerve A'. F (see for instance [7]).

The simplicial structure of the nerve A'.T of a Lie 2-group F gives rise to a

structure of cosimplicial algebra on tlie space of de Rham fonns £2]ot(r). Thus,
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there exists an associative cup-product U: £2;ot(T) <3> £2;ot(T) —> Q;(lt(T) which
turns (Q;ot(r). 4m + I), U) into a differential graded algebra and, therefore,

(//'(T). U) is a graded conunutahve algebra. The same holds for singular
cohomology.

If G —t H is a crossed module, we denote by Q;ol([G A II\) tire

total complex of the corresponding Lie 2-group. A map of Lie 2-groups

/: T —» G induces a simplicial map N.Y —> N.G, and by pullback, a map of
f*cochain complexes Q'(N.G) —> Q'(/V.T). A similar construction, replacing the

de Rham forms by the singular cochains witli coefficients in a ring R, yields the

singular cochain functor C'(\G A //1. R) of tlie Lie 2-group [G A //1 whose

cohomology II'(\G A ll\.R) is the singular cohomology with coefficients
in R. If R R, the singular cohomology groups coincide with the de Rliam

cohomology groups. The cohomology of a Lie group considered as a Lie

2-group is the usual cohomology of its classifying space since, in that case,
the 2-nerve is isomorphic to the 1-nerve of the Lie group [26].

Given a crossed module G A H of Lie groups, /(G) is a normal subgroup
of //. Hence, the projection H —> H/i(G) induces a Lie 2-group morphism

(3.1) [G A Hi —Hh H/i(G)]

which is a libration (by Lemma 2.2) in winch the fiber is the 2-group
[G A /(G)]. The canonical morphism of crossed modules (Ker(zj Hi 1 —>

(G A /(G)) is an equivalence (see [2, 20, 21, 27, 15] for the equivalence
of crossed modules or Lie 2-groups) and in particular, the Lie 2-groups
[G A /(G)] and [Ker(z') —> 1] have weakly homotopic nerves. It follows that
there is a Leray-Serre spectral sequence.

LEMMA 3.1. There is a converging spectral sequence of algebras

(3.2) Lpfq HP ([I H* H/i(G)\, Uq(\Kcx(î) -H 1])) =7- //'" ''(|G À Hi),

where ''([Keif/j —> 1]) is the de Rliam cohomology viewed as a local

coefficient system on [1 —ï> H/i(G)].

Proof. It follows from the main theorem of [1] that the realization of
the map [G A II\ —> [I —> H/i(G)] is a quasi-fibration whose homotopy
fiber is the (fat) realization of [Ker(z') —t 1]. Indeed, tins fat realization is

homotopic to the fat realization of [G A /'(G)I • In fact, one can show that

this quasi-fibration is indeed a fibration. The spectral sequence (3.2) is the

Leray-Serre spectral sequence of tins (quasi-)fibration.
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By the same argument, it also follows that there is a long exact sequence
of homotopy groups

1

(3.3) 7Tx([l -A JI/i(Gj\) -A 7T0([Ker(/) -A 1])

-> 7t0([g 4 m) r///(C)I) -> o.

REMARK 3.2. The algebra structures in Lemma 3.1 are induced by the

algebra structure on the singular or de Rham cohomology of the respective
Lie 2-groups.

Remark 3.3. A similar proof implies that if [GL 4 ffj] —> [Gj 4 //1 |

is a fibration of 2-groups with fiber F, then tliere is a Leray spectral

sequence

Lp2q //''([G, 4 lh\.W(F)) «=* Hp+q([G2 4 //2|).

REMARK 3.4. In the special case of discrete 2-groups, the Leray-Serre
spectral sequence (3.2) lias been studied in [12]. In this rather different context,
the higher differentials in the spectral sequence are related to the k-invariant
of the crossed module.

We now give a more explicit description of the complex Q|m([G 4 //1)
in degree < 4, which will be needed in Sections 4 and 7. LTntil the end of
this section, we denote by F the 2-group G x // i // i {*} associated to
the crossed module G —? //. One has MqE * and /V, F H. Since tliere
is only one object in the underlying category, all 1 -arrows can be composed.
Thus, a triangle as in Equation (2.1) is given by a 2-arrow a G M // and a

1-arrow f0. Hence, AG F (G x //) X //. With this choice, for (g,h,f G AG F,
the corresponding 2-arrow a and 1-arrows f}.J\./G in Equation (2.1) are

respectively given by

(3.4) a. (g, h), /„ =/, f, =h-i(g), h h-f~l.
The three face maps ilj : AG T —/ Aj T (;' 0,1,2) are given by h,f) =- f,
i 0,1,2 (see Equation (3.4)).

REMARK 3.5. Of course the choice of f0 is a convention, we could

equivalently have chosen to work with /2.

1 The sequence should not be confused with the long exact sequence of simplicial homotopy
groups in [16, Section 3].
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N3r is tlie space of a commutative tetrahedron labelled by objects and

arrows of T :

A3

Commutativity means that one has (o>3*/ox)*ax (f23*<Xo)*a2, where * is

the vertical multiplication of 2-arrows and * is the horizontal multiplication.
Since there is only one object, such a tetrahedron is given by O0../01. 0.2 and

«3 satisfying v(a3) sfo^MKao))-1..*^)./^1 • Thus N3T G3 X H3. The

face maps / (/ 0,... 4) are given by the restrictions to the triangle w hich
doesn't contain A,- as a vertex. Thus, given (</b»4Öb 9i> /«o>/ot < hi) G3 X H3,
one has

(3.6) fcii/u= (go, ko,fai)

(3.7) ((g^g^^gi, h2,f01)

(3.8) d2(go, 92,93, ho,foi,h2) (92, hi, ho-i(go))

(3.9) d3(go,g2,g3, h0,foi,h2) (93, h2.i(g0 A./ox1).

REMARK 3.6. The choice of indices in (go, g2-g3. Ihufin-h2) is reminiscent

of the tetrahedron (3.5). That is the 2-arrow «0 (go,ho) G G x II, the

1-arrow from A2 to A3 is J§jj and so on For instance, the 2-arrow

«1 (guh) 6 GxH is given by Equation (3.7), i.e. fx (g3l)fmga"'9" V'°
g2

and hi h2.

Applying the differential fonn functor, we get

(a) £2°ot([GÀ/7]) £2°(*)^R,

(b) Qt'(lt(|C À//|) £2°(//),
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(c) Qlj\G 4 //1) ©'(//) © Q°(G x // x //). The differentials from
Q'ot(lö A //1) to £22ot([G 4 //1) are given by

4r : £2°(H) -4 ©'(//) C fi£,([G 4 //J)

and

0 ^-4+4: £2°(fl) -A £2°(G xHxH) C £22ot([G 4 //]).

(d) £2fot([G 4 //1) £22(7/>©Q1(Gx//xH)©Q°(G3 x//3). The differentials

are quite similar.

(e) ©4CP 4 //1) Q3(H) © Q2(G \ // x //) © Q'(G3 x IF) © Q0(N4T).

Remark 3.7. For p > 4, an element in NPT is a coimnutative p-simplex
labelled by arrows of T whose faces of dimension 2 are elements of AG F witli
compatible edges. If we denote by 40,.... ,4;, the vertices of the />-simplex, tire

coimnutativity implies that it is enough to know all the 2-faces containing 4().

Reasoning as for A'-,T, it follows that A',,F pf'f" x IF, Details are left to
the reader.

Let g be the Lie algebra of G. There is an obvious map (g")B —> Q'(G)
wltich sends Ç 0* to its left invariant 1-fonn © • By composition we have

a map

(3.10) (g*)0 -4 £2X(G) QX(G x H x H) --4 £2fot([G 4 //]),

where p\ : G x H x // -4 G is the projection.
The action of H on G induces an action of // on 0, and therefore an

action on 0*. The above composite map I clearly restricts to (q*)b,h the

subspace of g' consisting of elements both 0- and //-invariant. Assigning
the degree 3 to elements of (g')B-W, i.e. replacing H by (g")0-W[3|, we
have the following

Proposition 3.8. The map I: ((0*)e,Ä[3], 0) -4 {£2;ot([G 4 Hifd^+d)
is a map of cochain complexes, i.e. (4r + #)(/) 0.

Proof. We have (ct' )0 3(g)', where 3(0) is the center of the Lie algebra

0. Since the de Rhain differential vanishes 011 (0*)s, it remains to prove that

d o I 0 For any J1 G (0*)0 and left invariant vector fields 4, 4,
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m+(êLX%b %) ÇL(m*(Xg, fh)) eÔïghXd^Ygh)

ax)+m
(pîiï') I /43f»(^.V„).

where m, pi, p2'. G / G —> G are respectively the product map and

the two projections. If, moreover, |J G (g' )3'W tlien to* pj, where

m,pi'. G x II —7 G are respectively the action map and the projection. Since

1(0 G £2'(G) C £21 (G x // X //) C £23ot([G —• //1), the result follows from a

simple computation using formulas (3.6)-(3.9).

By Proposition 3.8, tire images of the map I: (g* )p f/[31 —? £2fot([G —» //1)
are automatically cocycles. Recall that -Si(g )0-W[3|) is the free graded
commutative algebra on the vector space (g*)®'H[3] which is concentrated in
degree 3. Thus ,S((g*)0'H[3]) is indeed an exterior algebra. By the universal

property of free graded commutative algebras, we obtain:

COROLLARY 3.9. The map T. (g*)ß"H[3] —> H3([G HJ) extends uniquely
to a morphism of graded commutative algebras

/: ^ H-([G

In fact, the class 1(0 £,•), where 0>---r0 G (9*)s • represented by
the cocycle 1(0) U • • • U 1(0) G £23'([G —» HJ).

4. COHOMOLOGY OF [A^ 1]

The following lemma is well known.

Lemma 4.1. The nerve /V.([.S"' —t 1]) is a K(Z,3)-space.

Proof Since Z is discrete, [Z —j* 1] is a K(Z, 2)-space (see for
instance [18, 20, 21]). Furthermore, [R —f 1] is homotopy equivalent to
[ 1 —11. Thus the result follows from the fibration of 2-groups [Z —> 1] —?
[R->- 1] —* [S1 1|.
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Let A be an abelian compact Lie group with Lie algebra a. Then [A —> 1]

is a crossed module. By Corollary 3.9, we have a map 7: S(a' [31) —>

HI-

PROPOSITION 4.2. Let A be an abelian compact Lie group with Lie

algebra a. The map I: S(a~ [31)' —4 H'([A —4 1]) is an isomorphism of graded
algebras.

Proof Since our cohomology groups have real coefficients, it is sufficient
to consider the case where A is a torus Tk. Indeed, writing A0 Tk for the

connected component of the identity in A, we have a hbration:

[A0 —^ 1] —F [A —F 1] —^ \A/Aa —4 1].

Since A is compact, ,4/,4o is a finite group. Thus /V. [4/40 —> 1] is a

K(A/Aq, 2)-space ; in particular it is simply connected. Then the Leray spectral

sequence (Lemma 3.1 and Remark 3.3) simplifies as

L'f ir (K(A/A0,2)| # // ([4o -4 1]) => //'([4 -4 1]).

Since A/Ao is finite, H'>0(K(A/A0,2)) 0. Hence

H-([A -4 1]) 4 H'([Ao 1]).

Now assume A Tk. The Runneth formula implies that //"([4 —F 1])

(H'([S1 —4 1 \))f/k as an algebra. Since I is a morphism of algebras, it is

sufficient to consider the case k 1, i.e. 4 .S"1.

Lemma 4.1 implies that //'([ V1 —)- 1]) S(x), where ,v is of degree 3. It
remains to prove that the map (3.10),

/: R —F Q1^1) -4 -4 1]),

generates tire degree 3 cohomology of [.V1 —> 1], i.e. that 7(1) is not a

coboundary in QTI-V1 —> 1]). Clearly, 7(1) is the image of the fundamental

1-form on .S"1 by the inclusion Q'(.V' c / L23([.V' —> 1]). By Section 3,

it is obvious that Q2([.S"' ^ 1]) Q°(.V' and that the only component
of the coboundary operator 8: Q2([.S"' —r 1]) —)- Q3)^1 —> 1]) lying in
^(S1) ^4 Q3([.V' -4 1]) is the de Rliam differential ddR : ß^S1) -4 Q1)^1).
Since the fundamental 1-form is not exact, the result follows.
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5. THE: CASE OF A FINITE < < KERNEL

In tliis section, we consider tlie particular case of a Lie 2-group [G -A ll\
with finite cokemel.

THEOREM 5.1. Let \ G —> //1 be a Lie 2-group with finite cokemel
C := H/i(G) and compact kernel Ker(/). Let t be the Lie algebra of Ker(i).
There is an isomorphism of graded algebras

Hf[G^H])= (5(r[3])')C.

In particular.; the cohomology is concentrated in degree 3q, q > 0.

Proof The 2-group [1 —F C] is naturally identified with the 1-group C.
Thus its nerve N. [ I —I C] coincides with the classifying space BC of C.
Furthennore, since C is finite (and thus discrete), the cohomology (with
local coefficients) H'([ 1 -> C], "W9([Ker(/) — 1])) is isomorpliic to the

usual group cohomology //' C. //''([ FTcr(/) —> 1])), where the C module

structure on //''([Keif/) —» 1]) is induced by the C-action on Ker(i).
Since //''([Keif/) -a 1]) is an R-module and C is finite, the cohomology

//'(C. //''([Keif/') —^ 1])) is concentrated in degree zero so that the spectral

sequence of Lemma 3.1 collapses. Hence

H\[G 4 H]) S H°(C, Hq([Ker(/) -> 1]))

m ii''(\Kcï(i) -> i])c m 5(((r)e[3])9)c.

According to Proposition 4.2 they are also isomorphic as algebras, due to
the multiplicativity of the spectral sequence and the freeness of .S"((t" )f|3 |j.

Remark 5.2. One can find explicit generators for the cohomology

II'(\G —r //1) as follows. For all y £ K := Ker(/), x G, v_lxv a:'(-v) x.
Thus K C Z(G) and 3(g) splits as a direct sum 3(g) È#h. We denote by J
the map g0 3(g) —r f. The composition of J*: C —7 g* with tlie map (3.10)
is the map

T. r A Ql(G x H2) c £2fot([G H])

If aj., .xq e Sq-2(('*[3]) then /(xi)U- • -U/)!^) lies in Qq(N2q([G —> //1)) C

£2—> //1). Note tliat tlie action of h £ H on K depends only on the

class of h in C. Since C is finite it follows that, for any a G Sq(V [31), /(a)
is a cocycle if and only if a is C-invariant. Let /(a) /( 4,ccv'j • 'llcn
/(a) is indeed a cocycle and / (Û' j generates tlie cohomology //"([G 4 //1).
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Let 1 —> ,4 —> G —tU—t 1 be a Lie group central extension. Since A is

central, there is a canonical action of H on G. It is easy to see that G —> II
is a crossed module.

COROLLARY 5.3. Let [G A //1 be the Lie 2-group corresponding to a

central extension of H by a compact abelian group A. There is an isomorphism

of graded algebras
H'([G A Ii\) & .S"(q [3])',

where a is the Lie algebra of A.

Recall that 5'(a*[3])' is a graded commutative algebra generated by
generators of degree 3 (given by any basis of a*

Proof. Since G A H is a surjective submersion, the cokemel H/p(G)
{*} is trivial. Moreover the kernel of \G A Il\ is [A —> 1], Hence the

conclusion follows from Theorem 5.1.

REMARK 5.4. Identifying the crossed module A —> 1 with the kernel of
G —r II yields a canonical morphism of 2-groups p: [A -A 1] —¥ [G -)-//]. It
follows from the proof of Theorem 5.1 that the isomorphism II'(\G A //1) A
.S"(a[31)' is given by the composition

5(a[3])" —A H\[A -a 1]) A IH\G A f/|).

Example 5.5. Let G be a compact Lie group. It is isomorphic to a

quotient of Z X G' by a central hnite subgroup. Here G' is the commutator
subgroup of G. Hence there is a map G —> Aut(G') yielding a Lie 2 group
[G —f Aut(G')] through the action of Aut(G') on G' (see Section 7 below).
Theorem 5.1 implies that

ff([G-> AutlG')]) SS((0*)0[3])'•

6. The case of a connected compact cokernel

The results of Section 3 can be applied to a more general type of 2-groups
[ G A //1, where G and H are Fréchet Lie groups (thus possibly infinite-
dimensional). See [3] for more details on Fréchet Fie 2-groups. In such a

case, instead of the de Rliam eohomology, singular cohomology with real

coefficients can be used.
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We start from the following lemma.

LEMMA 6.1. Let G and H be Fréchet Lie groups. Assume that C

H/i(G) is a connected compact Lie group, and Ker(/) is compact. Then the

third page If of the Leray spectral sequence (3.2) is concentrated in bidegree

(p, 3q), p ïï 0, q f 0, and

(6.1) Lp/q HP{BC) <8 Sq(a* [3]).

Here BC is the classifying space of C H/i(G), and a is the Lie algebra

of A Ker(/).

Note that since .S"(a"|31) is a graded commutative algebra2) generated by
elements of degree 3, it lies in degree 3q (where 0 < q < dim(a)).

Proof. Note that C is the cokemel [1 —> C] of [G —» II | (see Section 2).
Since C H/i(G) is connected, its classifying space BC is simply connected.

It follows that the Ö term of the Leray spectral sequence in Lemma 3.1 is

isomorphic to

If H'(BC) m Hj([A -4 1])

as an algebra. By Proposition 4.2, H'{\A -§ 1]) .S"(a [31 )" is concentrated

in degree 3q (q > 0). Since the differential d2 : Lf —r L'^1,-'~l is a

derivation, it follows that d2 0 for degree reasons. Similarly, if 0.
Thus If L'f If.

The (higher) differential 0(4: L^ -P L'f4'^3 induces a transgression

homomorplhsm

(6.2) T : a* L°/ H4(BC).

PROPOSITION 6.2. Under the same hypothesis as in Lemma 6.1, there is

a natural linear isomorphism

H'([G A Il\) (ir(BC)j(\m T)) ® .V(Ker(7')[3|)'

which is an algebra isomorphism if we assume, moreover, that C H/i{G)
is simply connected.

Here BC is the classifying space of C and Im T is the ideal generated
by the image of T.

2 S(a" [3]) is in fact an exterior algebra, since it is generated by odd-degree generators.
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Proof. Since d4 : i|r —b L'^4^ 3 is a derivation, it is uniquely determined

by T, From Lemma 6.1, it follows that

L'f S (11' (BC)/ (\m 7')) ®5(Ker(J)[3])'.

For degree reasons, d, 0 for all r 5. Thus L'f L'f as an algebra, and the

linear isomorphism II'(\G 4 II\) {I I'(BC)/(\m '/')) 0 .S"(I\er(7')[31) follows
since our ground ring is a field. If C is furthermore simply connected, then

H'(BC) is a polynomial algebra with generators xt of even degree U 2/,
i F 2. In particular, H4(BC) has no decomposable elements, thus L'f is a

polynomial algebras with graded generators. It follows that l.'f H'([G 4 //1)
as an algebra.

As an application, we compute below the cohomology of the string
2-group String(G) (see [3]). Let G be a connected and simply connected

compact simple Lie group. There is a unique left invariant closed 3-fonn
v on G which generates IG(G. Z) Z. By transgression, the form v
corresponds to a class [o>] E H4(BG, Z), which determines the basic central

extension [22, 3]
1 ->• S1 —^ QG 4 QG —)• 1

of tlie based (at identity) loop group QG of G. Associated to v is a (homotopy
class of) map QBG —> G K(Z,3) A^.([SX —> 1]) which induces an

isomorphism on 7^. Let PG denote the space ofpaths f: [0,:1] —ï G starting

at the identity. The conjugation action of PG on QG lifts to QG. The string
2-group (see [3]) is the Fréchet 2-group corresponding to the crossed module

String(G) := [QG 4 PG],

where p is the composition

p : QG 4 QG *—% PG.

By construction, Ker(p) S1, PG/p(QG) G, and also iT3(String(G)) 0

(as follows from [3, Theorem 3]). Recall that the cohomology H'(G) is the

exterior algebra on generators Vi v,. where Xj is of degree 2<?,-+ 1 and

<?i,,.,, e, are tlie exponents of G. Note that we can choose Ä v. Similarly,
H'(BG) is tlie polynomial algebra on generators yj, yr of degree | y,j 2<?,

where yi can be taken to be |w]. To apply Proposition 6.2, it suffices to

compute tlie transgression liomoinorphism R —> H4(BG) R, where tlie
domain R is identified with tlie Lie algebra of .S"1. Since [u;] G H4(BG) is

obtained by the transgression from [;/1 £ //3(G) //3(/YQG), it follows that
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7(1) is the generator of H4(BG). Indeed, there is a commutative diagram of
Fréchet 2-group fibrations

[1 -A QG| Î- [1 -A PG] -^-4- [1 -f G]

j
[.V —A 1] \qg A QG| ^ String(G) > [1 -A G]

where the right horizontal arrows are induced by ev: PG —> G, /1 >/(l) and

the canonical inclusion [.V1 —# 1] —j* \QG A S2G] Ker(ev) is an equivalence
of Fréchet 2-groups. Thus the transgression map T is the composition P' of
where T': H3(G) ^ H3([l -4 QGJ) -4 H4([ 1 -4 G]) S H4(BG) is the

transgression map associated to the libration [1 -A PG] -A [1 —A G]. Since

PG is contractible, T'(v) is a generator3) of H4(BG). It also follows from
the exact sequence (3.3) that j is an isomorphism on 7T3, and so is

f ; R 0*0 -a 1]) -A- H3([ 1 -a £2G]) ^ H3(BQG) H3(G).

Hence T T' o j* : R H4(BG) S R is an isomorphism. Thus, we recover
the following result of Baez-Stevenson [5] :

Proposition 6.3.

H'(String{G)) S(y2,... ,yr) St ir(BG)/(\,j\),

where the y-, 's are the generators of H4(BG).

7. The case of [G -4 Aut+(G)] AND [G -4 Aut(G)]

Let G be a compact Lie group. There is a canonical morphism G -4 Aut(G)
given by inner automorphisms which is also a crossed module. Since inner

automorphisms are orientation-preserving, we also have a crossed module

G -4 Ant1 (G), where Aul (G) is the group of orientation-preserving
automorphisms.

Now, assume G is a semi-simple Lie group. Then both Out(G) and

Out+(G) are finite groups. Moreover, Ker(/) and Ker(/+) are also finite.
Thus, by Theorem 5.1, we obtain

3
as for the case of the "universal" fibration G —A EG —y BG
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PROPOSITION 7.1. Let G be a semi-simple Lie group. Then

0 if n > 0,
H"([G -A Aut(G)]) II" (\G -a Aut+(G)])

R if n 0.

For general compact Lie groups, the cohomology of [G -—> \ut! (G)] and

[G 4 Aut+(G)] can be computed with the help of spectral sequences.

THEOREM 7.2. If G is a compact Lie group, there are converging spectral

sequences of graded commutative algebras

(7.1) E+m HP(SL(n,Z),S((3*)mr) =* H>'+"([G -^A Ant (G)|)

(7.2) Hp{GL(n, Z), 5((0*)s|3])?) =A Hp+q([G 4 Aut(G)])

where n dim((g:)0) Is the dimension of (g*)0, and the SL(n,Z)-action
(or GL(n,Z)-action) on S((g*)0[3])5 is induced by the natural action on

(g*)® R".
In particular the spectral sequences are concentrated in bidegrees (p, 3k)

(p and k > 0 and

(1.3) £2+0'^°'3" 0 and E+°'°^Efß"^ R,

(7.4) E%q>0 S 0 and E%° M R.

Proof. Let g be the Lie algebra of G and 3(g) the Lie algebra of its

center Z(G). Then 3(g)* (g*)0- Since the kernel of G 4 Aut(G) is Z(G),
we have the hbration

(7.5) [Z(G) -> 1] -4 [G 4 Aut(G)] —> [I ^ Out(G)],

where j is the inclusion map. By Lemma 3.1, we have a spectral sequence

Hp([ 1 -> Out(G)], %q(\Z(G) -> 1])) I/i'l''(\G 4 Aut(G)l)

and similarly for [G —A Aut+(G)]. By Proposition 4.2, Hq([Z(G) -A 1])

4(0*)s[3])?. Since G is compact, the group Out(G) is discrete. Thus, the

Iff and if -tenus of the spectral sequences become the group cohomology

groups Hp(Out(G),S((g*)0[3])9) and //''(Out1 (G).5((gAB[3|)'') respectively.
Nöte that the center of G is stable under the action by any automorphism.
Hence, there are canonical group morphisms Out(G) —> Out(Z(G)) and

Out (G) —t Out (Z(G')).
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First assume that G Z(G) X G', where Z(G) S1 x • • • x S1 is a torus

of dimension n and G' [G, G] is semi-simple. Then the canonical map
Out(G) — Out(Z(G)) has an obvious section Out(Z(G)) —¥ Out(G) given by
fp j—> cpxid(,r. Since G' is the commutator subgroup of G, it is also stable under

automorphisms. It follows that Out(G) GL(n, Z) x Out(G') and Out+(G)
SL(n, Z) x Out (G') since Aut(Z(G)) GL(n„ Z). We now need to find out the

Out(G) and Out (G)-actions on // (|Z(G) -> 1 j) 5((0')®|3|)L If f,..... f„
are coordinates on Z(G), tlien (0*)® R 4ft R di„ and, according
to Proposition 4.2, the elements I(dti), I(dt„) G x — X §?).

£23([Z(G) -/ 1]) form a basis of li\\Z(G) -> 1]). It follows that the Out(G)
and Out+(G)-actions on //'([Z(G) —> 1]) reduce to tire standard GL(n,Z)
and SL(n. Z)-actions on tlie vector space R dt\ O • • • R dtn. Since Out(G')
and Out+(G') are finite and act trivially on H'([Z(G) —> 1]), tire spectral

sequences (7.1) and (7.2) follow from the Künneth formula.

In general, since G is compact, it is isomorphic to the quotient G

(Z x G')/A, where Z is the connected component of the center Z(G) and

A Z(G) fl G' is finite central. Let G' be the universal cover of G', w hich is

a compact Lie group, and p : Z x G' —> G be the covering of G given by the

composition Z x G' ^ Z X G' -t G. Let / (p Aut(G), then fop : Z x G' —> G

is a Lie group morphism. There is a unique lift

~ fZxG' "Z / G"

-*-'0

of the map fop: ZxG' —X G into a map /: Z x G' -Ax G' preserving the

unit. Indeed, to see this, it is sufficient to check that /', o p t )(-t(Z x G')) C

p*(7Ti(Z x G'))- Clearly /;,(tTi(Z x G')) — p-(Z") is the non-torsion part of
7Tx(G). It is tlius stable by any automorphism, therefore by /* : 7Ti(G) —X tti (G).
Since p is a group morphism and / G Aut(Z x G'), it follows that any
automorphism of G lifts unique!y into an automorphism of Z x G'. We are

thus back in the previous case.

By the above discussions, we already know that the action of SL(n. Z)
and GL(n, Z) on (0*)0 R" is tire standard one. Since the symmetric
algebra on odd generators is isomorphic to an exterior algebra, Efq and

E^0'1 are respectively isomorphic to Ak (r")G£("'Z) (as a GL(n, Z)-module)

and (R")S£<"'Z) (as an SUn, Z)-module). Furtheiinore, if q 3k, E%q

and Ef'1'1 vanish for degree reasons. In particular, the GL(n, Z)-action is
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trivial for k 0, and for k n, it reduces to multiplication by the

determinant on A"( R") R. For 0 < k < n, SL(n, Z) (and thus also

GL(n, Z) has no fixed points in A*(R") besides 0. The last assertion

follows.

In general, the description of the group cohoinology of GL(n, Z) and

SL(n. Z) with arbitrary coefficients for general n is still an open question
unless n <4 (see for instance [25, 17]).

COROLLARY 7.3. Let G be a compact Lie group. Assume that n

Jiii]:,; j < 3. Then

HP([G -> Aut+(G)]) — <

and

Hp([G -§ Aut(G)]) —

if p 0, 3«

otherwise

if p 0

ifp> 0.

Proof. If n 0, tins reduces to Proposition 7.1. For n 1, GL( 1,Z)
Z/2Z and SL( 1,Z) {1}. The spectral sequences of Theorem 7.2 are

concentrated in bidegrees (0,0) and (0,3), and hence collapse.

For n 2, SL(2, Z) is an amalgamated sum Z/4Z *z/2z Z/6Z over a

tree [24]. For any SL(2, Z)-module M, the action of SL(2,Z) on tlfis tree

yields an exact sequence

-5- //!(Z 4Z. .V/) : //!(Z 6Z. .V/) -+ //'ÏZ/2Z. M) -A. Hi+l(SL(2,Z), M) -A

Since the cohoinology of a finite group acting on an R-vector space vanishes

in positive degrees, the only non trivial tenns in the spectral sequence S,i

are those for p 0. It follows that the spectral sequence collapses and the

result is given by Equation (7.3) in Theorem 7.2. Ä similar computation gives
the result for GL(2, Z) SL(2, Z) M Z/2Z.

For n 3, one uses the fundamental domain introduced by Soulé in [25].
Let Mi be the 5/43.Z) module .S''4(ci')0|3|) AAR3) (q 0,...,3).
Since M° and M3 are isomorphic to R with trivial action, the groups
Hp>°(SL(3,Z),Mi) are trivial for q 0,3. Now assume that q 1 or q 2.
The group SL{3,Z) acts by conjugation on the projective space of symmetric
positive definite 3 x 3-matrices. Let />, be the subset of such matrices whose

diagonal coefficients are all the same. The orbit X3 />, • SL(3. Z) of />,
under SL(3,Z) is a homotopically trivial triangulated space of dimension 3
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(see [25]). Let 2, be the set of equivalence classes of cells of dimension i
modulo the SL(3, Z) -action. For a G 2,, we denote by SL(3,Z)a the

stabilizer of the cell <j and write Mq for Mq endowed with the induced
action of SL(3,Z)a twisted by the orientation character SL{3,Z)a -4 {±1}.
There is a spectral sequence El(J (x),Tcv II1 (SL(3,Z)a. A//) converging to

Hi+j(SL(3,Z),Mq) (see [10], Secüon VII.7). The stabilizers SL(3,Z)a are

described in [25], Theorem 2. They are all finite. Thus the spectral sequence
reduces to E'f cBCri: 'Ht ' ". Direct inspection using Theorem 2

in [25] shows that E[-u° 0, /if" & (/Vf)4 and

E2y° è (M?)4 © (MqAf © (MqB) © (,!/"')2

where A, B, C are respectively the matrices

0 -1 0 \ /-I 0 0\ f—l 0 0\
-1 0 0 j 0 0 -1 J I 0 0 1 I.
0 0-1/ V 0 -1 0 / \ 0: 1 0/

The tenn di of the spectral sequences is described in [10], Section VII.8. In
our case, since the stabilizers of cells of dimension 3 are trivial, the differential
dy is induced by the inclusions Mq for each 3-dimensional

cell T C 23 with a C r a subface of dimension 2. It follows that E'2j 0.
Hence the result follows for [G -f. Äut+(G)]. The case for [G —> Aut(G)]
follows using tlie Künneth formula since GL(3,Z) SL(3,Z) x Z/2Z.

REMARK 7.4. For « dim((g*)B) 4, it should be possible to compute

explicitly H'([G —Y A lit1 (G)|) and //'([G —> Aut(G)]) using Theorem 7.2 and

the techniques and results of [17]. For n 5,6, the results of [14] suggest that

the cohomology groups II'(\G —> Aut^(G)]) and H'([G —> Aut(G)|) should be

non trivial. For larger n, it seems a difficult question to describe the spectral

sequences of Theorem 7.2 explicitly.
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