Rank of mapping tori and companion matrices

Autor(en): Levitt, Gilbert / Metaftsis, Vassilis
Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 58 (2012)

PDF erstellt am:
29.07.2024

Persistenter Link: https://doi.org/10.5169/seals-515818

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

RANK OF MAPPING TORI AND COMPANION MATRICES

by Gilbert Levitt and Vassilis Metaftsis

Abstract

Given an element $\varphi \in \mathrm{GL}(d, \mathbf{Z})$, consider the mapping torus defined as the semidirect product $G=\mathbf{Z}^{d} \rtimes_{\varphi} \mathbf{Z}$. We show that one can decide whether G has rank 2 or not (i.e. whether G may be generated by two elements). When G is 2 -generated, one may classify generating pairs up to Nielsen equivalence. If φ has infinite order, we show that the rank of $\mathbf{Z}^{d} \rtimes_{\varphi^{n}} \mathbf{Z}$ is at least 3 for all n large enough; equivalently, φ^{n} is not conjugate to a companion matrix in $\operatorname{GL}(d, \mathbf{Z})$ if n is large.

For Fritz Grunewald

1. Introduction

The rank of a finitely generated group is the minimum cardinality of a generating set. There are very few families of groups for which one knows how to compute the rank (see [8] and references therein), and there exists no algorithm computing the rank of a word-hyperbolic group [2].

By Grushko's theorem, rank is additive under free product. It does not behave as nicely under direct product, even when one of the factors is \mathbf{Z} : it can be checked that the solvable Baumslag-Solitar group $B S(1,2)=\left\langle a, b \mid b a b^{-1}=a^{2}\right\rangle$ and the product $B S(1,2) \times \mathbf{Z}$ both have rank 2 since the latter is generated by $\{b, x a\}$ where x is the generator of \mathbf{Z}.

In this paper we consider semi-direct products $G=A \rtimes_{\varphi} \mathbf{Z}$ (also known as mapping tori), with the generator t of the cyclic group \mathbf{Z} acting on A by some automorphism $\varphi \in \operatorname{Aut}(A)$. This was motivated by the remark that, when A is a non-abelian free group F_{d} of rank d and φ has finite order in $\operatorname{Out}\left(F_{d}\right)$, then G is a generalized Baumslag-Solitar group and its rank is computed in a forthcoming work by the first author. But we do not know how to compute the rank when φ has infinite order in $\operatorname{Out}\left(F_{d}\right)$. Abelianizing does not help much, so we ask:

QUESTION. Is there an algorithm that, given $\varphi \in \operatorname{GL}(d, \mathbf{Z})$, computes the rank of $G=\mathbf{Z}^{d} \rtimes_{\varphi} \mathbf{Z}$?

We can prove:
Theorem 1.1. There is an algorithm that, given $d \in \mathbf{N}$ and $\varphi \in \operatorname{GL}(d, \mathbf{Z})$, decides whether $G=\mathbf{Z}^{d} \rtimes_{\varphi} \mathbf{Z}$ has rank 2 or not .

Here is a sketch of the proof. We show that the rank of G is 1 plus the minimum number k such that \mathbf{Z}^{d} may be generated by k orbits of φ (i.e. there exist $g_{1}, \ldots, g_{k} \in \mathbf{Z}^{d}$ such that the elements $\varphi^{n}\left(g_{i}\right)$, for $n \in \mathbf{Z}$ and $i=1, \ldots, k$, generate \mathbf{Z}^{d}). In particular, G has rank 2 if and only if \mathbf{Z}^{d} may be generated by a single φ-orbit. We then show that this happens precisely when φ is conjugate in $\operatorname{GL}(d, \mathbf{Z})$ to the companion matrix M_{φ} having the same characteristic polynomial. This may be decided since the conjugacy problem is solvable in $\operatorname{GL}(d, \mathbf{Z})$ by Grunewald [6].

Theorem 1.1 extends to the case when φ is an automorphism of an arbitrary finitely generated nilpotent group A, by reduction to the abelian case.

When G has rank 2, one can classify generating pairs up to Nielsen equivalence. In particular:

Theorem 1.2. Suppose that $G=\mathbf{Z}^{d} \rtimes_{\varphi} \mathbf{Z}$ has rank 2. There are finitely many Nielsen classes of generating pairs if and only if the cyclic subgroup of $\operatorname{GL}(d, \mathbf{Z})$ generated by φ has finite index in its centralizer.

Our next result is motivated by the following theorem due to \mathbf{J}. Souto:

ThEOREM 1.3 ([12]). Let A be the fundamental group of a closed orientable surface of genus $g \geq 2$. Let φ be an automorphism of A representing a pseudo-Anosov mapping class. Then there exists n_{0} such that the rank of $G_{n}=A \rtimes_{\varphi^{n}} \mathbf{Z}$ is $2 g+1$ for all $n \geq n_{0}$.

We prove:
THEOREM 1.4. Given φ of infinite order in $\operatorname{GL}(d, \mathbf{Z})$, there exists n_{0} such that the rank of $G_{n}=\mathbf{Z}^{d} \rtimes_{\varphi^{n}} \mathbf{Z}$ is ≥ 3 for all $n \geq n_{0}$.

The theorem becomes false if the hypothesis that φ has infinite order is dropped, or if 3 is replaced by 4 . We do not know hypotheses that would
guarantee that the rank is $d+1$ for n large.
Since $\mathbf{Z}^{d} \rtimes_{\varphi} \mathbf{Z}$ has rank 2 if and only if φ is conjugate to a companion matrix, an equivalent formulation of Theorem 1.4 is:

THEOREM 1.5. Given a matrix φ of infinite order in $\operatorname{GL}(d, \mathbf{Z})$, with $d \geq 2$, there exists n_{0} such that φ^{n} is not conjugate to a companion matrix if $n \geq n_{0}$.

EXAMPLE. Let φ be the unipotent matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. It is obvious that φ has infinite order. Notice that $\mathbf{Z}^{2} \rtimes_{\varphi} \mathbf{Z}$ has rank 2 since it is generated by a generator of \mathbf{Z} and the element $(0,1)$ of \mathbf{Z}^{2}. The companion matrix with the same characteristic polynomial as φ is $M_{\varphi}=\left(\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right)$ and one can easily confirm that

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)^{-1}
$$

On the other hand, $\varphi^{n}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)$ has the same companion matrix as φ, but it is easy to check (by reducing modulo a prime dividing n) that φ and φ^{n} are not conjugate in $\operatorname{GL}(2, \mathbf{Z})$ if $n \geq 2$.

Our proof of Theorem 1.5, given in Section 5, is based on the Skolem-Mahler-Lech theorem on linear recurrent sequences [3]. There are alternative approaches based on equations in S-units and Baker's theory on linear forms in logarithms. They are due to Amoroso-Zannier [1] and yield uniformity: one may take $n_{0}=\left[C d^{6}(\log d)^{6}\right]$ where C is a universal constant (independent of φ). We refer to [1] for related number-theoretic questions, for instance a discussion of a "Hasse principle".

We conclude with a few open questions.
What about ascending HNN extensions? For instance, let φ be an injective endomorphism of \mathbf{Z}^{d} (a matrix with integral entries and non-zero determinant). Let $G=\mathbf{Z}^{d} *_{\varphi}=\left\langle\mathbf{Z}^{d}, t \mid \operatorname{tgt}^{-1}=\varphi(g)\right\rangle$. Is there an algorithm that can decide whether G has rank 2 ?

Our analysis on \mathbf{Z}^{d} uses the Cayley-Hamilton theorem. This is not available in a non-abelian free group F_{d}. Given $\varphi \in \operatorname{Aut}\left(F_{d}\right)$, is there an algorithm that can decide whether F_{d} may be generated (or normally generated) by a single φ-orbit? More basically: given $\varphi \in \operatorname{Aut}\left(F_{d}\right)$ and $g \in F_{d}$, can one decide whether the φ-orbit of g generates F_{d} ?

Acknowledgements. We wish to thank J.-L. Colliot-Thélène, F. Grunewald, P. de la Harpe, G. Henniart, and number theorists in Caen, in particular F. Amoroso, J.-P. Bezivin, D. Simon, for helpful conversations related to this work. We also thank the referee for his or her detailed report. The second author would also like to thank the Laboratoire de Mathématiques Nicolas Oresme (LMNO) of Université de Caen for their hospitality during the preparation of the present work.

2. GENERALITIES

Let A be a finitely generated group. The letters a, b, v will always denote elements of A. We denote by i_{a} the inner automorphism $v \mapsto a v a^{-1}$.

Given $\varphi \in \operatorname{Aut}(A)$, we let G be the mapping torus

$$
\left.G=A \rtimes_{\varphi} \mathbf{Z}=\langle A, t| \text { tat }^{-1}=\varphi(a)\right\rangle .
$$

There is an exact sequence $1 \rightarrow A \rightarrow G \rightarrow \mathbf{Z} \rightarrow 1$. Up to isomorphism, G only depends on the image of φ in $\operatorname{Out}(A)$. Any $g \in G$ has unique forms $a t^{n}$, $t^{n} a^{\prime}$ with $n \in \mathbf{Z}$ and $a, a^{\prime} \in A$.

If N is a characteristic subgroup of A, we denote by $\bar{\varphi}$ the automorphism induced on A / N. There is an exact sequence

$$
1 \rightarrow N \rightarrow A \rtimes_{\varphi} \mathbf{Z} \rightarrow A / N \rtimes_{\bar{\varphi}} \mathbf{Z} \rightarrow 1
$$

The rank $\operatorname{rk}(G)$ is the minimum cardinality of a generating set. We let $\operatorname{vrk}(G)$ be the minimum number of elements needed to generate a finite index subgroup: $\operatorname{vrk}(G)=\inf _{H} \operatorname{rk}(H)$ with the infimum taken over all subgroups of finite index. Note that one may have $\operatorname{vrk}(H)>\operatorname{vrk}(G)$ if H has finite index in G, for instance when G is free.

We say that two generating sets with the same cardinality are Nielsen equivalent if one can pass from one to the other by Nielsen operations: permuting the generators, replacing g_{i} by g_{i}^{-1} or $g_{i} g_{j}$. For instance, any generating set of \mathbf{Z} is Nielsen equivalent to $\{0, \ldots, 0,1\}$ by the Euclidean algorithm.

The φ-orbit of $a \in A$ is $\left\{\varphi^{n}(a) \mid n \in \mathbf{Z}\right\}$. We denote by $\operatorname{or}(\varphi)$ the minimum number of φ-orbits needed to generate A. Clearly $\operatorname{or}(\varphi) \leq \operatorname{rk}(A)$. We also denote by $\operatorname{vor}(\varphi)$ the minimum number of φ-orbits needed to generate a finite index subgroup of A, so $\operatorname{vor}(\varphi) \leq \operatorname{vrk}(A)$.

Lemma 2.1. Given $a, a_{1}, \ldots, a_{k} \in A$, the intersection

$$
A^{\prime}=\left\langle a_{1}, \ldots, a_{k}, a t\right\rangle \cap A
$$

is generated by the $\left(i_{a} \circ \varphi\right)$-orbits of a_{1}, \ldots, a_{k}.
The $\left(i_{a} \circ \varphi\right)$-orbits of a_{1}, \ldots, a_{k} generate A if and only if a_{1}, \ldots, a_{k}, at generate G.

Proof. One has $\left(i_{a} \circ \varphi\right)^{n}(v)=(a t)^{n} v(a t)^{-n}$ for $v \in A$ and $n \in \mathbf{Z}$. This shows that the $\left(i_{a} \circ \varphi\right)$-orbit of a_{i} is contained in A^{\prime}. Conversely, if $v \in A^{\prime}$, write it in terms of $a_{1}, \ldots, a_{k}, a t$. The exponent sum of t is 0 , so v is a product of elements of the form $(a t)^{n} a_{i}^{ \pm 1}(a t)^{-n}$.

If $A^{\prime}=A$, then $\left\langle a_{1}, \ldots, a_{k}, a t\right\rangle$ contains A and $a t$, so equals G.

Corollary 2.2. $\quad \operatorname{rk}(G)=1+\min _{a \in A} \operatorname{or}\left(i_{a} \circ \varphi\right)$.
Proof. \leq is clear. For the converse, apply Euclid's algorithm modulo A to see that any finite generating set of G is Nielsen equivalent to a set $\left\{a_{1}, \ldots, a_{k}, a t\right\}$.

COROLLARY 2.3. $\quad \operatorname{vrk}(G)=1+\min _{a \in A, n \neq 0} \operatorname{vor}\left(i_{a} \circ \varphi^{n}\right)$.
Proof. If $n \neq 0$ and the $\left(i_{a} \circ \varphi^{n}\right)$-orbits of a_{1}, \ldots, a_{k} generate a finite index subgroup of A, the subgroup of G generated by $a_{1}, \ldots, a_{k}, a t^{n}$ has finite index because it maps onto $n \mathbf{Z}$ and it meets A in a subgroup of finite index. This shows that $\operatorname{vrk}(G) \leq 1+\min _{a \in A, n \neq 0} \operatorname{vor}\left(i_{a} \circ \varphi^{n}\right)$.

For the opposite inequality, note that any finite subset of G generating a finite index subgroup is Nielsen equivalent to $\left\{a_{1}, \ldots, a_{k}, a t^{n}\right\}$ with $n \neq 0$, and the $\left(i_{a} \circ \varphi^{n}\right)$-orbits of a_{1}, \ldots, a_{k} generate a finite index subgroup of A.

Corollary 2.4. Suppose that A is abelian.
(1) $\operatorname{rk}(G)=1+\operatorname{or}(\varphi)$ and $\operatorname{vrk}(G)=1+\operatorname{vor}(\varphi)$.
(2) G has rank ≤ 2 if and only if A is generated by a single φ-orbit. A pair $\left(a_{1}\right.$, at $)$ generates G if and only if the φ-orbit of a_{1} generates A. (3) $\operatorname{vrk}(G)$ is computable.

Proof. i_{a} is the identity and $\operatorname{vor}(\varphi) \leq \operatorname{vor}\left(\varphi^{n}\right)$, so (1) follows from previous results. (2) is clear.

For (3), first suppose $A=\mathbf{Z}^{d}$. View φ as an automorphism of the vector space \mathbf{Q}^{d}. Then $\operatorname{vor}(\varphi)$ is the minimum number of φ-orbits needed to generate \mathbf{Q}^{d}. This is computable (it is the number of blocks in the
rational canonical form of φ). In general, if T is the torsion subgroup of A, then $A / T \simeq \mathbf{Z}^{d}$ for some d. Let $\bar{\varphi}$ be the automorphism induced on \mathbf{Z}^{d}. Then $\operatorname{vor}(\varphi)=\operatorname{vor}(\bar{\varphi})$ is computable.

3. COMPUTABILITY

Suppose $A=\mathbf{Z}^{d}$ with $d \geq 1$. We view $\varphi \in \operatorname{Aut}(A)$ as an automorphism of \mathbf{Z}^{d} or as a matrix in $\operatorname{GL}(d, \mathbf{Z})$. Its companion matrix M_{φ} is the unique matrix of the form

$$
\left(\begin{array}{ccccc}
0 & & & & * \\
1 & 0 & & & * \\
& \ddots & \ddots & & * \\
& & 1 & 0 & * \\
& & & 1 & *
\end{array}\right)
$$

having the same characteristic polynomial as φ (the empty triangles are filled with 0 's, and $*$ denotes an arbitrary integer).

Lemma 3.1. Let $\varphi \in \mathrm{GL}(d, \mathbf{Z})$, with $d \geq 1$.
(1) The following are equivalent:
(a) $G=\mathbf{Z}^{d} \rtimes_{\varphi} \mathbf{Z}$ has rank 2 ;
(b) \mathbf{Z}^{d} may be generated by a single φ-orbit;
(c) there exists $a \in \mathbf{Z}^{d}$ such that $\left\{a, \varphi(a), \ldots, \varphi^{p-1}(a)\right\}$ is a basis of \mathbf{Z}^{d};
(d) φ is conjugate to its companion matrix M_{φ} in $\operatorname{GL}(d, \mathbf{Z})$.
(2) Suppose that the φ-orbit of a generates \mathbf{Z}^{d}. Then the φ-orbit of b generates \mathbf{Z}^{d} if and only if $b=h(a)$ where $h \in \operatorname{GL}(d, \mathbf{Z})$ commutes with φ.

Proof. We already know that (a) is equivalent to (b). If a is the first element of a basis of \mathbf{Z}^{d} in which φ is represented by the matrix M_{φ}, then the basis is $\left\{a, \varphi(a), \ldots, \varphi^{d-1}(a)\right\}$ and the φ-orbit of a generates \mathbf{Z}^{d}, so (d) \Rightarrow (c) \Rightarrow (b).

Conversely, note that the φ-orbit of any element a is generated by $\left\{a, \varphi(a), \ldots, \varphi^{d-1}(a)\right\}$ as a consequence of the Cayley-Hamilton theorem. So if (b) holds for the orbit of a, we obtain (c). Finally (c) clearly implies (d).

To prove (2), suppose that h commutes with φ, and define $b=h(a)$. The image of the basis $\left(a, \varphi(a), \ldots, \varphi^{d-1}(a)\right)$ by h is $\left(b, \varphi(b), \ldots, \varphi^{d-1}(b)\right)$, so
the orbit of b generates. Conversely, if the orbit of b generates, define h as the automorphism of \mathbf{Z}^{d} taking $\left(a, \varphi(a), \ldots, \varphi^{d-1}(a)\right)$ to $\left(b, \varphi(b), \ldots, \varphi^{d-1}(b)\right)$. It commutes with φ because M_{φ} represents φ in both bases.

PROPOSITION 3.2. Let A be a finitely generated nilpotent group. There is an algorithm which, given $\varphi \in \operatorname{Aut}(A)$, decides whether $G=A \rtimes_{\varphi} \mathbf{Z}$ has rank 2 or not.

Proof. If $A=\mathbf{Z}^{d}$, one has to decide whether φ is conjugate to its companion matrix M_{φ} in $\operatorname{GL}(d, \mathbf{Z})$. This is possible because the conjugacy problem is algorithmically solvable in $\operatorname{GL}(d, \mathbf{Z})$ by [6] (see Remark 3.4).

We now assume that A is abelian. It fits in an exact sequence

$$
0 \rightarrow T \rightarrow A \rightarrow \mathbf{Z}^{d} \rightarrow 0
$$

with T finite. We denote by $a \mapsto \bar{a}$ the map $A \rightarrow \mathbf{Z}^{d}$, and by $h \mapsto \bar{h}$ the natural epimorphism $\operatorname{Aut}(A) \rightarrow \operatorname{Aut}\left(\mathbf{Z}^{d}\right)$. They each have finite kernel.

We have to decide whether A may be generated by a single φ-orbit. We first check whether the matrix of $\bar{\varphi}$ is conjugate to its companion matrix. If not, the answer to our question is no. If yes, [6] yields a conjugator and therefore an explicit $u \in \mathbf{Z}^{d}$ whose $\bar{\varphi}$-orbit generates \mathbf{Z}^{d}.

We claim that A may be generated by a single φ-orbit if and only if there exist $a \in A$ mapping onto u, and $\psi \in \operatorname{Aut}(A)$ of the form $h \varphi h^{-1}$ with $h \in \operatorname{Aut}(A)$ and $[\bar{h}, \bar{\varphi}]=1$, such that the ψ-orbit of a generates A.

The "if" direction is clear. Conversely, suppose that the φ-orbit of b generates A. Then the $\bar{\varphi}$-orbit of \bar{b} generates \mathbf{Z}^{d}, so by Lemma 3.1 there exists $\theta \in \operatorname{Aut}\left(\mathbf{Z}^{d}\right)$ commuting with $\bar{\varphi}$ and mapping \bar{b} to u. Let h be any lift of θ to $\operatorname{Aut}(A)$. Defining $a=h(b)$ and $\psi=h \varphi h^{-1}$, it is easy to check that the ψ-orbit of a generates A. This proves the claim.

We now explain how to decide whether a and ψ as above exist. Note that a and ψ must belong to explicit finite sets: a belongs to the preimage A_{u} of u, and ψ belongs to the preimage X_{φ} of $\bar{\varphi}$ in $\operatorname{Aut}(A)$.

By Theorem C of [6], the centralizer of $\bar{\varphi}$ in $\operatorname{Aut}\left(\mathbf{Z}^{d}\right)$ is a finitely generated subgroup and one can compute a finite generating set. The same is true of $D=\{h \in \operatorname{Aut}(A) \mid[\bar{h}, \bar{\varphi}]=1\}$, so we can list the elements ψ in the orbit $D \varphi$ of φ for the action of D on X_{φ} by conjugation.

By the claim proved above, A may be generated by a single φ-orbit if and only if there exist $a \in A_{u}$ and $\psi \in D \varphi$ such that the ψ-orbit of a
generates A. To decide this, we enumerate the pairs (a, ψ) with $a \in A_{u}$ and $\psi \in D \varphi$. For each pair, we consider the increasing sequence of subgroups $A_{N}=\left\langle\psi^{-N}(a), \ldots, \psi^{-1}(a), a, \psi(a), \ldots \psi^{N}(a)\right\rangle$. It stabilizes and we check whether $A_{N}=A$ for N large.

This completes the proof for A abelian. If A is nilpotent, let B be its abelianization and let $\rho: B \rightarrow B$ be the automorphism induced by φ. If $G_{\varphi}=A \rtimes_{\varphi} \mathbf{Z}$ has rank 2 , so does its quotient $G_{\rho}=B \rtimes_{\rho} \mathbf{Z}$. Conversely, if G_{ρ} has rank 2, it is generated by t and some $b \in B$ whose ρ-orbit generates B. Let a be any lift of b to A. The subgroup of A generated by the φ-orbit of a maps surjectively to B, so equals A by a classical fact about nilpotent groups (see e.g. Theorem 2.2.3(d) of [9]). Thus G_{φ} has rank 2.

Corollary 3.3. If $A=\mathbf{Z}^{2}$ or $A=F_{2}$, one can compute the rank of G.
Proof. The rank is 2 or 3 , so this is clear from the proposition if $A=\mathbf{Z}^{2}$. Recall that the natural map $\operatorname{Out}\left(F_{2}\right) \rightarrow \operatorname{Out}\left(\mathbf{Z}^{2}\right)=\operatorname{Aut}\left(\mathbf{Z}^{2}\right)$ is an isomorphism (both groups are isomorphic to $\operatorname{GL}(2, \mathbf{Z})$). Given $G=F_{2} \rtimes_{\varphi} \mathbf{Z}$, let ρ be the image of φ in $\operatorname{Aut}\left(\mathbf{Z}^{2}\right)$. Consider $G_{\rho}=\mathbf{Z}^{2} \rtimes_{\rho} \mathbf{Z}$. We prove that G and G_{ρ} have the same rank.

Clearly $2 \leq \operatorname{rk}\left(G_{\rho}\right) \leq \operatorname{rk}(G) \leq 3$. If G_{ρ} has rank 2 , Lemma 3.1 lets us assume that ρ is of the form $\left(\begin{array}{rr}0 & \pm 1 \\ 1 & n\end{array}\right)$. Since G only depends on the class of φ in $\operatorname{Out}\left(F_{2}\right)$, it is isomorphic to

$$
\left\langle a, b, t \mid t a t^{-1}=b, t b t^{-1}=a^{ \pm 1} b^{n}\right\rangle
$$

so has rank 2.

REMARK 3.4. Grunewald's solution to the conjugacy problem is entirely algorithmic. Given two matrices $T_{1}, T_{2} \in \mathrm{GL}(d, \mathbf{Z})$, there is an algorithm which decides whether there exists a matrix $X \in \mathrm{GL}(d, \mathbf{Z})$ such that $X T_{1} X^{-1}=T_{2}$. If the answer is yes, the algorithm constructs such an X. In fact, Grunewald's algorithm decomposes each T_{i} into the sum of two matrices $T_{i}=S_{i}+U_{i}$, where S_{i} is a rational semisimple matrix and U_{i} is a rational nilpotent matrix. Then the conjugation question between the T_{i} 's reduces to conjugation questions between the S_{i} 's and U_{i} 's. In turn these questions are transformed into problems about isomorphisms of modules over quotient rings of a subring of finite index in a ring of integers of an algebraic number field. Arguments are rather involved.

4. Nielsen equivalence

Proposition 4.1. Suppose that A is abelian and $G=A \rtimes_{\varphi} \mathbf{Z}$ has rank 2.
(1) Any generating pair of G is Nielsen equivalent to a pair (a, t) with $a \in A$.
(2) Two generating pairs (a, t) and (b, t), with $a, b \in A$, are Nielsen equivalent if and only if b belongs to the φ-orbit of a or a^{-1}.

Proof. Given $x, y \in A$, and n, write

$$
(x, t y) \sim\left((t y)^{n} x(t y)^{-n}, t y\right)=\left(\varphi^{n}(x), t y\right)
$$

and

$$
(x, t y) \sim\left(\varphi^{n}(x), t y\right) \sim\left(\varphi^{n}(x), t y \varphi^{n}(x)\right) \sim\left(x, t y \varphi^{n}(x)\right)
$$

where \sim denotes Nielsen equivalence.
Every generating pair is equivalent to some ($a, t y$), with the φ-orbit of a generating A. But $(a, t y) \sim\left(a, t y \varphi^{n}(a)\right)$ so by an easy induction $(a, t y) \sim(a, t)$. This proves (1).

If $b=\varphi^{n}\left(a^{\varepsilon}\right)$ with $\varepsilon= \pm 1$, then

$$
(b, t)=\left(\varphi^{n}\left(a^{\varepsilon}\right), t\right)=\left(t^{n} a^{\varepsilon} t^{-n}, t\right) \sim(a, t) .
$$

The converse follows from Theorem 2.1 of [7]. We give a proof for completeness. If $(b, t) \sim(a, t)$, we can write $b=w(a, t)$ with w a primitive word with exponent sum 0 in t. Such a word is conjugate to $a^{ \pm 1}$ in the free group $F(a, t)$, so b is conjugate to $a^{ \pm 1}$ in G. Since A is abelian, b belongs to the φ-orbit of $a^{ \pm 1}$.

REMARK 4.2. More generally, if A is abelian, any generating set of G is Nielsen equivalent to a set of the form $\left\{a_{1}, \ldots, a_{k}, t\right\}$.

REMARK 4.3. The proposition does not extend to nilpotent groups. Let A be the Heisenberg group $\langle a, b, c \mid[a, b]=c,[a, c]=[b, c]=1\rangle$. Let φ map a to $a b$ and b to b. The generating pairs (a, t) and $\left(a c^{-1}, t\right)$ are Nielsen equivalent (even conjugate) but $a c^{-1}$ does not belong to the φ-orbit of $a^{ \pm 1}$. Moreover, $(a, t c)$ is a generating pair which is not Nielsen equivalent to a pair (x, t) with $x \in A$. Indeed, if it were, then t would be conjugate to $t c a^{k}$ for some $k \in \mathbf{Z}$ by [7]. Counting exponent sum in a yields $k=0$. But t and $t c$ are not conjugate.

COROLLARY 4.4. Let $A=\mathbf{Z}^{d}$. If G has rank 2 , the number of Nielsen classes of generating pairs is equal to the (possibly infinite) index of the group generated by φ and -Id in the centralizer of φ in $\operatorname{GL}(d, \mathbf{Z})$.

Proof. By Proposition 4.1 we need only consider generating pairs of the form (a, t). Fix one. To any $b \in \mathbf{Z}^{d}$ such that (b, t) generates G we associate the automorphism ψ_{b} of \mathbf{Z}^{d} taking the basis $\left\{a, \varphi(a), \ldots, \varphi^{d-1}(a)\right\}$ to the basis $\left\{b, \varphi(b), \ldots, \varphi^{d-1}(b)\right\}$. By Lemma 3.1, the image of this map $b \mapsto \psi_{b}$ is the centralizer of φ in $\operatorname{GL}(d, \mathbf{Z})$. By Proposition 4.1, $(b, t) \sim(a, t)$ if and only if ψ_{b} is $\pm \varphi^{n}$ for some $n \in \mathbf{Z}$.

Example. If $A=\mathbf{Z}^{2}$ and G has rank 2, the number of Nielsen classes of generating pairs is always finite. If

$$
\varphi=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

this number is infinite.

5. POWERS

Fix $\varphi \in \operatorname{GL}(d, \mathbf{Z})$. Say that $v \in \mathbf{Z}^{d}$ is φ-cyclic if its φ-orbit generates \mathbf{Z}^{d}, or equivalently if $\left\{v, \varphi(v), \ldots, \varphi^{d-1}(v)\right\}$ is a basis of \mathbf{Z}^{d}. The existence of such a v is equivalent to φ being conjugate to its companion matrix, and also to G having rank 2 . If v is φ^{n}-cyclic for some $n \geq 2$, it is φ-cyclic since its φ^{n}-orbit is contained in its φ-orbit.

If v is φ-cyclic, we denote by δ_{n} the index of the subgroup of \mathbf{Z}^{d} generated by the φ^{n}-orbit of v. It does not depend on the choice of v since φ always has matrix M_{φ} in the basis $\left\{v, \varphi(v), \ldots, \varphi^{d-1}(v)\right\}$. Also note that $\delta_{1}=1$. The group $G_{n}=\mathbf{Z}^{d} \rtimes_{\varphi^{n}} \mathbf{Z}$ has rank 2 (equivalently, φ^{n} is conjugate to its companion matrix) if and only if $\delta_{n}=1$.

THEOREM 5.1. If $\varphi \in \operatorname{GL}(2, \mathbf{Z})$ has infinite order, the rank of $G_{n}=\mathbf{Z}^{2} \rtimes_{\varphi^{n}} \mathbf{Z}$ is 3 for all $n \geq 3$ (and also for $n=2$ unless $\operatorname{det}(\varphi)=-1$ and $\operatorname{trace}(\varphi)= \pm 1$).

Proof. If G_{n} has rank 2 for some n, there exists a φ^{n}-cyclic element v. Such a v is also φ-cyclic. In the basis $\{v, \varphi(v)\}$, the matrix of φ has the form $M=\left(\begin{array}{cc}0 & \varepsilon \\ 1 & \tau\end{array}\right)$ with $\varepsilon= \pm 1$. If finite, the index δ_{n} is the absolute value of the determinant c_{n} of the matrix expressing the family $\left\{v, \varphi^{n}(v)\right\}$ in the basis $\{v, \varphi(v)\}$. We prove the theorem by showing that $\left|c_{n}\right|>1$ for $n \geq 3$.

The number c_{n} is determined by the equation $M^{n}=c_{n} M+d_{n} I$. It follows from the Cayley-Hamilton theorem that the sequence c_{n} satisfies the recurrence relation $c_{n+2}-\tau c_{n+1}-\varepsilon c_{n}=0$.

If $\varepsilon=-1$ one has

$$
c_{n}=\prod_{k=1}^{n-1}\left(\tau-2 \cos \frac{k \pi}{n}\right),
$$

because c_{n} is a monic polynomial of degree $n-1$ in τ which vanishes for $\tau=2 \cos \frac{k \pi}{n}$ (one also has $c_{n}=U_{n-1}(\tau / 2)$, with U_{n-1} a Chebyshev polynomial of the second kind).

If $\varepsilon=1$ one has

$$
c_{n}=\prod_{k=1}^{n-1}\left(\tau-2 i \cos \frac{k \pi}{n}\right) .
$$

Since φ is assumed to have infinite order, one has $\tau \neq 0$ if $\varepsilon=1$, and $|\tau| \geq 2$ if $\varepsilon=-1$. One checks that $\left|c_{n}\right|>1$ for $n \geq 3$ (for $n \geq 2$ if $\varepsilon=-1$ or $|\tau| \geq 2$).

Theorem 5.2. Suppose that $\varphi \in \operatorname{GL}(d, \mathbf{Z})$ has infinite order.
(1) There exists n_{0} such that $G_{n}=\mathbf{Z}^{d} \rtimes_{\varphi^{n}} \mathbf{Z}$ has rank ≥ 3 for every $n \geq n_{0}$. Equivalently: φ^{n} is not conjugate to its companion matrix for $n \geq n_{0}$.
(2) More precisely, the minimum index of 2-generated subgroups of G_{n} goes to infinity with n.

Note that there are arbitrarily large values of n for which the rank of G_{n} is $d+1$ (whenever φ^{n} is the identity modulo some prime number). As already mentioned, it is proved in [1] that n_{0} may be chosen to depend only on d.

The key step in the proof of Theorem 5.2 is the following result.
PROPOSITION 5.3. If φ has infinite order and v is φ-cyclic, then the index δ_{n} of the subgroup of \mathbf{Z}^{d} generated by the φ^{n}-orbit of v goes to infinity with n.

REMARK. This proposition remains true if v is not assumed to be φ-cyclic, provided δ_{n} is defined as the index of the subgroup generated by the φ^{n}-orbit of v in the subgroup generated by the φ-orbit of v.

Proof of the theorem from the proposition. As above, if G_{n} has rank 2 for some n, there exists a φ-cyclic element v. For n large one has $\delta_{n}>1$, so G_{n} has rank >2. Assertion 1 is proved.

For Assertion 2, suppose that there are arbitrarily large values of n such that G_{n} contains a 2-generated subgroup H_{n} of index $\leq C$, for some fixed C. This subgroup has a generating pair of the form $\left(a_{n}, t_{n}\right)$ with $a_{n} \in \mathbf{Z}^{d}$, and the intersection of H_{n} with \mathbf{Z}^{d} is generated by the $\varphi^{n m_{n}}$-orbit of a_{n} for some $m_{n} \geq 1$. It has index $\leq C$ in \mathbf{Z}^{d}.

The subgroup of \mathbf{Z}^{d} generated by the φ-orbit of a_{n} has index $\leq C$, so we can assume that it does not depend on n. Call it J. It is φ-invariant so we can apply the proposition to the action of φ on J, with $v=a_{n}$. This gives the required contradiction.

Proof of Proposition 5.3. When $d=2$, one easily checks that c_{n}, as computed above, goes to infinity with n. The proof in the general case is more involved.

Define numbers $u_{k}(i)$, for $k=0, \ldots, d-1$ and $i \geq 0$, by

$$
\varphi^{i}(v)=\sum_{k=0}^{d-1} u_{k}(i) \varphi^{k}(v)
$$

The sequences u_{0}, \ldots, u_{d-1} form a basis for the space \mathcal{S} of sequences satisfying the linear recurrence associated to the characteristic polynomial of φ (the recurrence is $\sum_{j=0}^{d} a_{j} u_{k}(i+j)=0$ if the characteristic polynomial is $\sum_{j=0}^{d} a_{j} X^{j}$).

The index δ_{n} is the absolute value of the determinant c_{n} of the matrix $\left(u_{k}(n i)\right)_{0 \leq i, k \leq d-1}$ (unless the determinant is 0 , in which case δ_{n} is infinite). We have to prove that, given $c \neq 0$, the set of n 's such that $c_{n}=c$ is finite. We assume it is not and we work towards a contradiction.

A sequence satisfies a linear recurrence if and only if it is a finite sum of polynomials times exponentials, so c_{n} also is a recurrent sequence. The Skolem-Mahler-Lech theorem [3] then implies that $c_{n}=c$ for all n in an arithmetic progression $\mathbf{N}_{0} \subset \mathbf{N}$.

We shall now replace the basis u_{k} of \mathcal{S} by another basis w_{k} depending on the eigenvalues of φ. We then assume that $D_{n}:=\operatorname{det}\left(w_{k}(n i)\right)_{0 \leq i, k \leq d-1}=c^{\prime} \neq 0$ for $n \in \mathbf{N}_{0}$.

We sort the eigenvalues λ_{k} of φ so that $0<\left|\lambda_{1}\right| \leq\left|\lambda_{2}\right| \leq \cdots \leq\left|\lambda_{d}\right|$. First suppose that the eigenvalues are all distinct. We then choose $w_{k}(i)=\left(\lambda_{k+1}\right)^{i}$. In this case D_{n} is a Vandermonde determinant, for instance

$$
D_{n}=\left|\begin{array}{ccc}
1 & 1 & 1 \\
\left(\lambda_{1}\right)^{n} & \left(\lambda_{2}\right)^{n} & \left(\lambda_{3}\right)^{n} \\
\left(\lambda_{1}\right)^{2 n} & \left(\lambda_{2}\right)^{2 n} & \left(\lambda_{3}\right)^{2 n}
\end{array}\right|
$$

for $d=3$, so $D_{n}=\prod_{1 \leq k<m \leq d}\left(\left(\lambda_{m}\right)^{n}-\left(\lambda_{k}\right)^{n}\right)$.
If all moduli $\left|\lambda_{k}\right|$ are distinct, then $\left|D_{n}\right|$ goes to infinity with n because its diagonal term

$$
\left(\lambda_{2}\right)^{n}\left(\lambda_{3}\right)^{2 n} \ldots\left(\lambda_{d}\right)^{(d-1) n}=\left(\lambda_{2}\left(\lambda_{3}\right)^{2} \ldots\left(\lambda_{d}\right)^{(d-1)}\right)^{n}
$$

has modulus bigger than all others.
If the λ_{k} 's are distinct but their moduli are not, we write each of the d ! terms in the standard expansion of D_{n} in the form $\varepsilon_{j} \mu_{j}^{n}$ (with $\varepsilon_{j}= \pm 1$). Now there may be several (possibly cancelling) terms for which $\left|\mu_{j}\right|$ takes its maximal value $K=\left|\lambda_{2}\left(\lambda_{3}\right)^{2} \ldots\left(\lambda_{d}\right)^{(d-1)}\right|$. Note that $K>1$ because otherwise all λ_{k} 's have modulus 1 , hence are roots of unity by a classical result of Kronecker ([11], [5, Proposition 1.2.1]), and φ has finite order.

Since $D_{n}=c^{\prime}$ for $n \in \mathbf{N}_{0}$ and $K>1$, one has $\sum_{\left|\mu_{j}\right|=K} \varepsilon_{j} \mu_{j}^{n}=0$ for $n \in \mathbf{N}_{0}$. Call this sum $D_{n, K}$. Recall that $D_{n}=\prod_{1 \leq k<m \leq d}\left(\left(\lambda_{m}\right)^{n}-\left(\lambda_{k}\right)^{n}\right)$. To expand this product, one chooses one of $\left(\lambda_{m}\right)^{n}$ or $\left(\bar{\lambda}_{k}\right)^{n}$ for each couple k, m. The corresponding term contributes to $D_{n, K}$ if and only if one always chooses a term of maximal modulus. In other words, $D_{n, K}=\prod_{1 \leq k<m \leq p} E_{k, m}$ with $E_{k, m}=\left(\lambda_{m}\right)^{n}-\left(\lambda_{k}\right)^{n}$ if $\left|\lambda_{m}\right|=\left|\lambda_{k}\right|$ and $E_{k, m}=\left(\lambda_{m}\right)^{n}$ if $\left|\lambda_{m}\right|>\left|\lambda_{k}\right|$. Since the λ_{k} 's are non-zero, $D_{n, K}=0$ implies $\left(\lambda_{k}\right)^{n}=\left(\lambda_{m}\right)^{n}$ for some k, m with $k \neq m$, so that $D_{n}=0$, a contradiction.

This completes the proof when the eigenvalues of φ are distinct. In the remaining case, the basis w_{k} must have a different form: if λ is an eigenvalue of multiplicity r, we use the sequences $\lambda^{i}, i \lambda^{i}, \ldots, i^{r-1} \lambda^{i}$. For instance,

$$
D_{n}=\left|\begin{array}{cccc}
1 & 0 & 0 & 1 \\
\left(\lambda_{1}\right)^{n} & n\left(\lambda_{1}\right)^{n} & n^{2}\left(\lambda_{1}\right)^{n} & \left(\lambda_{4}\right)^{n} \\
\left(\lambda_{1}\right)^{2 n} & 2 n\left(\lambda_{1}\right)^{2 n} & (2 n)^{2}\left(\lambda_{1}\right)^{2 n} & \left(\lambda_{4}\right)^{2 n} \\
\left(\lambda_{1}\right)^{3 n} & 3 n\left(\lambda_{1}\right)^{3 n} & (3 n)^{2}\left(\lambda_{1}\right)^{3 n} & \left(\lambda_{4}\right)^{3 n}
\end{array}\right|
$$

when $d=4$ and $\lambda_{1}=\lambda_{2}=\lambda_{3} \neq \lambda_{4}$.
Calling ν_{1}, \ldots, ν_{q} the distinct eigenvalues of φ, there exist integers $a, b, c_{k}, d_{m k}$ (depending only on the multiplicities of the eigenvalues) such that

$$
D_{n}=a n^{b} \prod_{k=1}^{q}\left(\nu_{k}\right)^{n c_{k}} \prod_{1 \leq k<m \leq q}\left(\left(\nu_{m}\right)^{n}-\left(\nu_{k}\right)^{n}\right)^{d_{n k}}
$$

(see [4] or Theorem 21 in [10]). For instance, D_{n} as displayed above equals $2 n^{3}\left(\lambda_{1}\right)^{3 n}\left(\left(\lambda_{4}\right)^{n}-\left(\lambda_{1}\right)^{n}\right)^{3}$.

If $K>1$, we conclude as in the previous case. If $K=1$, all eigenvalues are roots of unity and $D_{n}=n^{b} E_{n}$ where E_{n} only takes finitely many values and $b>0$ (an eigenvalue ν_{j} of multiplicity $r \geq 2$ contributes $1+\cdots+(r-1)$ to b). Such a product cannot take a non-zero value infinitely often.

COROLLARY 5.4. If A is abelian, and $\varphi \in \operatorname{Aut}(A)$ has infinite order, then $G_{n}=A \rtimes_{\varphi^{n}} \mathbf{Z}$ has rank ≥ 3 for n large. The minimum index of 2 -generated subgroups of G_{n} goes to infinity with n.

This follows readily from Theorem 5.2 , writing $A / T \simeq \mathbf{Z}^{d}$ with T finite. The analogous result for nilpotent groups is false, as the following example shows. Let A be the Heisenberg group as in Remark 4.3. If φ maps a to $b c$, b to $a c^{2}$, and c to c^{-1}, then $\varphi^{2 n+1}(a)=b c^{1-n}$, so $G_{2 n+1}$ has rank 2 since a and $\varphi^{2 n+1}(a)$ generate A. The automorphism induced by φ on the abelianization of A has order 2.

REFERENCES

[1] Amoroso, F. and U. Zannier. Some remarks concerning the rank of mapping tori and ascending HNN-extensions of abelian groups. Rend. Mat. Acc. Lincei (to appear).
[2] Baumslag, G., C.F. Miller III and H. Short. Unsolvable problems about small cancellation and word hyperbolic groups. Bull. London Math. Soc. 26 (1994), 97-101.
[3] Everest, G., A. van der Poorten, I. Shparlinski and T. Ward. Recurrence Sequences. Mathematical Surveys and Monographs 104. Amer. Math. Soc., Providence, RI, 2003.
[4] Flowe, R.P. and G.A. Harris. A note on generalized Vandermonde determinants. SIAM J. Matrix Anal. Appl. 14 (1993), 1146-1151.
[5] Goodman, F.M., P. de la Harpe and V.F.R. Jones. Coxeter Graphs and Towers of Algebras. Mathematical Sciences Research Institute Publications 14. Springer-Verlag, New York, 1989.
[6] Grunewald, F.J. Solution of the conjugacy problem in certain arithmetic groups. In: Word Problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), 101-139. Stud. Logic Foundations Math. 95. NorthHolland, Amsterdam-New York, 1980.
[7] Heusener, M. and R. Weidmann. Generating pairs of 2-bridge knot groups. Geom. Dedicata 151 (2011), 279-295.
[8] Kapovich, I. and R. Weidmann. Kleinian groups and the rank problem. Geom. Topol. 9 (2005), 375-402.
[9] Khukhro, E.I. Nilpotent Groups and Their Automorphisms. De Gruyter Expositions in Mathematics 8. Walter de Gruyter \& Co., Berlin, 1993.
[10] Krattenthaler, C. Advanced determinant calculus. The Andrews Festschrift (Maratea, 1998). Sém. Lothar. Combin. 42 (1999), Art. B42q, 67 pp.
[11] Kronecker, L. Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten J. Reine Angew. Math. 53 (1857), 173-175.
[12] SOUTO, J. The rank of the fundamental group of certain hyperbolic 3-manifolds fibering over the circle. In: The Zieschang Gedenkschrift, 505-518. Geom. Topol. Monogr. 14. Geom. Topol. Publ., Coventry, 2008
(Reçu le 28 mai 2010; version révisée reçue le 14 décembre 2011)

Gilbert Levitt
Laboratoire de Mathématiques Nicolas Oresme
Université de Caen et CNRS (UMR 6139)
BP 5186
F-14032 Caen Cedex
France
e-mail: levitt@unicaen.fr

Vassilis Metaftsis
University of the Aegean
Department of Mathematics
83200 Karlovassi
Samos, Greece
e-mail: vmet@aegean.gr

