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L'Enseignement Mathematique (2) 58 (2012), 147-163

THE THEORY OF SCHUR POLYNOMIALS REVISITED

by Harry Tamvakis *)

Abstract We use Young's raising operators to give short and uniform proofs of
several well-known results about Schur polynomials and symmetric functions, starting
from the Jacobi-Trudi identity

1. Introduction

One of the earliest papers to study the symmetric functions later known
as the Schur polynomials s\ is that of Jacobi [J], where the following two
formulas are found. The first is Cauchy's definition of sa as a quotient of
determinants:

(1) sa(*i detCxU"--'),,;/det«"-0,,;,

where A (Ai,..., \n) is an integer partition with at most n non-zero parts.
The second is the Jacobi-Trudi identity

(2) ^A — ;)l<;, j<n

which expresses sa as a polynomial in the complete symmetric functions hr,
r > 0. Nearly a century later, Littlewood [L] obtained the positive combinatorial

expansion

(3) S\(x) xc(T),

T

where the sum is over all semistandard Young tableaux T of shape A, and c(T)
denotes the content vector of T.

*) The author was supported in part by NSF Grant DMS-0901341
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The traditional approach to the theory of Schur polynomials begins with
the classical definition (1); see for example [FH, M, Ma]. Since equation (1)
is a special case of the Weyl character formula, this method is particularly
suitable for applications to representation theory. The more combinatorial
treatments [Sa, Sta] use (3) as the definition of s\(x), and proceed from
there. It is not hard to relate formulas (1) and (3) to each other directly; see

e.g. [Pr, Ste].

In this article, we take the Jacobi-Trudi formula (2) as the starting point,
where the hr represent algebraically independent variables. We avoid the use

of the v variables or 'alphabets' and try to prove as much as we can without
them. For this purpose, it turns out to be very useful to express (2) in the

alternative form

(4) sx Y[(l-Rg)hx,
1<J

where the RtJ are Young's raising operators [Y] and h\ h\lh\2 • • • h\n.
The equivalence of (2) and (4) follows immediately from the Vandermonde

identity.

The motivation for this approach to the subject comes from Schubert
calculus. It is well known that the algebra of Schur polynomials agrees with
that of the Schubert classes in the cohomology ring of the complex Grass-

mannian G(k, r), when k and r are sufficiently large. Giambelli [G] showed

that the Schubert classes on G(k, r) satisfy the determinantal formula (2); the

closely related Fieri rule [P] had been obtained geometrically a few years
earlier. Recently, with Buch and Kresch [BKT1, BKT2], we proved analogues
of the Pieri and Giambelli formulas for the isotropic Grassmannians which are

quotients of the symplectic and orthogonal groups. Our Giambelli formulas
for the Schubert classes on these spaces are not determinantal, but rather

are stated in terms of raising operators. In [T], we used raising operators to
obtain a tableau formula for the corresponding theta polynomials, which is

an analogue of Littlewood's equation (3) in this context. Moreover, the same

methods were applied loc. cit. to provide new proofs of similar facts about
the Hall-Littlewood functions.

Our aim here is to give a self-contained treatment of those aspects of the

theory of Schur polynomials and symmetric functions which follow naturally
from the above raising operator approach. Using (4) as the definition of Schur

polynomials, we give short proofs of the Pieri and Littlewood-Richardson

rules, and follow this with a discussion — in this setting — of the duality
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involution, Cauchy identities, and skew Schur polynomials. We next introduce
the variables x (xi,X2,...) and study the ring A of symmetric functions in x
from scratch. In particular, we derive the bialternant and tableau formulas (1)
and (3) for s\(x). See [Lai for an approach to these topics which begins

with (2) but is based on alphabets and properties of determinants such as the

Binet-Cauchy formula, and [vL, Ste] for a different treatment which employs

alternating sums stemming from (1).

Most of the proofs in this article are streamlined versions of more involved

arguments contained in [BKT2], [M], and [T]. The proof we give of the

Littlewood-Richardson rule from the Pieri rule is essentially that of Remmel-
Shimozono [RS] and Gasharov [G], but expressed in the concise form adapted

by Stembridge [Ste]. Each of these proofs employs the same sign reversing
involution on a certain set of Young tableaux, which originates in the work of
Berenstein-Zelevinsky [BZ]. The version given here does not use formulas (1)
and (3) at all, but relies on the alternating property of the determinant (2),
which serves the same purpose.

The reduction formula (22) for the number of variables in s\(xi,... ,xn)
is classically known as a 'branching rule' for the characters of the general
linear group [Pr, W]. Our terminology differs because there are similar results

in situations where the connection with representation theory is not available

(see [T]). We use the reduction formula to derive (3) from (4); a different
cancellation argument relating formulas (2) and (3) to each other is due to
Gessel-Viennot [GV, Sa].

We find that the short arguments in this article are quite uniform, especially
when compared to other treatments of the same material. On the other hand,

much of the theory of Schur polynomials does not readily fit into the present
framework. Missing from the discussion are the Hall inner product, the Hopf
algebra structure on A, the basis of power sums, the character theory of the

symmetric and general linear groups, Young tableau algorithms such as jeu de

taquin, the plactic algebra, and noncommutative symmetric functions. These

topics and many more can be added following standard references such as

[F, La, M, Ma, Sa, Sta, Z], but are not as natural from the point of view

adopted here, which stems from Grassmannian Schubert calculus. A similar

approach may be used to study the theory of Schur Q-polynomials and more

generally of Hall-Littlewood functions; some of this story may be found
in [T].

The author is indebted to his collaborators Anders Buch and Andrew
Kresch for their efforts on the related projects [BKT1, BKT2].
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2. The algebra of Schur polynomials

2.1 Preliminaries

An integer sequence or integer vector is a sequence of integers a
with only finitely at non-zero. The length of a, denoted £(a),

is largest integer i > 0 such that a# ^ 0. We identify an integer sequence of
length t with the vector consisting of its first £ terms. We let \a\ ai and

write a > ß if at > ßt for each i. An integer sequence a; is a composition
if otl > 0 for all i and a partition if at > al+\ > 0 for all i.

Consider the polynomial ring A Z[wi, u2,...] where the ux are countably
infinite commuting independent variables. We regard A as a graded ring with
each ux having graded degree i, and adopt the convention here and throughout
the paper that uq 1 while ur — 0 for r < 0. For each integer vector a,
set ua EL uai ; then A has a free Z-basis consisting of the monomials u\
for all partitions A.

For two integer sequences a, ß such that \a\ \ß\, we say that a
dominates ß and write a >1 ß if ot-\ + • • • + olx > ß\ + • • • + ßx for each i.
Given any integer sequence a (oa, a2? • • •) an(i < j\ we define

Rij(°d (ai+ 1,,Olj — 1,...).

A raising operator R is any monomial in these RtJ's. Note that we
have Ra y a for all integer sequences a. For any raising operator R,
define Rua Here the operator R acts on the index a, and not on
the monomial ua itself. Thus, if the components of a are a permutation of
the components of ß, then ua Uß as elements of A, but it may happen
that Rua Ruß. Formal manipulations using these raising operators are

justified carefully in the following section. Note that if < 0 for £ £(a),
then Rua 0 in A for any raising operator R.

2.2 Schur polynomials

For any integer vector a, define the Schur polynomial Ua by the formula

(5) Ua :=P[(1 -Rv)ua-
KJ

Although the product in (5) is infinite, if we expand it into a formal series we
find that only finitely many of the summands are nonzero; hence, Ua is well
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defined. We will show that equation (5) may be written in the determinantal

form

(b) Ua det(Wo,;+J_;)i<;?J<^ ^ ^ 1) uw^ajrpjß^—pjß

wESi

where t denotes the length of a and pi (t — 1, t — 2,..., 1,0).
Algebraic expressions and identities involving raising operators like the

above can be justified by viewing them as the image of a Z-linear

map Z[Z£] -A A, where Z[Z£] denotes the group algebra of (Z,+).
We let be independent variables and identify Z[Z£] with
Z[vi, xf1,..., X£, xf1]. For any integer vector a (co,..., ai) and raising

operator R, set xa x"1 • • • x^ and Rxa xfa Then if : Z[Z£] -A A is the

Z-linear map determined by ip(xa) ua for each a, we have Rua ip(xRa).

It follows from the Vandermonde identity

P[ (Xj - X,) det(x/_1)i<,i7<^
1 <i<j<£

that

n (>-Rtj)xa n a-x'x7^xa=det(-x?'+j~'h<>,j<e
1 <Kj<t 1 <Kj<i

Now apply the map i/j to both ends of the above equation to obtain (6).

Example 1. We have

^(5,4,2) (1 — ^12)(1 — ^13)(1 — ^23) ^(5,4,2)

(1 — R\2 — R\3 — R23 + ^12^13 + RnR23 + R13R23 — ^12^13^23) u(5,4,2)

u(5,4,2) — w(6,3,2) — w(6,4,l) ~~ W(5,5,l) + w(7,3,l) + w(6,4,l) + W(6,5,0) ~ w(7,4,0)

2
U5U4U2 — U6U3U2 — u$u\ + UJU3U1 T" u^us — W7W4

U5 Uß Uj
U3 U4 Us

1 U\ U2

If a («1,..., at) and ß (ßi,..., ßm) are two integer vectors and r,
s E Z, we let (a r, s, ß) denote the integer vector (04,..., or, r, s, ß\,..., ßm).

The next lemma is known as a 'straightening law' for the Ua.

Lemma 1.

(a) Let a and ß be integer vectors. Then for any r,s E Z we have

U(a,r,s,ß) 1 ,r-E 1 ,/3) •
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(b) Let a (aa,..., af) be any integer vector. Then Ua 0 unless a + pi
w(p + pi) for a (unique) permutation w £ Si and partition p. In the

latter case, we have Ua (—l)wU^.

Proof. Both parts follow immediately from (6) and the alternating property
of the determinant.

If A is any partition, clearly (5) implies that U\ u\ +
where a\M e Z and the sum is over partitions p which strictly dominate A.
We deduce that the U\ for A a partition form another Z-basis of A.

2.3 Mirror identities

We will represent a partition A by its Young diagram of boxes, arranged in
left-justified rows, with A; boxes in row i. We write A C p instead of A < p
for the containment relation between two Young diagrams; in this case the

set-theoretic difference p \ A is the skew diagram p/X. A skew diagram is

a horizontal (resp. vertical) strip if it does not contain two boxes in the same

column (resp. row). We write A ^ p if p/X is a horizontal strip with p
boxes.

Lemma 2. Let X be a partition and p > 0 be an integer. Then we have

(7) Ux+a 53 Uß and 53 UX-a J2
a>0, M =p a>0, \a\=p jU_ü>A

where the sums are over compositions a > 0 with \a\ p and partitions p D

A (respectively p C X) such that X A p (respectively, p A A). Moreover, for
every n > £(X), the identities (7) remain true if the sums are taken over a
and p of length at most n.

Proof. The proofs of the two identities are very similar, so we will only
discuss the second. Let us rewrite the sum X!a>o U\-a as where

the latter sum is over integer sequences v such that vx < \ for each i
and \u\ |A| — p. Call any such sequence v bad if there exists a j > 1

such that i/j < AJ+i, and let X be the set of all bad sequences. Define

an involution t: X X as follows: for v £ X, choose j minimal such

that iSj < AJ+i, and set

L(V) (za, ,^-1,^+1 - 1 ,Vj + 1,^+2,...).
Lemma 1(a) implies that Uv + 0 for every v e X. Therefore all bad

indices may be omitted from the sum >
an(^ ^is completes the proof.
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Moreover, to evaluate ^v<x in the situation where Vj 0 for all j > n,
notice that if the minimal j such that Vj < AJ+i is j n, then vn < 0 and

therefore Uu 0.

2.4 The Pieri rule
For any d > 1 define the operator Rd by

Rd= n (i - R,j)
1 <Kj<d

For p > 0 and any partition A of length i, we compute

t
Up ' U\ — Up • R U\ — R W(A,/?) — P ' | J^(l R-i,£-\-l) ^(A,p)

1=1

£

Ri+1 • 1 + Rt,£+1 + ^£+\ + • • • u(\,p) ^ f^A+a
i=l a>0

where the sum is over all compositions a such that \a\ p and olj 0

for j > £ + 1. Applying Lemma 2, we arrive at the P/m rule

(8) up U\ — Uß

Conversely, suppose that we are given a family {ALj of elements of A,
one for each partition A, such that Xp up for every integer p > 0 and

the X\ satisfy the Pieri rule Xp • Xx j\ Xp • We claim then that
\^r fJL

Xx Ux J\(\-Rt])ux
KJ

for every partition A. To see this, note that the Pieri rule implies that

(9) Ux + ^2 axr up uXi-' ux£ + ^2 a^Xp
pyx pyx

for some constants aX/l E Z. The claim now follows by induction on A.

Example 2. We have

U2 ' ^(3,3,1) — ^(5,3,1) + ^(4,3,2) + ^(4,3,1,1) + ^(3,3,3) + U(3,3,2,1) *
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2.5 Kostka numbers

A (semistandard) tableau T on the skew shape Ajfi is a filling of the

boxes of Ajfi with positive integers, so that the entries are weakly increasing
along each row from left to right and strictly increasing down each column.
We can identify such a tableau T with a sequence of partitions

M a° Ai Ar A

such that for 1 < i < r the horizontal strip \l/\l~l consists of the cx boxes

in T with entry i. The composition c(T) (c\,..., cr) is called the content
of T.

Let /i be a partition and a any integer vector. The equation

Uq> Uß ^ ^ K\/^ U\
A

summed over partitions A such that A D p defines the Kostka numbers Kx/^a
If a is not a composition such that |a| \\/fi\ then we have KX/ß^a 0.
Otherwise, iteration of the Pieri rule shows that KX/ß^ equals the number

of tableaux T of shape X/p and content vector c(T) a. We deduce from
equation (9) that the Kostka matrix K {Kx^}, whose rows and columns

are indexed by partitions, is lower unitriangular with respect to the dominance

order.

2.6 The Littlewood-Richardson rule
Define the Littlewood-Richardson coefficients to be the structure

constants in the equation

(10) • t/„ t/A.
A

If I jfty), we compute that

Up, ' Uv ^ ^ 1) ^"w(v-\-p£) — pi Up,

wESi

,w(v+pi)-p£ Ux
A w£Si

from which we deduce that

(id cA E(-dw'
(W,T)

where the sum is over all pairs (w, T) such that w £ Si and T is a tableau

on Aj ii with c(T) + pi w(y + pi). Observe that c(T) is a partition if and
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only if c(T) + pi is a strict partition, in which case c(T) + pi w(v + pi)
implies that w 1.

For any tableau T, let 7>r denote the subtableau of T formed by the entries

in columns r and higher, and define T>r and T<r similarly. We say that a pair
(w, T) is bad if c(T>r) is not a partition for some r. Let Y denote the set of bad

pairs indexing the sum (11), and define a sign reversing involution l: Y -a Y

as follows. Given (w,T) £ Y, choose r maximal such that c(7>r) is not a

partition, and let j be minimal such that Cj(T>r) < Cj+i(T>r). Call an entry j
(resp. j+1) in T free if there is no j+1 (resp. j) in its column. Let T' denote

the filling of X/p obtained from T by replacing all free j's (resp. (j+ l)'s)
that lie in T<r with (j+ l)'s (resp. j's), and then arranging the entries of
each row in weakly increasing order. Since c(T>r) is a partition, we deduce

that T contains a single entry j + 1 in column r, and no j in column r,
while Cj(T>r) + 1 cJ+i(r>r). It follows easily from this that T' is a tableau.

We define l(w,T) where denotes the transposition (j,j+ 1).
Since jC(T<r) c(T'<r) and efciTy^Ypi) c(T>r)+pi, while 7>r coincides

with T'>r, it follows that j(c(T) + pi) c{T') + pi and l(w,T) £ Y. We

conclude that the bad pairs can be cancelled from the sum (11).

The above argument proves that c^v is equal to the number of tableaux T
of shape X/p and content v such that 7>r is a partition for each r. This is

one among many equivalent forms of the Littlewood-Richardson rule.

271 Duality involution

Let vr U(\r) for r > 1, vq 1, and vr 0 for r < 0. By expanding
the determinant U(\r) det(wi+j_;)i<?5j<r along the first row, we obtain the

identity

(12) Vr — U\Vr-\ + U2Vr-2 — ' ' ' + (—l)rUr 0

Define a ring homomorphism A A by setting uo(ur) vr for every
integer r. For any integer sequence a, let va Y[t vat, and for any partition A,
set

vA=W(t/A)=n(i-^A.
KJ

We deduce from (8) that the V\ satisfy the Pieri rule

(13) vp E u •
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On the other hand, the Littlewood-Richardson rule easily implies that

(14) U(V) -Ux Y;U»
/l

summed over all partitions p D A such that pjA is a vertical p-strip. It follows
from (13), (14), and induction on A that V\ Uy for each A. Here A7

denotes the partition which is conjugate to A, i.e. such that \[ #{ j
for all i. In particular, the equality U\> proves that uo is an involution
of A, a fact that can also be deduced from (12).

2.8 Cauchy identities and skew Schur polynomials

Define a new Z-basis t\ of A by the transition equations

(15) Ux J2K\»tß-
ß

In other words, the transition matrix M(U,t) between the bases U\ and t\
of A is defined to be the lower unitriangular Kostka matrix K. Then
A := Mit, U) K~l and B := M(u, U) Kx. We have

^ ^ t\ C1 ^A ^ ^ ^Xfi^Xv U11 0 Uv
X A,yU,Z/

53 AUB^ u ® Uu 53 u ® u
X,fi,v ß

in A A, where the above sums are either formal or restricted to run over

partitions of a fixed integer n. We deduce the Cauchy identity

(16) Ux ® U\ 53 ® ux
A A

and, by applying the automorphism 1 0 uo to (16), the dual Cauchy identity

(17) ^3 ® Vx 53 'x ® Vx

x x

For any skew diagram X/p, define the skew Schur polynomial U\by
generalizing equation (15):

Ux/v • ^ ^ ^X/(i,n iy •

v
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We have the following computation in the ring A ®z A ®z A :

® £/„ ® U^UV £7^ ® ® Ußuv ^ (8) (8) Kx/ll^Ux

E U ® ® f/A •

A

By comparing the coefficient of ® U„ ® Ux on either end of the previous
equation, we obtain

(18) £/a/m Ec8V,,
V

where the coefficients c^v are the same as the ones in (10). Since oj(Ux) Uy
implies the identity c^v cAv,, we deduce from (18) that

(19) w(Ux/tA) Ux,/ß/

3. Symmetric functions

3.1 Initial definitions

Let x (x\,X2,...) be an infinite sequence of commuting variables. For

any composition a we set ia Ylt xfl. Given k > 0, let Ak denote the

abelian group of all formal power series ^2\a\=kcaxa E Z[[vi,V2,...]] which

are invariant under any permutation of the variables xt. The elements of Ak

are called homogeneous symmetric functions of degree k, and the graded

ring A ®^>0 is the ring of symmetric functions.

For each partition A of k, we obtain an element mx E Ak by
symmetrizing the monomial vA. In other words, mx(x) ^2axa where the

sum is over all distinct permutations a (cu, a2,...) of A (Ai, A2,...) •

We call mx a monomial symmetric function. The definition implies that

if / — caXOL £ then / cxmx • H follows that the mx for
all partitions A of k (respectively, for all partitions A) form a Z-basis of Ak

(respectively, of A).
Let hr hr(x) denote the r-th complete symmetric function, defined by

hr(x)= E mAW E X'i-"Xb
A |A|=r (!<•••<(,
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We have the generating function equation

oo oo

(20) H(t) itrix)f ]J(\ - X,t)-1.
r=0 i=l

Let ha Ylt hai for any integer sequence a.
There is a unique ring homomorphism f: A -A A defined by

setting cj){ur) hr for every r > 0. For any integer sequence ck, the Schur

function sa is defined by (ß(Ua). We have

$cx — J^(l Rij~) ^OL — det(/zQ/;_)_j_i)i^j.

KJ

3.2 Reduction and tableau formulas

Let y (yi,y2, • • •) be a second sequence of variables, choose n > 1,
and set x^ (x\,..., xn). It follows easily from equation (20) that for any
integer p,

p

hpix(n\y) y^hlixn)hp-ljx(n~l\y).
i=0

Therefore, for any integer vector z/, we have

hA^"\y) y^KiXnihv-aix^'^ ,y) yuj,"' hv-aix(n~V\y)
a>0 a>0

summed over all compositions a. If R denotes any raising operator and A is

any partition, we obtain

(21) Rhxix(n\y) YxI"1 hRX-aixin-l),y) RhX-atfn-l\y).
a>0 a>0

Since sa rX</l ~~ Ry)h\ > we deduce from (21) that

oo

sxix("\y) Yxia]sx-a(x(n~'\y) Y*Pn Y
«>0 p=0 | ck | =p

Applying Lemma 2, we obtain the reduction formula
oo

(22) sxix("\y) Yxn E
p=0

Repeated application of the reduction equation (22) results in

rc(T)

pCX TonX/p

(23) sx(x!-n),y)=Ys»(y) Y r'
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where the first sum is over partitions /iCA and the second over all tableau T
of shape A/fi with entries at most n. As n is arbitrary, equation (23) holds

with x (x\,X2,...) in place of It follows that

SAUy) E •Vtv) E xC(T)'

/iCA TonX/fi

where the second sum is over all tableau T of shape Ajfi. Substituting y 0

proves Littlewood's tableau formula

(24) s\(x) ^2 xC(T) E Kx^ •

Ton A fi

From (24) we deduce immediately that the aa for A a partition form a Z-basis
of A, and comparing with (15) shows that cj>(t\) m\. It follows that the

functions h\ for A a partition also form a Z-basis of A.

3.3 Duality and Cauchy identities

Let er er(x) denote the r-th elementary symmetric function in the

variables x, so that

er(x) m{V)(x) ^2 xn-"xb-
l\< <lr

The generating function E(t) for the er satisfies
oo oo

E(t) — *22 er(xy — f[(i + *i0
r=0 i=l

Since E(t)H(—t) 1, we obtain

(25) er — h\er-\ + h2er-2 — • • • + (—1 Jhr 0

for each r > 1. For any integer sequence a, we set ea Ylt eai.
By comparing equations (12) and (25), we deduce that f(vr) er for

each r, and hence f(v\) e\ and f(V\) s\/. The duality involution on A
transfers to an automorphism uj\ A —^ A which sends h\ to e\ and aa

to aa' for each partition A. We deduce that the e\ form another Z-basis
of A. Moreover, by applying f to (16) and (17), we obtain the usual form
of the Cauchy identities

5>C*aö» 53mAP)^A(y) If 73—
\ X

1 Xl.yjhj j
and

E
A A i,j

S\(x)sy(y) - y2 mx(x)ex(y) - nd + X,yJ) '
A

where the sums are taken over all partitions A.
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3.4 Skew Schur functions

Define the skew Schur functions s\by
Sx/^x) 4>(Ux/ll) ^Kx/ll^mv{x) ^2 XC(T).

v TonX/ii

Equation (23) then implies that

(26) sA(x, y) ^2 sx/ß(x)sß{y) ^ s^{x)sx/lx{y).
p CA p CA

Applying the operator rX</l ~~ Ry) t0 both sides of the equation

h\(x,y) y^ha(x)hX-g(y)
a>0

gives

(27) s\(x, y) ^ ha(x)sX-a(y) •

a>0

Since ha Kp,aSp, comparing (26) with (27) proves that

(28) sx/^ ^ KfJ QsX—a

a>0

Observe that (28) is a generalization of the second identity in Lemma 2.

Using Lemma 1(b) in (27), we obtain that

(29) sx(x,y) J2 S/xÖO D (-l)whx+Pe-w{fi+Pe)(x),
p wESi

where the first sum is over all partitions /i and t £(X). Equating the

coefficients of s^(y) in (26) and (29) proves the following generalization of
the Jacobi-Trudi identity (2):

(30) sx/^ — ^2 1) hX-\-pi—w(n~\-pi) — p-j+j—i)i,j -

wESi

By applying the involution uj to (30) and using (19), we derive the dual

equation

S\r/p,' — defi^^—i)pj •
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3.5 The classical definition of Schur polynomials

In this section we fix n, the number of variables, and work with integer
vectors and partitions in Zn. Let v (x\,..., xn) and set p pn

(n— 1,..., 1,0). For each a E Zn define

£(-Dwxw{a) det(V0i<, j<n
wesn

and set sa(x) Aa+p/Ap. Consider the Z-linear map A Z[x\,... ,xn]
sending U\ to A\+p for any partition A with £(X) < n, and to zero,
if £(X) > n. It follows from Lemma 1(b) that this map sends Ua to Aa+p
for any composition a E Zn. Lemma 2 therefore implies that for any
partition A E Zn and integer r > 0, we have

(31) ^A+a+p — ^P+P '

where the sums are over compositions a > 0 with \a\ r and t(a) < n and

partitions p with A A /x and £{p) < n. Furthermore, we have

aa+p hr(x) y, (- dw E *w(A+p)+a

w£Sn a>0 |o;|=r

> *^ ^ Yw(\+p)+w(a)

w£Sn a>0 |a|=r

^p+p
a>0 |a|=r X~Ap

by (31). Now divide by Ap to deduce that

(32) sx(x)hr(x) ^ sßx).
A—V p,

Applying (32) with A 0 gives sr(x) hr(x), for every r > 1. Since

the s\(x) satisfy the Pieri rule, it follows by induction on A as in §2.4 that

S\(x) JJ(1 - R,j)h\(x) - S\(x)
1<J

for each partition A of length at most n. We have thus proved equation (1).
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