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A NOTE ON LOWER BOUNDS FOR FROBENIUS TRACES

by Enrico Bombier: and Nicholas M. Katz

1. Introduction

This paper grew out of the following question. Given an ordinary elliptic
curve E/Fq over a finite field F4 of characteristic p, consider the sequence
of integers A(n), n > 1, defined by

#E(Fcr) <f Hr 1 - A(n).

Is it true that as n grows we have |A(«)| —> oo

Without the hypothesis "ordinary" the answer can be no, because for
a supersingular elliptic curve one can have A(n) 0 on entire arithmetic

progressions of n. On the other hand, all the A(n) in the supersingular case

are divisible, as algebraic integers, by q"'2, so the non-zero A(n) must have

|A(n)| > qn!2. If instead E/Fq is ordinary, then all the A(n) are not zero
because they are all prime to p, so this vanishing problem at least disappears.

The A(n) are the traces of the iterates of a certain Frobenius endomorphism
F and this leads to the more general question of when we can assert that in
the sequence | TraceOF")|, n > 1, the non-zero terms tend to oo.

The purpose of this note is to explain how classical results on recurrent

sequences answer these questions. Because of the "culture gap" between the

communities of those who know these classical results and those who are
interested in traces of Frobenius, we have written this note so to make it
accessible to members of both communities, at the risk that readers may find
parts of this note overly detailed.

We will use three different methods to approach the problem. The Skolem-

Mahler-Lech theorem on recurrent sequences is easy to prove and provides a

"soft" answer, soft in the sense that it gives no estimate of the rate at which the

non-zero terms tend to oo. The other two methods lie much deeper. A theorem
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due independently to Evertse and to van der Poorten and Schlickewei, itself
based on an improved version of Schmidt's subspace theorem, gives such a

rate, albeit ineffective in certain parameters. For elliptic curves (and some
other exponential sums, including classical Kloosterman sums), the Baker-

Wüstholz theorem gives an even better rate, this time effective in all parameters.
The problem of obtaining effective lower bounds in the most general case

remains unsolved and probably lies very deep.

Acknowledgements. It is a pleasure to thank Umberto Zannier for his

helpful comments on an earlier version of this paper.

2. Unboundedness, via Skolem's method

We begin by recalling the relevant version of the Skolem-Mahler-Lech
theorem. For the convenience of the reader, we also recall its proof.

THEOREM 2.1. Let K be an algebraically closed field of characteristic

zero. Fix an integer n > 1, n numbers a\,..., an in Kx, the "eigenvalues",
and n polynomials Ai(x),..., An(x) in A"[x], the "coefficients", not all of
which are zero. For each integer k> 1, define

n

A(k) := Afk) af
i= l

Then we have the following results.

(i) Suppose that no ratio a,-/ay, i fj, is a root of unity. Then there are
only finitely many integers k > 1 for which A(k) — 0.

(ii) The integers k > 1 for which A(k) — 0 are the union of a (possibly

empty) finite set together with a finite number, possibly zero, ofarithmetic

progressions to some common modulus D ; we can take D to be the

order of the group of roots of unity generated by all those roots of unity
which are of the form afaj for some i,j.

(iii) Suppose that for some index io, A,0(.x) f 0 and, for any j f io, the ratio

czj/is not a root of unity. Then there are only finitely many integers
k > 1 for which A(k) 0.

(iv) Suppose that no a.-, is a root of unity. Then for any p f 0 in K, there

are at most finitely many integers k > 1 with A(k) p.
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Proof, (i) Let A be the set of coefficients of the polynomials Xfx). It is
standard that for almost all primes p we can embed the finitely generated

ring

Z[ai a„. l/an. A, p]

into the ring of integers Op in a finite extension Ep of Qp, cf. [Cl] for
an elementary proof or [Ka96], 5.9.3. (In Cassels it is shown that if K is

any finitely generated field of zero characteristic and C is a finite subset of
Kx then there is a set of primes p of positive density such that, for each p
in this set, there is an embedding of K in the p-adic field Qp in which all
elements of C are units.)

We choose such an embedding, denote by ix Op a uniformizing
parameter, by | \v the extension of the usual p-adic absolute value to Ep,
by ord-p the associated additive valuation, and by L the cardinality of the

finite group Of,/(l -§-• pixOp).
For each i, we have

Cad1 G 1 + pirO-p

Hence in each arithmetic progression {a + kLfk^z modulo L, we have

n

A(a 4- kL) — tfXi(a 4- kL) (off
i=l

which we can view as the case where the eigenvalues are the af and the

coefficients are afXfa+xi). Notice that the new eigenvalues of continue to

satisfy the condition that their ratios are not roots of unity.

Looking at each of these progressions separately, it suffices to prove (i)
under the additional hypothesis that the n numbers a,- each lie in 1 4- pirÖp.
The key observation is that the functions

OO

leg«+2) Vc-if-W
«' m

m=1

and

E S
m=0

are a pair of inverse group isomorphisms between the multiplicative group
1 + pirö-p and the additive group prcöp. (Indeed, for any element p G öp
with p,p~l G pVöp, log and exp are inverse group isomorphisms between the

multiplicative group 1 -Ppöp and the additive group pöp, see [DGS], p. 52.)



206 E. BOMBIERI AND N. M KATZ

Thus distinct elements a, 1 + pzröp have distinct logarithms
OC

P := log(oy) 6 (mOp.t—* m
m=\

The power functions n o:f exp(.6,)" exp{ß-,n) are interpolated by the

functions z H- expwhose power series are easily seen to lie in Op[[pz\\.
We next show that these n analytic functions exp($z) have power series

that are linearly independent over Ep[z\ For completeness, we repeat here the

standard proof. Suppose that Pfz), (i 1,.... n), are non-zero polynomials
in Ep [z], of degree Sp which we may and will assume to be monic. We

will show that the n power series f(z) : P;(z) e'3,z are linearly independent
over Ep. It suffices to show that their Wronskian

—((IfH,, „
is not zero. The (i.j) -th entry of the matrix is easily calculated to be

(8/~1zSi -blower degree terms)e'llZ.

Therefore, the determinant is

A Si -f lower degree terms| Vand(^!...., ßn) e(^

with Vand the Vandermonde determinant. The ßit i are distinct,
hence the Vandermonde determinant is not 0.

We now return to the proof of part (i) of the theorem. Since not all
coefficients A,-(x) vanish, the function

n

E(z) := Yl ^(z)exp(ßiz)
i=i

is not zero in Opiiirz]] - It follows that F(z) has at most finitely many zeroes

in Op and a fortiori has at most finitely many integer zeroes, which will prove
what we want. This is an easy consequence of the Weierstrass Preparation
Theorem applied to the power series ring Op[[T\z\~\ (see Lang [La], Thm. 9.2),

or of the theory of Newton polygons (see, for example, Dwork [Dw], Thm. 1.1

or Dwork, Gerotto, Sullivan [DGS], II.2.1). In its most elementary form,
this finiteness of the number of zeroes follows from Strassmann's Theorem :

If f(z) E amZ!n is convergent for |z|-p < 1 and not identically 0, and
M is the largest index m for which \am\p reaches its maximum, then the

equation f(z) 0 has at most M zeroes Ç with ordp(Q > 0.
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The following simple proof by induction on M can be found in Cassels

[C2], Thm. 4.1. Since ffamZm is convergent for \z\-p < 1, we have \am\-p —> 0,
hence M exists. If M 0, there is nothing to prove. Now if /((') 0 we
have

OC

m=l
•do m—1 oo

- o a^zJc~w - o X^ bJzJ

m=l j=0 »1=0

(z - Og(z),

say, with
OC

m =7+1

From this, it is clear (we are dealing with an ultrametric valuation) that

\bj\-p —y 0 as j -» oc. Moreover, it is immediate that |&/|p < for
all j, I^vz-iIe \aM\-p, and \bj\p < \aM\p if j > M ; the result follows by
induction applied to t/(z) >

which we may because \bj\p —»• 0, so the

sum is convergent in |z|p < 1.

A refinement of Strassmann's Theorem is the p-adic Rouché theorem

(see [DGS], IV.4.2 and its more general formulation for quotients of analytic
functions1), rather than just power series in Ep[[z\\)'.

Let f(z) Y2amZm EpWzW be a power series convergent in \z\-p < 1 and
let 11/11 := maxm \am\p If h(z) E-p[[z\~\ is another power series convergent
in \z\-p < 1 and with ||/î|| < ||/||, then f and f + h have the same finite
number of zeroes in the disk \z\p < 1.

Once we have (i), we get (ii) and (iii) by partitioning the
eigenvalues a:,- into equivalence classes according to the equivalence relation
where a b if and only if b/a is a root of unity. By renumbering,
we may assume that are representatives of these equivalence
classes, and that the class of ct(- consists of Q.jcxi, for j 1.... ,n,,
with suitable roots of unity Qj of order dividing some positive integer D.

^) This extension is important, because analytic continuation in a p-adie field cannot be done
by Weierstrass's method using Taylor series.
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Then for a fixed integer 0 < a < D, and any integer k > 1, the

sequence k A(a + kD) is of the same form, with r eigenvalues af,
i 1 ,...,r, except that now it may be the case that all the coefficients
vanish. We do not care about the exact formulas for these coefficients,

except to note that for each equivalence class which is a singleton, say

a,-0, the new coefficient of a,-0 is af0Xm(a + xD). If all coefficients vanish,

then we have vanishing on the entire progression. If not, then by (i) we

only have finitely many vanishing terms in the progression. This gives (ii)
and (iii).

Suppose now that no a,- is a root of unity. We get (iv) by applying
(iii) to the situation with n-\-1 eigenvalues (oi,..., an, 1 and coefficients

(AiQc)...., Xn(x), —p), for here the equivalence class of the eigenvalue 1 is

a singleton, whose coefficient — p is not zero.

COROLLARY 2.2. Let K be an algebraically closed field of characteristic

zero, n > 1 an integer, and F GL(n, K) an n X n invertible matrix whose

reversed characteristic polynomial det(I—FT) has integer coefficients. Suppose
that no eigenvalue of F is a root of unity. Define a sequence of integers
A(n) by

A(n) := Trace(F"), n> 1.

Then the non-zero A(n) have |A(ra)| A- oc. More precisely, for any integer
M > 1, there exists an integer k^ > 1 such that if k > k^, then either

\A(k)\ > M or A(k~) 0.

Proof. Apply Theorem 2.1 (iv), to the eigenvalues a, of F, taking all
À, 1. For any integer k > 0, A(k) is an integer, by the integrality assumption
on the coefficients of the characteristic polynomial. There are at most finitely

many integers k > 0 for which 0 < |Trace(FÄ)| < M, hence taking k^ to be

the largest of these, we get the assertion.

Here is another corollary. As before, A!" is an algebraically closed field
of characteristic zero, n > 1 an integer, and F e GL(n, K) is an n x n

invertible matrix whose reversed characteristic polynomial P(T) := det(I—FT)
has integer coefficients. Given an integer k > 1, we say that an element

G GL(n, K) is an integral form of Fk if the following two conditions hold.

Let / GL(n, K) be the identity element. Then

(i) the reversed characteristic polynomial det(J—GT) has integer coefficients;

(ii) for some integer d > 1, we have det(/ — GdT) det(/ - FdkT).
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COROLLARY 2.3. Let K be an algebraically closed field of characteristic

zero, n > 1 an integer, and F G GL(n, K) an n x n invertible matrix whose

reversed characteristic polynomial det(J—FT) has integer coefficients. Suppose
that no eigenvalue of F is a root of unity. Then for any integer M > 1, there

exists an integer k^ > 1 such that for k > and for any integral form G

of Fk, either Trace(G) 0 or |Trace(G)| > M.

Proof. Denote by a,- the eigenvalues of F. An integral form G of Fk

has eigenvalues Qak, for some choice of roots of unity Q. We claim that

given F, there is an integer D > 1 such for any k > 1 and any integral form
G of Fk, the possible Q are all D-th roots of unity. Granting this claim, we

get the result by applying Theorem 2.1 (iv), to the a, and to each of the Dn

n-tuples (Ai,..., \n) with A,- a D-th root of unity.

To prove the claim, we argue as follows. Since det(/ — FT) has integer
coefficients, the ai are algebraic numbers, so lie in some finite Galois extension

KqJQ. If we pick a prime p which splits completely in K0, and a prime V
of Ko lying over p, then the V -adic completion of Kq is just the p-adic
field Qp. So we can view all the a-, as lying in the p-adic field Qp. The
fact that det(/ — GT) has integer coefficients shows that each product Qak is

algebraic of degree at most n over Q, and hence of degree at most n over
On the other hand, ak e Qp, so Q lies in an extension of Qp of degree

at most n. Since Qp has only finitely many extensions of given degree, the Q

lie in a single finite extension, say E-p, of Qp, and any such finite extension

contains only finitely many roots of unity.

We now give some applications to varieties over finite fields, and to
isotrivial2) families of such varieties. All of these applications have a common
structure, that there is only one cohomology group we do not know in advance.

Let us explain in a bit more detail. To begin with, suppose we are given a

proper, smooth, geometrically connected variety X over a finite field Fq of
characteristic p > 0. We choose a prime number £ f p. Then we have

Grothendieck's -Gaelic étale cohomology groups3) H'êt(X F^, Q^). In order

to simplify notation, we shall write here X for X Fq (thus A is A after
base change from Fq to Fq and we shall write FT for H'él(X,QQ if X is

clear from the context.

2) A family X —> S is isotrivial if it becomes a product S' x Y —» S' with trivial projection
on the first factor, after a suitable finite étale base extension S' —> S.

3) In this paper, if K is a field, we denote by K a choice of an algebraic closure of K.



210 E. BOMBIERI AND N. M KATZ

These cohomology groups are finite-dimensional Qj?-vector spaces, which
vanish for i outside the interval [0.2dim(X)]. On each group H' we have the

Frobenius automorphism Frobp^, and according to the Lefschetz Fixed Point

Formula [Gr] the number #X(J¥qn) of points of X defined over the field ¥qn

is given, for each integer n > 1, by the formula

#X(¥qn) ^(-l)''Trace(Frob£|H').
i

This appears at first sight to be an equality of an integer #X(¥q») with an

alternating sum of terms Trace(FrobpjFF) on the right, each of which is a

priori only an element of Q(-. However, Deligne, [De2] proved that each

individual trace term Trace(FrobpJPT) on the right is itself an integer, and

moreover that this integer is independent of the auxiliary choice of the prime
number £ ?-p. Equivalently, for each i the reversed characteristic polynomial
det(/ - T Frobp |H') is independent of £ p and has integer coefficients.

Moreover, he proved in the same paper that each eigenvalue of Frobp on H'
has complex absolute value q'!'2. See the review [Ka94] for a slight elaboration

of this summary; for the purpose of this paper, it suffices to know only that
such a cohomology theory exists and that it has the above properties.

All this becomes much more concrete and explicit in a diophantine setting
when our variety X is either a curve or a complete intersection, because for
such an X, say of dimension d, there is only one of its cohomology groups,
namely the middle dimensional group Hd, which is difficult to understand

completely. More precisely, for 0 < i < 2d and i ^ d, we have by [DK],
XI, 1.6,

(i) if i is odd, then H' 0,

(ii) if i is even, say i — 2r, then dim(//2r) 1, and Frobp acts on it by
multiplication by qr.

Thus if X is a (proper, smooth, geometrically connected) curve, we have

#X(¥qX) 1 +<f - TraceCFroby//1).

If X is a (proper, smooth, geometrically connected) complete intersection of
odd dimension d, we have

#X{¥qn) 1 +qn + <fn + yqdn - Trace(Frob£ \Hd).

How if X is a complete intersection of even dimension d, then Hd contains

a one-dimensional subspace which is Frobp -stable and on which Frobp
acts with eigenvalue qd,/2 ([DK], XI, 1.6(iv)); the quotient of Hd by this
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one-dimensional subspace is denoted by Prim0*. So here we have the formula

#X(Fr) 1 + qn +<fn + • • • + qdn 4 (-if Trace(Frob£jPrimd).

We unify these last two formulas by defining Pnmf? Hd in the case when

d is odd; then the last formula is valid when our X is a complete intersection

of any dimension d.

The above definition of Primrf has been somewhat simplified here for our

purposes, so it is worthwhile to spend a few words to introduce the general
notion of the primitive part of the cohomology, which is quite interesting and

important in the study of projective varieties. This has no role for the limited
results in our paper and the reader may skip the more technical definitions
which follow.

Let X be a proper, smooth, geometrically connected variety of dimension
d over a finite field of characteristic p > 0 and let F be a smooth

hyperplane section4) of X. Let £ be a prime number ifp. The embedding
Y <-4 X induces restriction homomorphisms

HUX,q()^HUY,Q£)-
Using Poincaré duality, we get dual homomorphisms

L: H'él(Y, Qé) -A H^\X,Q,(l)),
called the Gysin homomorphisms, where Q?(k) denotes the fc-th Tate twist5).
The image r/ H%(X, Q^(l obtained applying the Gysin map to the class

4) The alert reader may correctly object at this point that over the given ground field Fq,
every hyperplane section might be singular. For instance, this is the case if d 2n is even
and X is the smooth hypersurface in F^"+l given by the equation in homogeneous coordinates
y^"—r}(x2ix2i

\ 1 ~ x2ix2i+f see CKa99J, Question 10, pp. 621-622. One way around this

difficulty is to use the fact that over every finite extension of sufficiently large degree of our
ground field there do exist smooth hyperplane sections. Indeed, the singular hyperplane sections are
a proper closed subscheme (the dual variety) Xv of the projective space Pv of all hyperplane
sections, cf. [DK], Exp. XVII, 3.1.4; hence the complement Pv \ Xv (the variety of smooth
hyperplane sections) is not empty, smooth and geometrically connected, so has points in all finite
extensions of large enough degree, by a well-known result of Lang and Weil [LW]. However,
there is a more elegant geometric approach to the question. Poonen [P] has shown that for a given
X as above, there exist smooth degree D hypersurface sections over the given ground field if
D is large enough. (See also Gabber [Ga] for an independent proof if in addition D is divisible
by the characteristic p.) Using these results, we can proceed in either of two ways. Suppose we
are given a smooth hypersurface section Y of X of some degree D. We can use the D-fold
Veronese embedding (via all monomials of degree D) to get a new projective embedding of X
in which the previous degree D hypersurface sections now become hyperplane sections; for this
projective embedding, there do exist smooth hyperplane sections over F9. Alternatively, in the

arguments which follow we can use the -cohomology class (l/£>)ly, instead of the class 1 y

of Y itself, to obtain the desired Q/, -cohomology class of a hyperplane section.

5) The k-th Tate twist Q/:(£) is a certain one-dimensional Galois module over for the
action of the absolute Galois group of Fp. The effect on the eigenvalues of the action of Frobp^
due to the twist is to multiply the eigenvalues by q~k.



212 E. BOMBIERI AND N. M KATZ

1 y H°ét(Y,QQ corresponding to Y (the so-called fundamental class of K)
is the class of a hyperplane section of X.

A fundamental theorem (the Hard Lefschetz Theorem) which goes back to
Lefschetz for varieties over the complex field and classical "Betti" cohomology
with coefficients in C and proved by Deligne [De3], 4.1.1, for £-adic

cohomology (hence applicable in our setting) is:

Let X be a proper, smooth, geometrically connected, projective variety of
dimension d, over a finite field field of characteristic p > 0. Let I f p
and let !j be the hyperplane class in H2fX. Qf(l)). Then the homomorphism

if: Hdfk(X, Qt) Hd+k(X, Qfk))

given by cup-product with the class r/k is an isomorphism.

In particular, the eigenvalues of FrobF<) on Hd^~k(X, Qf are equal to

qk times the eigenvalues of Frobp on Hd~k(X, Qf. On the other hand,

multiplying by v] once more, the map

nk+1. Hd-k(X Qg) ^ Hd+k+2(X,Qe(lc + 1))

may have a non-trivial kernel. This kernel

Primrf-Ä:(Ä.Q,?) := ker0/ft+1|Hdfk(X,Q^)

is the primitive part of the cohomology group Hd~ k(X, Qf). This subspace

FW-*(ZQ) C Hdfk(X,Qf)

is stable by the action of Frobp4, whose eigenvalues on Primrf~*(X, Qf
are hence among its eigenvalues on Hd~k(X, Qf). The remaining
eigenvalues of Frobp^ on Hd~k (X, Qf can be recovered from its eigenvalues on

Hdfk~2(X. Qf ; they are equal to q times the eigenvalues of Frobp acting

on Hdfk~2(X,Qf.
This shows the importance of the primitive part of the cohomology: its

knowledge is sufficient, via the Hard Lefschetz Theorem, to compute the

eigenvalues of the action of FrobF<) on the whole £-adic cohomology of X.
Moreover, by the Weak Lefschetz Theorem, cf. [De3], 4.1.6, the cohomology

groups H' of a smooth projective variety X of dimension d are isomorphic,
for i < d — 2, to the cohomology groups of any smooth hyperplane section.

The cohomology group Hd~l of X can be recovered as a suitable "gcd" of the



LOWER BOUNDS FOR FROBENIUS TRAŒS 213

groups Hd~1 of "all" smooth hyperplane sections6) of X. The cohomology

groups for i > d can of course be recovered by Poincaré duality from those

with i < d. Inductively, this leaves only the middle dimensional cohomology
Hd of X to be computed. The interest reader who wants a quick introduction
to this deep theory may consult Danilov's article [Dan], §7 and §8.

Going back to curves or complete intersections, there is a single cohomology

group, H1 or PnnT' respectively, which we do not know explicitly. It
is with the traces of iterates of Frobenius on this single unknown group that

we will now be concerned. These traces are, as noted above, integers, and

we will want to know cases when they are all not zero. One way to insure

their being not equal to zero is to know that they are not zero modulo p,
the characteristic of the finite field over which we are working. For this,

we can make use of the following congruence formula in [DK], XXII, 3.1.

For any proper X/¥q, we have its coherent cohomology groups H'(X,öx),
on which the #-th power map Frq induces an -linear endomorphism. Then

we have an identity in F^,

#X(¥q) (mod p) ^(—l)'Trace(Fr^|//'(X, Ox)).
i

In the case when our X(¥q is either a curve or a complete intersection of
dimension d > 0 which is proper, smooth, and geometrically connected, we
have

(i) H°(X7 Ox) ¥q, with Frq id ;

(ii) for i ± 0 or d, we have H'(X,Ox) 0.

So when our X is a curve, we get

#X(F^) (mod p) 1 - Tv^ce(Frq\H\X, Ox))

and when our X is a complete intersection of dimension d > 0, we get

#X(¥q) (mod p) 1 + - l)d Trace(F^|//rf(X, Ox)).

If we compare the Lefschetz Fixed Point Formula with the congruence formula,

we get mod p congruences, namely : when our (proper, smooth, geometrically
connected) X is a curve,

Trace(FrobF<)I#1) Trace(Frq\Hl(X, Ox)) (mod p)

and when our (proper, smooth, geometrically connected) X is a complete
intersection of dimension d > 0,

Trace(FrobFjPrimrf) Trace(Frq\Hd(X, Ox)) (mod p).

6) One needs the consideration of a Lefschetz pencil of hyperplane sections and delicate
monodromy calculations, see [De3], 4.5.1.
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With this background established, we now return to giving applications of
our previous results to varieties over finite fields. We begin with the case of
curves over finite fields.

THEOREM 2.4. Let Xj¥q be a proper, smooth, geometrically connected

curve over a finite field F,? of characteristic p > 0. Define a sequence of
integers A(ri),n > 1 by

#X(F(r) qn + l-A(n).
Then the non-zero A(n) satisfy \A(n) | —> oc.

Proof. This follows from Corollary 2.3 above, applied with K taken to
be Q/: for some C. f p and with F taken to be the action of the geometric
Frobenius Frobp^ on H]t{X,Q_f). By the Lefschetz Fixed Point Formula [Gr],
we have A(n) Trace(F"). By Weil's Riemann hypothesis for curves over
finite fields [Wl], p. 70, the eigenvalues of F all have archimedean absolute

value q1^2, so are not roots of unity.

COROLLARY 2.5. Let X/¥q be a proper, smooth, geometrically connected

curve over a finite field ¥q of characteristic p > 0. Suppose that one of the

following three conditions holds.

(i) The genus g is 1 and Xj¥q is ordinary').
(ii) The genus g of X is prime to p, and the q-th power map on H1(X, Ox)

is the identity (i.e., the Hasse-Witt matrix8) relative to ¥q is the identity

g X g matrix over ¥q), or, equivalently, the group of p-torsion rational
points of the Jacobian Jac(X)(¥q) has order p!l.

(iii) For some integer N > 1 which is prime to p and modulo which 2g is

not zero, there are N2g points of order dividing N in Jac(X)(¥q).
Then for all n > 1, we have A(n) 0, hence [A(rc)| —> oc.

Proof. In case (i), each A(n), n > 1, is prime to p, so is not zero. In
case (ii), the congruence formula [DK], XXII, 3.1, shows that for n > 1, we
have A(n) g (mod p), so again A(n) ^ 0. In case (iii), we have A(n) 2g
(mod N) for all n > 1, so again A(n) 7^ 0.

1 An elliptic curve over a finite field Fq of characteristic p is ordinary if its group of
p-division points has order p. In the only other possible case, namely order 1, the curve is called
supersingular.

®) The Hasse-Witt matrix is obtained by looking at the action of the /r-power map on a basis

of H^(X, Ox) and is explicitly computable. For a curve of genus 1 it reduces to a single element
in ¥q, the Hasse invariant.
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We get similar results for complete intersections over finite fields.

THEOREM 2.6. Let X/¥q be a proper, smooth, geometrically connected

complete intersection ofdimension d > 1 over a finite field ¥q of characteristic

p > 0. Define a sequence of integers A(n),n > 1 by

d

mFr) J2qni + (-i)^(h)-
1=0

Then the non-zero A(n) have |A(«)| -A oo.

Proof. This again follows from Corollary 2.5 above, applied with K taken

to be Q,y for some tj- p and with F taken to be the action of the geometric
Frobenius FrobF<) on Phmd((X CF<( F^, Q^) (the "primitive part" Prim^ of the

cohomology Hdt of a smooth complete intersection X is simply Hdt if d
is odd and, if d is even, it is Hdt of X modulo the image of Hdt of the

ambient projective space, see [DK], XI, 1.6(iv)). By the Lefschetz Fixed Point
Formula [Gr] and the known cohomological structure of complete intersections

[DK], XI, 1.6, we have A(ri) Trace(Fn). By Deligne's Riemann hypothesis
for varieties over finite fields [De2], the eigenvalues of F have archimedean
absolute value qd^2, so are not roots of unity.

COROLLARY 2.7. Let X(¥q be a proper, smooth, geometrically connected

complete intersection ofdimension d > 1 over a finite field ¥q ofcharacteristic

p > 0. Suppose that g := dim(Hd(X,Ox)) is prime to p, and that the q-th

power map on Hd(X, Ox) is the identity. Then for all n > 1, we have

A(n) f 0, hence |A(«)| —¥ oo.

Proof. Again by the congruence formula [DK], XXII, 3.1, for n > 1 we
have A(n) g (mod p), so again A(h) ^ 0.

Here is a variant of the last result, when the geometric genus is 1.

COROLLARY 2.8. Let x/¥q be a proper, smooth, geometrically connected

complete intersection ofdimension d > 1 over a finite field ¥q of characteristic

p > 0. Suppose that dim(Hd(X, Ox)) 1, and that the q-th power map on
Hd(X, Ox) is not zero, say is multiplication by a <E ¥q Then, for all n> 1,

A(n) is prime to p, so it is not zero, hence |A(n)| -A oc.

Proof. Again by the congruence formula [DK], XXII, 3.1, for n > 1, we
have A(n) a" (mod p), hence for all n we have A(n) -f 0.
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We now turn to isotrivial families, and apply Corollary 2.8 above.

THEOREM 2.9. Let be a finite field of characteristic p > 0, let S/Fq
be a smooth, geometrically connected Fq-scheme of finite type with S(Fq)

nonempty, and let tt : X -A S be a proper smooth morphism of relative
dimension d > 1, all of whose geometric fibres are curves or, if d > 2,
complete intersections. Suppose the morphism ~ is isotrivial, in the sense that
when pulled back to a suitable finite étale S-scheme T/S it becomes constant.
For each closed point P of S, with residue field denoted Fp, consider the

fibre X-pv : X <X'Os Fp and define the integer Ap by
d

#Xf.p(Fv) NormCP)' + (-1 )dAv
i=0

Then the non-zero A-p have \Ap \ —> oc as deg(P) —> oo. More precisely, for
any integer M > 1, there exists an integer > 1 such that for any k > k^,
and for any closed point V with deg(P) k, either Ap 0 or \Ap\ > M.

Proof. We choose a point s0 £ 5(F4), and denote by X0/Fq the fibre

of X/S over so- We choose a prime C f p, and take for F the action
of geometric Frobp^ on PrimfVyYo, Q^). By the isotriviality of X/S, for any
closed point P of S, the fibre XF.P becomes isomorphic to Xq C Fp after
extension of scalars to some finite extension of Fp. Therefore the geometric
Frobenius Frobp acting on Pnm^WpTD • Qf is an integral form of F(leg( p>.

So the assertion results from Corollary 2.8 above.

COROLLARY 2.10. If X/S as above is an isotrivial family ofelliptic curves
which are ordinary, i.e., if the constant j-invariant is ordinary, then all Ap
are not zero (because prime to p hence \Ap \ —ï oo as deg(P) —> oo.

3. Lower bounds, via the subspace theorem

Fix an integer Q > 1. In practice, Q will be a prime power p"!, but right
now that is not important. An algebraic number a G Q is called a Q-Weil
number if, for every embedding t: QcC, we have |t(A)|c — Q1^2, for | |c
the usual complex absolute value |x+-iy|c (x2+y2)1//2. À Q-Weil number
is called integral if in addition it is an algebraic integer.

Lower bounds come from the following special case of a theorem of Evertse

[Ev], Cor. 2, also due independently to van der Poorten and Schlickewei [PS],
Theorem 3.



LOWER BOUNDS FOR FROBENIUS TRAŒS 217

THEOREM 3.1. Let Q > 1 and n > 1 be integers. Let a.\.... ,an be

integral Q-Weil numbers. For each integer k > 1, define

n

A(k):=Y,al
i= 1

Given a real number e > 0, there exists a real constant C i > 0 such that for
any integer k > 1, either A(k) 0 or, for any archimedean absolute value

on Q, we have

\A(k)\ > CiQk(1~).

Proof. This is the following special case of [Ev], Cor. 2. Take for K a

number field containing all the a,. Take for S the set of all places of K
which are either archimedean or which lie over primes dividing Q. Take for
T C S a single archimedean place. Since the absolute norm of every a.t is a

power of Q, the algebraic integers a,- are all S -units.

Then, for each integer k > 1 with A(k) 0, simply apply [Ev], Cor. 2, to
the S -units Xj := ak.

We can trivially make the constant Ci disappear if we insist that k be

sufficiently large.

COROLLARY 3.2. Under the hypotheses of the theorem, given a real number

c > 0, there exists an integer ko such that for all integers k > ko, either

A(k) 0 or, for any archimedean absolute value on Q, we have

\A(k)\ > 0^1_2£).

THEOREM 3.3. Let X/Fq be a proper smooth variety over F^. Fix an
integer i > 1, and a prime £ p. Consider the sequence of integers Afn),
n > 1, (independent of the auxiliary choice of £, cf. [De3], 3.3.9) defined as

Afri) := Trace(Frobp^|H'ét(X, Qe)).

Fix a real number c > 0. Then for all sufficiently large n, either Afin) — 0

or

j#®}i 2 (CTc
Proof. This is an immediate consequence of Deligne's theorem [De3],

3.3.9, by applying Theorem 3.1 and Corollary 3.2 to the eigenvalues of

Frobp^ on FT, which are integral q' -Weil numbers.
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We now turn to the situation with pure exponential sums. In nearly all

examples, the situation is the following, which we describe first in technical

terms, followed by simple explicit examples understandable by non-experts.
We are given an affine, smooth, geometrically connected variety U/¥q of

some dimension d > 1, a prime number t f p, and a lisse -sheaf T on
U which is integral (all local Frobeniuses have algebraic integer eigenvalues)
and pure of some integer weight wq > 0. We have somehow proven that for
all i, the "forget supports" map9)

H'C(Ö, T) —> H'(U, T)

is an isomorphism. It then follows, cf. [De3], 3.3.6, and [Se], that H'c 0

for i f d and that, putting
w d + wo

the Frobenius eigenvalues on Hd are integral q"' -Weil numbers. The sequence
of algebraic integers

A(n) := Trace(Frot^\Hdc(Ü,T))

is the sequence of exponential sums, over bigger and bigger finite extensions

of F^, that we are interested in.

So in any such situation, Theorem 3.3 assures us that for any chosen

embedding /, of the number field Q({eigenvalues of Frobp } into C, and

any chosen real number e > 0, we have that for all n sufficiently large either

A(n) 0 or |tA(n)|c > (^ni"/2)1_£.

It is consequently of some interest to know in what situations of this type
we know in addition that A(n) f 0 for n large. Here are three such situations
which occur in practice, where in fact A(n) ^0 for all n > 1.

(i) The d variable Kloosterman sums Klfqp. a,¥q), for d > 2, V a

nontrivial additive character of and a E ¥q defined by

(_1 f-1Kld(f, a, ¥q):= ^ H f xn).
X\X2...xd=a. all

Only Hdc~
y is not zero, and the d Frobenius eigenvalues are integral qd~l -Weil

numbers [Del], 7.1.3, 7.4. This sum lies in Z[(p] and never vanishes, because

modulo the unique prime ideal p of Z[(p] lying over p we have

(-1 )d-lKMa,¥q) (q- Vf'1 <-1 )d~l (mod p)

9) Here H~ denotes cohomology with compact support.
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(simply because é is trivial (mod p)). Here the sequence of A(n) is

A(n) Kld(il) oTraceF^/F^ a. F^).

Therefore, for any given real e > 0 we have the lower bound

o TraceF^/F^,«, F^)| > (^M-riA)1-2

for all n sufficiently large.

(ii) Start with the projective line Pl fFq and remove a nonempty set S of
F^-rational points, with #5—1 invertible (mod p). We take U := P1 \5.
On U, we take a regular function / e H°(U,Ou) whose pole orders es at
the points s £ S are all prime to p. For 0 a nontrivial additive character of

F^, we have the sum

S(t,f,Fq):=- Y W(«))-
«eï/(F„)

Only the first cohomology group with compact support H\ is not zero, and

the #5 — 2 +• *)2sçS es Frobenius eigenvalues are integral q-Weil numbers [W2],
This sum lies in Z[(p] and never vanishes, because modulo the unique prime
ideal p of Z[Çp] lying over p, it is congruent to —(q + 1 — #5) #5 — 1,

which by assumption is not zero mod p. The sequence A(n) in this case is

A(n) SQip o Tracep^/f,,/, F^).

Hence for any given real £ > 0 we have the lower bound

\S(ii> o Tracep^/F,,,/, F^)| > (<f/2)1_*

for all sufficiently large n.

(iii) Here we have a slight variant on example (ii) above. Take for U the

affine line A^F^ and / e Fq[X] a polynomial of degree d > 1. Under the

hypothesis that

p 1 (mod d),

Sperber [Sp], 3.11, shows that the d — 1 Frobenius eigenvalues on Hlc have

all distinct P-adic valuations at any prime lying over p ; their 'P-adic orders,

normalized so that q has ord-p(q) 1, are l/d,2jd.... ,(d — l)/d. Here the

A(n) are

A(n) -SOiù o TraceF^/Fq,f, Fr),
they never vanish, and we have the same conclusion as in (ii) above.
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4. Effective lower bounds, via Baker's method

In some cases there are only two Frobenius eigenvalues, they are complex
conjugates of each other, and their ratio is not a root of unity. These cases

include an ordinary elliptic curve over ¥q, and also the classical Kloosterman

sums, denoted Kl2(f', a. Fq) in the previous section. In both of these cases,

the two Frobenius eigenvalues are integral <2 -Weil numbers, say a and a,
with do — q. After we fix a complex embedding, we can write the two
eigenvalues as q1/2e±'° for a unique 9 [0, vr]. Then the A(n) are given
by

A(n) : a" + a" 2q"/2 cos(n$).

Flere is the key technical result, an immediate application of the deep
Baker-Wüstholz theorem [BW], For the definition of height, we refer to
[BG], §1.5.

THEOREM 4.1. Let 0 G [0, 7t]. Suppose that e2,t) is not a root of unity,
but is an algebraic number, algebraic of degree d over Q. Define

C(N. d) := 18(N + l)\NN+1(32d)N+2 log(2Nd),

h'(e2id) := max(log(//((l : e2i6yj), 6/d, \/d)

h'(-l) := 7v/d,

where H((x0 : : xr)) is the Weil height of an (algebraic) point (xo : : xr)
in projective space Pr. Then for any integer n > 1 and any integer k we
have the inequality

log(|2nß — kir\) > —C(2,d)h'(e2'0)hl(—l)log(2n).

Proof. Fix n > 1. Since 9 G [0, vr], we have 2n9 G [0.2«?r]. So the

closest approach of n6 to an integer multiple of 7r occurs for some

k [0,2«]. (Indeed, for any integer k outside of this interval, we
trivially have |2n9 — kr\\ > 7r, and log7r > 0.) Because e2'0 is not a

root of unity, logCe2"9) — 2iO and log(—1) iix are linearly independent

over Q. Now apply the Baker-Wüstholz theorem, with the N 2

algebraic numbers e2,e and -1, to the linear combination of logarithms
n log(e2'0) - k log(—1).
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COROLLARY 4.2. Let 9 [0,7r] be as in the theorem. Given a real number

q > 1, define

c — c(fi, q) C(2, d~)h'(e2l6)h'(-1 )/ log(<?).

Then for all integers n > 1, we have the estimate

\qn/1 cos(n9)\ > (l/7r)^2-clog(2rt).

Proof. Fix rc > 1. By the theorem, for any integer k, we have the

inequality
\2n0-kir\ >q-clo^2n\

For k an odd integer, we have the trigonometric identity cos(nO)

±sin(n0 - krcj2) and for the odd integer Icq which minimizes \n0 - kicj2|
we have

0 < In9 — koirj2\ < 7r/2.

Also, for real x with |x| < tt/2, we have the well-known inequality

| sin(x)| > (2/tt)|x|

Thus we find

| cos(/#)| | sin(«$ - IcqT\(2)\ > (2/-K)\nB - ko7r/2\ > (1/it)q~clcg(-2n>,

completing the proof.

Let us make this explicit in the two cases of ordinary elliptic curves and

of classical Kloosterman sums.

COROLLARY 4.3. (i) Given an ordinary elliptic curve over the sequence

of its A(n) has, for all n> 1, the archimedean lower bound

\A(n)\ > (2/tT)qn/2~2i> lcg(2n).

(ii) Given a classical Kloosterman sum Kl2('d\a,Fq) over F^, denote by p
the characteristic of F^. If p 2 or p 3, the sequence of its A(n) has, for
all n > 1, the same archimedean lower bound as for ordinary elliptic curves,

|A(»)| > (2f7T)qn/2-Z'llog(2n).

If p > 5, the sequence of its A(n) has, for all n > 1, the archimedean lower
bound

\A(n)\ > {2/iï)qnl2~Cp{og(2n\

with cp the constant cp 233p4 log p.
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Proof. We will compute, in the two cases, an explicit upper bound for
the constant c of the previous corollary.

Denote by a and ä the two Frobenius eigenvalues. After possibly
interchanging them, we have a/a — e2l°. Thus

mi : e2*)) H((a : Ö)) < q1'2,

simply because a and a are integral q -Weil numbers.

In the case of an ordinary elliptic curve, a and ä lie in a quadratic

imaginary field, and their ratio is irrational, so we have d 2 in this case.

Then

h'(e2iB) : max(log(//((l : e2i9))\ $/d, 1 jd)
max(log(</)/2, tt/2, 1/2) < 5 log(g)/2 ;

the factor 5 takes care of the worst case q 2. So the constant c of the

previous corollary is bounded by

c < C(2, 2)(5/2)(tt/2) 18 • 3! • 23 • (64)4 • log(8) • (5tt/4) < 237

In the case of a classical Kloosterman sum, the sum itself lies in Q(Cp)+
the real subfield of Q((p), and a and ä lie in a CM quadratic extension. Again
their ratio is irrational (otherwise it would be a rational number of absolute

value one, so ±1), hence in this case we have 2 < d < max(p — 1,2). So

again we have

/,VW): < 51og(ç)/2

For p 2 and p 3, we have d 2, giving the bound

c < 237.

For p > 5 the bound becomes dependent on p, namely

c < C(2,p- 1)(5tt/4)
18 • 3! - 23 • (32(p - l))4 • log(4(p - 1)) • (5tt/4) < 233/ log/?.

This completes the proof.

5. Concluding remarks

As mentioned in the introduction, the main open problem here is obtaining
effective lower bounds. On the other hand, much is known about the number

of zeroes in a linear recurrence sequence. A theorem of Evertse, Schlickewei,
and Schmidt [ESS] states the following.
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Let K be a field of characteristic 0, let T be a subgroup of (Kx)n of
finite Q-rank r, and let ay,... ,an G Kx Let X be the set of those solutions

(xy,... ,xn) r of the equation

ayxy H h anxn — 1

for which no proper subsum of öjXi -|— • +anxn vanishes. Then X is a finite
set of cardinality

#X < e(6n^r+1).

This can be applied easily to obtain further information on the set of zeroes

of the sequences A(n) examined here, since in this case we have r 1.

The Skolem-Mahler-Lech theorem shows that the zero set of the sequence
A(n) is the union of a finite set So of isolated solutions and of finitely
many arithmetic progressions. Theorem 1.2 of [ESS] immediately shows that

#S() + #(arithmetic progressions) < e2(12ll> '

Although this is not directly relevant to the applications we have treated

in this paper, a similar result also holds for any linear recurrence of order n

(where the coefficients X, are allowed to be polynomials), with a bound

exp exp exp(3rc log n) for the corresponding number of isolated solutions and

of arithmetic progressions, see Schmidt [Sc].

The proof of these results is difficult and rather intricate, but it is a

remarkable fact that these bounds depend only on n and the rank of T. It is

an interesting problem to determine the correct rate of growth for the number

of solutions of such equations.

For n — 2 and rank r 1, J. Berstel provided the following example
with 6 solutions. Consider the equation axm + bfn l for fixed x, y, and

varying me Z, corresponding to the group (x,y)z of rank 1. We may assume
that m 0 is a solution. If m 1 is also a solution, the equation becomes

+ —y" l;
y — x y — x

we can exclude x 1, 7=1, x y as degenerate cases. If now we fix
two more values for m, say m\ and mz, we can eliminate y and obtain an

algebraic equation for x, leading to infinitely many choices of the pair (x.y)
for which there are four solutions. The choice m-y =2 leads to a degenerate

case and if m\ 3 the values mz 4,5,6,7,9 must be excluded, leading to
degenerate cases or a group of rank 0. However, taking my 4 and m2 6
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gives the equation

x6 + x5 + 2x4 + 3.x3 + 2j? + x + 1 0

for x. For any root £ of this equation, we see that taking r/ —1/(1 + £ + £3)

(which is another root of the equation), we have

for m 0, 1. 4, 6, 13. 52. It is expected that 6 is the maximum number of
solutions for an equation with n 2 and r 1 ; Beukers and Schlickewei

[BS] obtained the upper bound 61.

For general n and r, Erdos, Stewart, and Tijdeman [EST] proved the

existence of equations with n 2 and arbitrarily large r with at least

exp((4 — e)r1/2(logr)_1'/2) solutions for any fixed e > 0, and conjectured that

if n — 2 the exponent 1/2 could be improved to 2/3 - c for any fixed

positive s (of course, allowing a constant depending on e in place of 4);
they also conjectured that the exponent 2/3 should be sharp. Although this
remains unsolved, progress was made by Konyagin and Soundararajan [KS],
who constructed equations for the case n — 2 and arbitrarily large r with
at least exp(r2~ v2_£) solutions, for any fixed s > 0. For arbitrary n and

r a lower bound exp((«2(w — l)-1 — £")r1_1</"(logr)_1'/n) for the maximum
number of solutions was provided by Evertse, Moore, Stewart, and Tijdeman
[EMST] ; this may be compared with the upper bound simply exponential in
r provided by Evertse, Schlickewei and Schmidt, loc. cit..

A more delicate problem has also been treated, namely the study of
the intersection of two distinct recurrences and the "total multiplicity" of a

recurrence, namely A(m) B(n) and A(m) A(ri) for m ^ n. Under certain
natural conditions one can prove that the number of admissible pairs (m.n)
for which these equations hold is finite, see Evertse [Ev], Thm.3, for the

equation A(m) A(n) with recurrences of order at least 2 (this avoids the

example A(n) n2n), and Laurent [Lau] for qualitative results for the equation
A(m) B(n). Quantitative results, but not as strong as those mentioned above

for the cardinality of the zero-set of a recurrence, can be found in Schlickewei
and Schmidt [SS].

The reader interested in recurrence sequences and associated problems

may profitably read the book [EvSW], which also contains an impressive

bibliography of 1382 items on the subject.

v-C
n - imjr
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The extension of these results to larger classes of polynomial-exponential
equations in several variables remains a central and very challenging open
problem. As an example, the famous Ramanujan equation m2 + 7 2* has

only the solutions (m,!c) (1,3), (3,4), (5,5), (11,7), (181,15) in positive
integers, which is not difficult to prove using Skolem's method. The modified

equation m2 + ln 2k + (r - l)3r associated to the group of rank 3

has, besides the five solutions with n 1 and r 1 inherited from the

Ramanujan equation, seven new solutions (m, k, r, n) (2,1,2,1), (7,1,3,1),
(14,1,4,2), (3,2,3,2), (13,9,1,3), (113,11,7,4), (407,13,9,1). Are there

any other solutions in positive integers to this equation?
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