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WEIL AND GROTHENDIECK APPROACHES TO ADELIC POINTS

by Brian CONRAD*)

1. Introduction

In [We, Ch. 1], Weil defines a process of "adelization" of algebraic varieties

over global fields. There is an alternative procedure, due to Grothendieck, using
adelic points. One aim of this (largely) expository note is to prove that for
schemes of finite type over global fields (i.e., without affineness hypotheses),
and also for separated algebraic spaces of finite type over such fields, Weil's
adelization process naturally coincides (as a set) with the set of adelic points
in the sense of Grothendieck (and that in the affine case the topologies defined

by these two viewpoints coincide; Grothendieck's approach does not provide
a topology beyond the affine case). The other aim is to prove in general
that topologies obtained by Weil's method satisfy good functorial properties,

including expected behavior with respect to finite flat Weil restriction of scalars.

The affine case suffices for most applications, but the non-affine case is useful

(e.g., adelic points of G/P for connected reductive groups G and parabolic
subgroups P). We also discuss topologizing X(k) for possibly non-separated

algebraic spaces X over locally compact fields k; motivation for this is given
in Example 5.5.

Although everything we prove (except perhaps for the case of algebraic
spaces) is "well known" folklore, and [Oes, I, §3] provides an excellent

summary in the affine case, some aspects are not so easy to extract from the

available literature. Moreover, (i) some references that discuss the matter in
the non-affine case have errors in the description of the topology on adelic

points, and (ii) much of what we prove is needed in my paper [Con], or
in arithmetic arguments in [CGP]. In effect, these notes can be viewed as

*) This work was partially supported by NSF grants DMS-1100784
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an expanded version of [Oes, I, §3], and I hope they will provide a useful

general reference on the topic of adelic points of algebro-geometric objects
(varieties, schemes, algebraic spaces) over global fields.

In §2 we carry out Grothendieck's method in the affine case over any
topological ring R, characterizing the topology on sets of R-points by means

of several axioms. The generalization to arbitrary schemes of finite type via a

method of Weil is developed in § 3. We explore properties of these topologies in
§4, especially for adelic points and behavior with respect to Weil restriction of
scalars. Finally, in §5 everything is generalized to the case of algebraic spaces.

Acknowledgements. I am grateful to D.Boyarchenko, A.J. deJong, and

especially L. Moret-Bailly for helpful comments and suggestions.

Notation. We write AF to denote the adele ring of a global field F,
and likewise AF denotes Euclidean n-space over AF. There is no risk of
confusion with the common use of such notation to denote affine n-space
over SpecE since we avoid ever using this latter meaning for the notation.

2. Preliminary functorial considerations

Let F be a global field and S a finite non-empty set of places of E,
with S always understood to contain the set of archimedean places of F.
We let Af.,s G Af denote the open subring of adeles that are integral at all

places away from S, so the topological ring AF is the direct limit of the open
subrings AF^S over increasing S. For a separated finite type E-scheme X,
we would like to endow the set X(AF) with a natural structure of Hausdorff

locally compact topological space in a manner that is functorial in Af and

compatible with the formation of fiber products (for topological spaces and

E-schemes); in §5 we will address the case of algebraic spaces.

For affine X the coordinate ring T(X, Ox) is E-isomorphic to F\ti,... ,tn\/I,
so as a set X(AF) is identified with the closed subset of the adelic Euclidean

space AF where the functions f\AnF^AF for f £ I all vanish. This zero
set has a locally compact subspace topology. To see that this topology
transferred to X(Af) is independent of the choice of presentation of T(X, Ox), it is

more elegant to uniquely characterize this construction by means of functorial

properties, as the proof of the following result shows:
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Proposition 2.1. Let R be a topological ring. There is a unique way
to topologize X(R) for afßne finite type R-schemes X in a manner that is

functorial in X, compatible with the formation offiber products, carries closed

immersions to topological embeddings, and for X Special gives X(R) R

its usual topology. Explicitly, if A is the coordinate ring of X then X(R)
has the weakest topology relative to which all maps X(R) -A R induced

by elements of A are continuous, or equivalently the natural injection
of X(R) Hom/?_aig(A, 7?) into Homset(A,R) RA endowed with the product
topology is a homeomorphism onto its image.

If R is Hausdorjf then X(R) is Hausdorjf and closed immersions
induce closed embeddings X(R) -A Xf(R). If in addition R is locally compact
then X(R) is locally compact.

The Hausdorff property is necessary to require if we want closed immersions

to go over to closed embeddings. Indeed, by considering the origin in
the affine line we see that such a topological property forces the identity point
in R to be closed, and compatibility with products makes X(R) a topological

group when X is an R-group scheme, so this forces R to be Hausdorff since

(viewing R Ga(R) as an additive topological group) a topological group
whose identity point is closed must be Hausdorff (because in any category
admitting fiber products, the diagonal morphism for a group object is a base

change of the identity section). Viewing the topology on X(R) as a sub-

space topology from RA is reminiscent of how Milnor topologizes manifolds
in [Mil].

Proof. To see uniqueness, we pick a closed immersion

i: X ^ Spec R[t\,... ,tn\.

By forming the induced map on R -points and using compatibility with products
(view affine n-space as product of n copies of the affine line), as well as

the assumption on closed immersions, the induced set map X(R) is a

topological embedding into Rn endowed with its usual topology. This proves
the uniqueness, and that X(R) has to be Hausdorff when R is Hausdorff.

Likewise, we see that X(R) is closed in Rn in the Hausdorff case, so when R

is also locally compact then so is X(R).
There remains the issue of existence. Pick an R-algebra isomorphism

(2.1) A:=nx,Qx)~R[tu...,tnyi
for an ideal I, and identify X(R) with the subset of Rn on which the elements

of I (viewed as functions Rn -A R) all vanish. We wish to endow X(R) with
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the subspace topology, and the main issue is to check that this construction
is independent of the choice of (2.1) and enjoys all of the desired properties.
We claim that the topology defined using (2.1) is the same as the subspace

topology defined by the canonical injection X(R) -A RA (so the definition
of this topology is independent of the choice of (2.1)). Let a\,...,an G A

correspond to t\ mod tn mod I via (2.1), so the injection X(R) -a Rn is

the composition of the natural injection X(R) -A RA and the map RA -A Rn

defined by («i,... ,an) G An. Hence, every open set in X(R) is induced by
an open set in RA because RA -A Rn is continuous. Since every element of A
is an ^-polynomial in a\,... ,an and R is a topological ring (so polynomial
functions Rn -A R over R are continuous), it follows that the map X(R) -A RA

is also continuous. Thus, indeed X(R) has been given the subspace topology
from Ra so the topology on X(R) is clearly well-defined and functorial in X.

Consider a closed immersion i: X ^a X' corresponding to a surjec-
tive R-algebra map between coordinate rings h: A' -» A. The natural

map j: Ra -a RA defined by (ra) iXh{a')) is visibly a topological
embedding; it topologically identifies RA with the subset of RA cut out by
a collection of equalities among components, so j is a closed embedding
when R is Hausdorff. We have Xf(R)P\j(RA) j(X(R)) because a set-theoretic

map A -a R is an R-algebra map if and only if its composition with the

surjection h: A! -A A is an 7?-algebra map. Hence, i\ X(R) -A X'(R) is an

embedding of topological spaces, and is a closed embedding when R is

Hausdorff. By forming products of closed immersions into affine spaces, we
see that (X XspecrX')(R) X(R) x Xf(R) is a topological isomorphism via
reduction to the trivial special case when X and X' are affine spaces.

Finally, to see that (.X xY Z)(R) —» X(R) xY(r) Z(R) is a topological
isomorphism (for given maps X —) Y and Z Y between affine R-schemes),
consider the isomorphism

X xY Z — (X xRZ) xYXrYY

and its topological counterpart. Since we have already checked compatibility
with absolute products (over the final object in the category), the separatedness

of Y over R reduces us to the case in which one of the structure maps of
the scheme fiber product is a closed immersion. But we have already seen

that closed immersions are carried into topological embeddings, so we are

done.

Example 2.2. If ^ is a continuous map of topological rings (e.g., the

inclusion of F into AF or of 0f,s into A^, with the subring having the dis-
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crete topology in both cases), then for any affine finite type R-scheme X with
base change X' over R', the natural map X(R) -aX(Rf) X'(R') is continuous,

and when R -A Rf is a topological embedding then so is X(R) -A X(Rf).
Moreover, if Rf is closed (resp. open) in R then X(R) -a X(Rf) is a closed

(resp. open) embedding. These claims are immediate from the construction
of the topologies by means of closed immersions of X into an affine space

over R (and the base change on this to give a closed immersion of Xf into an
affine space over R'). The same argument shows that if R is discrete in Rf

then X(R) is discrete in X(Rf).

Example 2.3. Since F is discrete in AF, so Fn is discrete in A£, it
follows that for any affine finite type L-scheme X, X(F) -A X(AF) is a

topological embedding onto a discrete subset. Similarly, if X is affine of finite

type over 0^, then X(0F^) is a discrete subset of X(AFj). If X is affine

of finite type over a discrete valuation ring R with fraction field L then X(R)
is open and closed in X(L) Xl(L)

Example 2.4. Let R -A Rf be a module-finite ring extension that makes Rf

locally free as an R-module. Assume that R and Rf are endowed with
topological ring structures such that Rf has the quotient topology from one

(equivalently, any) presentation as a quotient of a finite free R-module. In
particular, R has the subspace topology from Rf because Rf is projective as

an R-module (so the inclusion R -A Rf admits an R-linear splitting). The

main examples of interest are a finite extension of complete discrete valuation

rings, local fields, or adele rings of global fields. For an affine R'-scheme X'
of finite type, consider the Weil restriction X ResRf/R(X') that is an affine
R-scheme of finite type [BLR, §7.6]. (In [CGP, App. A.5] there is given
a detailed discussion of properties of Weil restriction, supplementing [BLR,
§7.6].) There is a canonical bijection of sets Xf(R') X(R), and by viewing X'
and X as an R!-scheme and R-scheme respectively we get topologies on both
sides of this equality.

We claim that these two topologies agree. Using a closed immersion
of X' into an affine space over R' reduces us to the case when X' is

such an affine space, because Weil restriction carries closed immersions to
closed immersions in the affine case. Choose a finite free R-module P such

that there exists an R -linear surjection from the dual Py onto the dual

module RfV HornR(Rf,R). The dual map Rf -A P is a direct summand,

so for any R -algebra A the natural map Rf A -a P A is injective and

functorially defined by a system of R-linear equations in A. For M R®n
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with a suitable n> 0 we have X' Spec(SymR,(M')) with M' R' M,
so X is naturally a closed subscheme of Spec(SymR(M®RPW)). The

set X'(R') HornR>(M',R') Hom^(M, R') is endowed with its natural

topology as a finite free R7-module, and via the inclusion R' <-A P the set X(R)
is Hom/?(M,R7) Mv <8>rR' with the subspace topology from Mv ®RP. Thus,
the agreement of topologies comes down to Rf inheriting its given topology
as a subspace of P. But Rf is a direct summand of P, so the subspace

topology on Rf coincides with the quotient topology via a surjection from P.
By hypothesis, such a quotient topology is the given topology on Rf.

3. Elimination of affineness hypotheses

When attempting to generalize Proposition 2.1 beyond the affine case, an

immediate problem is that if U is an open affine in an affine X of finite type
over R then U(R) -A X(R) need not be an open embedding; it may even fail to
be a topological embedding. For example, if X is the affine line over R and U
is the complement of the origin, then U(R) <-A X(R) is the map Rx -A R

where R has its usual topology but Rx has a structure of topological group
coming from the affine model U Gm ~ SpecR[v,y]/(xy - 1) inside the

plane (i.e., r, r' E Rx are close when r is near r' in R and r~l is near r/_1

in R). The example of adele rings shows that the unit group of a topological
ring need not be a topological group with respect to the induced topology
from the ring. Since the topology on Rx Gm(R) is a topological group
structure, we see that in such examples the inclusion Rx -a R cannot be a

topological embedding.
More generally, if X Spec A and U Spec Af with / E A, then the

subset U(R) C X(R) is the locus where the continuous map /: X(R) -a R is

unit-valued - the preimage of the subset Rx - and this preimage might not
be open. Such openness in general (for a fixed R) is equivalent to the set

of non-units in R being closed, but this fails for adele rings (in which one

can find sequences of non-units that converge to 1). Regardless of whether or
not Rx is open in R, since Af A[T]/(fT — 1) we see that U(R) -a X(R)
is a topological embedding onto its image if and only if 1//: U(R) -A R is

continuous when U(R) is given the subspace topology from X(R). Taking X
to be the affine line and U to be the multiplicative group, such an embedding

property for general affine finite type R-schemes would force Rx to be a

topological group with its subspace topology from R (which is false for
many R).
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We conclude that the failure of openness of Rx in R and the failure
of Rx to be a topological group with its subspace topology from R are the

only obstacles to basic open affine immersions inducing open embeddings

on spaces of R-points. Hence, it is natural to try to globalize the topology
on X(R) beyond the affine case by gluing along Zariski-opens in X when Rx
is open in R with continuous inversion. In order for the gluing to work, we
also need to ensure that if {Ut} is an affine open covering of an affine X of
finite type over R then X(R) is covered by the subsets UjR). This works for
local R :

Proposition 3.1. Let R be a local topological ring such that Rx is open
in R and has continuous inversion. There is a unique way to topologize X(R)

for arbitrary locally finite type R-schemes X subject to the requirements

of functoriality, carrying closed (resp. open) immersions of schemes into

embeddings {resp. open embeddings) of topological spaces, compatibility
with fiber products, and giving X(R) R its usual topology when X is the

affine line over R.
This agrees with the earlier construction for affine X, and if R is Hausdorff

then X(R) is Hausdorjf when X is separated over R. If R is locally compact
and Hausdorjf then X(R) is locally compact.

Proof. The key to the proof is to show that if U X is an arbitrary open
immersion between affine R-schemes of finite type then U(R) X(R) is an

open immersion relative to the topology already defined in the affine case.

Once this is proved, the rest is immediate by gluing arguments, so we explain
just this assertion concerning open immersions between affine schemes.

Consider the special case that U is a basic affine open in X, say
U Spec Af and X Spec A for some / E A. Clearly U(R) is the preimage
of the open Rx c R under the map X(R) R associated to /. To see

that this equips U(R) with a subspace topology coinciding with its intrinsic

topology (using that U is affine of finite type over R), the fiber square

X — A),

reduces the problem to the special case X and U Gm. In this case

U(R) acquires the topology of the hyperbola xy 1 in R2, and this is
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homeomorphic to Rx with its subspace topology due to the hypothesis that
inversion on Rx is continuous.

To reduce the general affine case to the special case just treated, one uses

that R is local (and that U is covered by basic affine opens of X, each of
which is necessarily a basic affine open in U). The main point is that if {Ut}
is an open cover of X, then X(R) UUt(R) because a map SpecR -AX that
carries the closed point into Ut must land entirely inside Ut since the only
open subscheme of SpecR that contains the closed point is the entire space.

(The equality X(R) UU^R) fails for non-local R in general.)

Remark 3.2. If X is a locally finite type scheme over a local field k

(such as C or Q^), then X(k) is a locally compact topological space via

Proposition 3.1. The same goes for X(G) with a compact discrete valuation

ring G and a locally finite type G-scheme X.

Remark 3.3. If Z is a closed subscheme in X and U is its open
complement then the disjoint subsets Z(R) and U(R) in X(R) may not

cover X(R), even if X is affine. The problem is that "Zariski open" corresponds
to a unit condition on R -points whereas "Zariski closed" corresponds to a

nilpotence condition on R-points. If R contains elements that are neither

nilpotent nor units then X(R) may fail to be the union of U(R) and Z(R).
More geometrically, if we consider maps SpecR -AX then the image might
hit both Z and U (a simple example being the affine R-line X, its origin Z,
and complement U X — Z, for which Z(R) and U(R) are both non-empty
and do not cover X(R) R whenever SpecR is not a point). For local
artinian R this does not happen, which is why the construction of a topology
on X(R) is especially straightforward when R is a field.

In view of the above discussion, it is a remarkable fact that when R AF
is the adele ring of a global field F, one can (following a method due to

Weil) naturally topologize X(R) for arbitrary finite type F-schemes X. It
is not true in such generality that immersions of schemes are carried into

topological embeddings, but the topology is functorial and compatible with
fiber products, it gives closed embeddings when applied to closed immersions,
and it recovers the earlier construction in the affine case. We now present a

Grothendieck-style development of Weil's construction.

The key to Weil's construction in the affine case is that if X is

a finite type affine F-scheme (for a global field F) then by chasing
denominators in a finite presentation of the coordinate ring of X we
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can find a finite set S of places of F (non-empty and containing the

archimedean places, as always) and a finite-type algebra over whose

generic fiber is the coordinate ring of X. Geometrically, this amounts to

giving an affine finite type 0F,s -scheme Xs whose generic fiber is X.
As will be recorded below, Grothendieck's technique of limits of schemes

[EGA, IV3, § 8—§ 11] shows that an analogous result holds for all finite

type F-schemes (not just the affine ones): every finite type F-scheme X
is the generic fiber of a finite type (DFjS -scheme Xs for some S. We

can transfer many properties of X to Xs by increasing S, as we now
explain.

We first mention a useful concept: a scheme X over a ring R is

finitely presented if it is covered by finitely many open affines Ut, each

of the form Ut ~ Spec(7?[^i,..., fnJ/(/i,n Jmni)), with quasi-compact
overlaps (this latter condition being automatic in the separated case, for
which an overlap of two affine opens is affine). Finite presentation coincides

with finite type when R is noetherian, but the adele ring is not noetherian.

Loosely speaking, finite presentation over R means being "described by a finite
amount of information" in R.

Since F lin^O^s and fipiA^ (limits taken over increasing S),
the following link between finite presentation and direct limits is an essential

step in Weil's construction (especially beyond the affine case).

Theorem 3.4. Let {A;} be a directed system of rings, A limA,. Let X
be a finitely presented A-scheme.

(1) There exists some io and a finitely presented Al0-scheme Xl0 whose base

change over A is isomorphic to X. Moreover, if Xl0 and Yl0 are two

finitely presented Al0 -schemes for some io, and we write Xt and Yt to
denote their base changes over At for all i > io (and likewise for X and
Y over A), then the natural map of sets

fir^HomA(^, Yt) HomA(X, Y)

is bijective.

(2) A map f0: Xl0 Yl0 acquires property P upon base change to some

At if and only if the induced map /: X -A Y over A has property P,
where P is any of the following properties: closed immersion, separated,

proper, smooth, affine, flat, open immersion, finite, fibers non-empty and

geometrically connected of pure dimension d.
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(3) Any "descent" Xl0 over Al0 of a finitely presented A-scheme X is

essentially unique up to essentially unique isomorphism in the following
sense: for finitely presented Al0 -schemes Xl0 and X[ whose base changes

over A are identified with X, there exists some i > z0 and an isomorphism
ht: Xt ~ X[ compatible with the common identification with X upon base

change to A, and if ht and Ht are two such isomorphisms then for
some i' > i the induced isomorphisms ht> and Htr are equal.

Proof Apart from (2), this is [EGA, IV3, §8.8, §8.9]. To handle the

list of properties P is a lengthy task that is exhaustively developed in [EGA,
IV3, §8.10 - §11], where many more properties are also considered (but we

only need the ones mentioned above); a good place to begin is [EGA, IV3,
8.10.5].

Remark 3.5. In practice, the two examples of {At} of most interest to

us will be {Af^} (with limit AF) and {0^} (with limit F). Due to the

example {0^} in which Xs is visualized as fibered over the curve Spec

with X as the generic fiber, in general we sometimes call Xl0 a "spreading
out" of X.

We now apply Theorem 3.4(1) to a finite type F-scheme X: pick a

finite set S of places such that there is a finite type öFjs -scheme Xs with
generic fiber X. For any finite set Sf of places of F containing 5, we
define XS' over (DFjSt to be the base change of Xs. Note that for any
morphism of -schemes SpecA^/ -A Xs* for some V, if S" is a finite
set of places of F containing Sf then we get an induced map of öF,s" -schemes

Spec Af,s" -a Xs» by base change since AF,s" ®f,s" ®of s, AF^f • Likewise,
by passing to generic fibers we get an F-scheme map Spec AF -aX. Putting
this together, we get a natural map of sets

(3.1) lin^Xs'(AFß') lin^Xs(AFß') -A XS(AF) X(A^)

that is readily checked to equal the limit of the base change maps. In this

limit process we only consider Sf containing S, and increasing S at the outset
has no impact. Theorem 3.4(1) makes precise the sense in which the direct
limit on the left side of (3.1) is intrinsic to X. By Theorem 3.4(3), the left
side of (3.1) is naturally a (set-valued) functor of the F-scheme X.

We can do better: the left side of (3.1) is naturally a topological space
in a manner that respects functoriality in X, and (3.1) is bijective. Before

explaining this, we note that the left side of (3.1) is what Weil defines to be
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the adelization of a finite type F-scheme X. It is by means of this bijection
that we shall transport a topological structure to the right side of (3.1) for
general X, recovering the topological construction for affine X in §2.

Bijectivity of (3.1) is obvious for affine X, because if

F[tu ,tn]/(Ji,... Jm) -> Af

is a map of F-algebras then for some finite set S of places of F, the t/s all
land in AF^S and the ffs all have coefficients in 0F,s- To establish bijectivity
without assuming X to be affine, the key point is that since AF lim AFj*
and Xs is of finite type over the noetherian ring Qf,s> we can rewrite (3.1)
as the natural map

lim UomAp s, (Spec AFiS>, (Xs)Ap s, HomÄF(Spec AF, XAf)

and this is a bijection by Theorem 3.4(1) (applied to Af figiA^')-
Before we establish some topological properties of (3.1), we need some

notation. For an Qf,s-scheme Xs and a place v of F not in S (i.e., v is a

maximal ideal of 0F,s), we will write XSjV to denote the base change of Xs

over the completion Qv at p. For any v, we write Xv to denote the base

change of Xs (or Xs,v) over the fraction field Fv of 0V.

Theorem 3.6. Let Xs be a finite type ÖF,s -scheme. Using the projections
from AF^s to Fv for v G S and to Qv for v £ S, the natural map of sets

(3.2) Xs(Afs) x
ves v(£S

is a bijection. When X is affine and we give both sides their natural topologies,
using the product topology on the right side, this is a homeomorphism.

In general, if we use the bijection (3.2) to define a topology on Xs(AFß),
then for any finite sets ofplaces S' C S" containing S and the corresponding
base changes Xs> and Xs>> of Xs over 0F^' and ÜF^" respectively, the natural

map Xs>(AFis>) Xs>>(AF^") is an open continuous map of topological spaces
and it is injective when Xs is separated over 0F,s-

In this theorem, we are using Remark 3.2 to give the Xv(Fvys
and Xs?v(öv)'s their natural topologies.

Proof. The bijectivity aspect amounts to the claim that a morphism of
Of,5-schemes SpecAF,s —» Xs is uniquely determined by its restriction to
the open subschemes SpecFv (v G S) and Specö^ (v £ S), and that it
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may be constructed from such arbitrary given data. Note that the quasi-

compact Spec AFjS is not the disjoint union of these infinitely many pairwise
disjoint non-empty affine open subschemes.

The bijectivity assertion has nothing to do with adele rings, and is a special

case of the following more general fact. Let {Rt} be a collection of C-algebras
for a ring C, and let R n*. denote the product. Note that {Spec(T^)} is a

collection of disjoint open subschemes of the quasi-compact scheme Spec(R)

(so this is not a cover of Spec(R) if infinitely many of the Rt are nonzero).
Let X be an arbitrary C-scheme, and consider the natural map of sets

(3.3) X(fl) ^ IJXCR.),

where X(R) denotes the set of R-valued points of X over C, and similarly
for each X(Rt). We claim that this map is injective when X is quasi-separated

(i.e., quasi-compact opens in X have quasi-compact overlap, such as locally
noetherian or separated X) and is surjective when X is quasi-compact and

the Rt's are all local. (This is [Oes, Ch. I, Lemme 3.2], except that the

quasi-separatedness hypothesis is missing from the statement but is used in
the proof.) By taking C 0f,s, {^} to be U and X to be

a scheme of finite type over Qf,s, we would then get the asserted bijectivity
of (3.2).

To prove the injectivity of (3.3) when X is quasi-separated, consider f,g e

X(R) that induce the same Rt -points for all i. To prove that / g, it is

necessary and sufficient that the product map

(/,£): SpecR^XxcX
factors through the diagonal morphism Ax/c- Consider the cartesian diagram

V ^ Spec(7?)

(f,g)

X—^XxcX
&X/C

whose bottom side is an immersion (as for any diagonal morphism of schemes).
We shall prove that the top side is an isomorphism, which will provide the

desired factorization. The immersion Ax/c' X ^ X xc X is a quasi-compact
since X is quasi-separated, so V is a quasi-compact subscheme of Spec(R).

Letting U C Spec(R) denote the open subscheme that is the union of the

disjoint open subschemes Spec(T^) C Spec(R), by hypothesis (f,g)\u factors

through Ax/c and so U C V as subschemes of Spec(R). Thus, it suffices to
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prove that the only quasi-compact (locally closed) subscheme V C Spec(R)
which contains U is Spec(R). (This is an assertion entirely about R ; we have

eliminated X. Note also that when there are infinitely many nonzero Rfis
it is essential to assume that V is quasi-compact, as otherwise we could
take V U to get a counterexample.)

By quasi-compactness of the locally closed V in the affine scheme Spec(R),
there is a quasi-compact open subscheme W C Spec(R) in which V lies as

a closed subscheme. Since U C V C W, if we first treat the case of quasi-

compact open subschemes containing U then we will have W Spec(R),
which is to say that V is closed in Spec(R). Hence, it suffices to treat two
cases: V is open and V is closed. First suppose V is open. In this case,

by quasi-compactness of V the closed complement Spec(R) — V is the zero
locus of a finitely generated ideal ICR. The containment U C V of open
subschemes of Spec(R) is the set-theoretic property that U JjSpec(T^)
is disjoint from the zero locus of /, or in other words the image of I
under each projection R -A Rt is the unit ideal. We are therefore reduced to

proving that a finitely generated ideal I in R is the unit ideal if it induces

the unit ideal in each Rt. (The finiteness hypothesis on I is crucial; it is

easy to construct ideals in AF^S that are not finitely generated but generate
the unit ideal in each standard factor ring: consider the ideal generated by
elements that have a uniformizer component in all but finitely many places.)
Let 0i,... ,an £ R Y\Rt be generators of I. By hypothesis, for each i
the elements a\^ ,an^ £ Rt generate 1, say 1 with rJ:l £ Rt.
Hence, for r7 (r^) £ R we have Y^rjaj ^ in R, so I (1).

This settles the case when V is open in Spec(R), and now consider the

case when V is closed. In this case we run through a similar argument with
the (perhaps not finitely generated) ideal of R whose zero locus is V : the

algebraic problem is to show that if I is an ideal in R that projects to 0 in
each Rt then 7 0. But this is trivial, and so completes the proof that (3.3)
is injective when X is quasi-separated.

(Our trivial argument in the closed case shows that U is scheme-

theoretically dense in Spec(R), but beware that it need not be topologically
dense and so it is essential that the containment U C V is taken in the

scheme-theoretic sense rather than in the weaker topological sense. This is

illustrated by the following example which was brought to my attention by
Moret-Bailly. Take C k to be a field and Rn k\t\/(tn+l) for n > 0, and

consider the closed subscheme V Spec (R/(r)) of Spec(R) defined by killing
the "diagonal" element r (7,7,...) - This V does contain U topologically
since it clearly contains every point of U, but it does not contain U scheme-
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theoretically since Spec(Rn) is not contained in V for any n > 1. Moreover,
the underlying space of V is not all of Spec(R) since r is not nilpotent
in R.)

Now we prove that (3.3) is surjective when X is quasi-compact and

each Rt is local. Assume we are given C-maps xt: SpecRt -A X for
all i. We claim that there exists x £ X(R) inducing the given local data.

Let {U\,... ,Un} be a finite affine open covering of X. Since each Rt

is a local ring, the image of xt lands in some U3 (chase the closed

point). Pick one such j(i) for each i, and let V3 be the set of /'s
for which j(i) j (i.e., those i for which we have selected U3 as an

open affine through which xl factors). We have a natural finite product
decomposition R RVj, where Tfy is the subproduct of the product
ring R corresponding to local factors for indices i £ V). Since the Spec

functor carries finite products into disjoint unions, we may focus on each RVj

separately. In other words, we may replace X with U3 so as to reduce to
the case that X is affine. Now the claim is that if Spec7^ -A SpecB are

maps of affine schemes over some affine base SpecC, then there exists a

map of C-schemes (j>: Spec(n^) —^ Spec B inducing each fa. By restating
in terms of ring maps, this is obvious.

Now that (3.2) is proved to be a bijection, we may use the product
topology on its target to endow Xs(Af,s) with a topology. For affine Xs, this

recovers the topology constructed earlier: by using a finite presentation of the

coordinate ring of Xs as an 0F,s -algebra, and recalling how the topology on

points of affine schemes (of finite type) was defined by means of embeddings
into affine spaces, the problem comes down to the trivial claim that the product
topology on s agrees with the product topology on

n^xii0"-
vE:S v(£S

Finally, we have to check that if Sf C S" is an inclusion of finite sets of
places of F containing S, then the map X5/(AF5y) Xs»(&f,s") is an °Pen
continuous map of topological spaces, and is injective when Xg is separated.

Via (3.2), this map is (topologically) the product of three maps: the identity
maps on anc* on and the base change map

n *V(o„) ->• n xv(Fv).
vesf,-sf ves,f-s'

Thus, we are reduced to show that for v ^ S, the natural map X^?v(öv) ~^XV(FV)
is continuous and open, and injective when Xs is separated. The injectivity
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for separated Xs follows from the valuative criterion for separatedness, so we

just have to check continuity and openness.

In general, for a finite type scheme X over a complete discrete
valuation ring 0 with fraction field K given its natural topology, we claim
that X(0) -A Xk(K) is a continuous open map. If U is an open subscheme

of X, then by Proposition 3.1, U(0) is open in X(0). Since X(0) is the

union of the £7^(0)'s for {Ut} an open covering of X, our problem is of
local nature on X. Hence, we may assume X is affine. By picking a closed

immersion of X into an affine space over 0, the fact that G" is open in Kn

then provides what we need.

Using Theorem 3.6 to topologize XS(AF^S) for finite type öFj-schemes Xs,
it is immediate from the construction that this topology is functorial in Xs, has

a countable base of opens, carries fiber products into fiber products, and carries

closed immersions into closed embeddings (use Proposition 3.1 and the fact
that an arbitrary product of closed embeddings is a closed embedding). For

open immersions Us <—^ Xs it is not true in general that Us(AFj) Xs(AFjS)
is an open embedding, though it is a topological embedding. Indeed, an

arbitrary product of open embeddings is a topological embedding but usually
does not have open image. This is the reason that the construction of the

topology on XS(AF^S) in the non-affine case has to be done globally via the

product decomposition in (3.2), without trying to glue topologies coming from

open affines in Xs.

COROLLARY 3.7. Let Xs be a finite type 0Fys-scheme. The topological
space Xs(AF:s) is locally compact, and is Hausdorff when Xs is separated.

Proof. Since our topology construction commutes with products and

carries closed immersions to closed embeddings, it is clear that if Xs
is separated then Xs(AFj) is Hausdorff. As for local compactness, we
want the infinite product space Xs(AFjS) to be locally compact. Since

the factor spaces XV(FV) are locally compact for v £ 5, we just have

to check that X^(0V) is compact for v £ S. More generally, for any
compact discrete valuation ring R and any finite type R-scheme X, we
claim X(R) is compact. Proposition 3.1 shows that for a finite open affine

covering {Ut} of X the spaces {£7,(7?)} form a finite open covering
of X(R), so the problem comes down to the affine case, which in turn
is reduced to the trivial case of affine space (Rn is compact since R is

compact).
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4. Topological properties

Let X be a finite type F-scheme. We use Theorems 3.4 and 3.6 along
with the bijection (3.1) to give X(Ap) a topological structure that is functorial
in X and coincides with the topology in Proposition 2.1 when X is affine. To

make sense of this, we need to briefly recall how one topologizes direct limits.
If {Ta} is a directed system of topological spaces, with direct limit set T

as sets, we declare U C T to be open if and only if the preimage of U in
each Ta is open. This is readily checked to be a direct limit in the topological
category. In general such abstract topologies are hard to handle. However, the

case when transition maps are open involves no subtlety: if Ta Ta/ is an

open continuous map for all a' > a, then T is the directed union of the

images Ua of the Ta and by giving each Ua the quotient topology from Ta

it is clear that the topology on T is characterized by declaring the topological
spaces Ua to be open subspaces.

The functor X ^ X(AF) does not generally carry open immersions over
to topological embeddings, but closed immersions do go over to closed

embeddings of topological spaces (due to openness of the transition maps in
the above topological direct limits). Since the behavior of quotient topologies
with respect to fiber products (or even absolute products) is subtle in general,
the topology on X(AF) is probably rather hard to work with unless we impose
a hypothesis on X to ensure injectivity and openness of the transition maps
in the limit of XS'(AF^)^- We see from the final part of Theorem 3.6,

as well as Theorem 3.4(1), that assuming X is separated over F ensures
the injectivity. Thus, if X is F-separated then (3.1) expresses X(AF) as a

direct limit of locally compact Hausdorff spaces with transition maps that

are open embeddings. In this way, we see that X(AF) is locally compact
and Hausdorff (with a countable base of opens) when X is F-separated,
and moreover that this topology is compatible with fiber products for
general X.

The preceding defines, for finite type separated F-schemes X, a functorial

locally compact Hausdorff topology on X(AF) with a countable base of
opens, and this topology is compatible with fiber products and carries closed

immersions between such F-schemes into closed embeddings of topological
spaces. Moreover, if X is the generic fiber of a separated finite type
Of,5-scheme Xs, then Xs(AFjs) is naturally an open subset of X(AF). As a

special case, when X is a group scheme of finite type over F (automatically
separated), the set X(AF) is naturally a locally compact Hausdorff topological

group.
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Example 4.1. It is a common mistake to expect that if {Ut} is an open
affine cover of X then {(/;(A^)} covers X(AF) set-theoretically. This is false

even if X is affine, because the image of a morphism Spec AF -a X need not
be contained in any of the Ut9s. Moreover, the set U^(Af) inside
is not independent of {Ut} in general, and in particular it is not intrinsic
to X.

Example 4.2. Let F -a F' be a finite extension of global fields, and X'
a quasi-projective F'-scheme. Let X denote the Weil restriction Rgsf,/f(X'),
which exists and is separated and finite type over F [BLR, pp. 194—196].

(The same reference applies with F -A F' replaced by any finite locally free

ring map, such as a finite extension of Dedekind domains. In the generality
of finite locally free ring maps, the Weil restriction operation preserves
quasi-projectivity, although this is not obvious from the construction; see

[CGP, Prop. A.5.8].) Since naturally X(AF) X'(AF/) as sets, we are led

to ask if this is an equality as topological spaces. Here is an affirmative

proof.

In the affine case the equality of topologies follows from Example 2.4

(applied to the base changes of X' and X over R' Apt and R AF

respectively). In the general case, fix a finite set So of places of F such

that X' extends to a quasi-projective ÖF> ^-scheme X's,, where Sf0 is the

preimage of So in Ff. Thus, Res0 ,/qfs(XL) exists as a finite typeF Sq/ 0

and separated Of,s0 -scheme Xo, and Xo(A^s) ^(A^/) as sets for

any finite set S of places of F containing So and for its preimage S'

in F'. By the definition of the topology on the adelic points (as a

direct limit with open transition maps), the problem of topological equality is

reduced to checking that the equality of sets Xo(A^0) Xfs/(AF^o) (for
general So) is a homeomorphism. These topologies are defined as product

topologies, and so the problem reduces to checking that for each place

v e So the equality of sets Ylv'^X'(F'v/) ResFt /f(X')(Fv) is a

homeomorphism and that for each place u of f not in So the equality of
sets

IK(<W) Res0f, s,/ÖFSa(X's,)(öF,v)

v'\v

is a homeomorphism. This second homeomorphism claim is a formal

consequence of the first one (applied with So increased to contain v), so we can

focus on the case of field-valued points with any place v.
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Defining F'v F' ®F Fv ~ F'v, and

x'v=f'v ®F, x'=nx,
v'\v

we have

ResFrjF(X')Fv Res^v/^(X^,) Y\ ^sf'v,/fvQ^v') •

v' IV

Thus, the problem reduces to one over local fields: if k'/k is a finite
extension of fields complete with respect to compatible nontrivial absolute

values and if Y' is a quasi-projective -scheme of finite type, then we claim
that the identification of sets Reskr/k(Yf)(k) Y'(k') is a homeomorphism.
Since any finite subset of Yf lies in an open affine, the construction of these

Weil restrictions in terms of affine opens reduces us to the case when Y'

is affine. We can then apply Example 2.4 with the ring extension k'/k.
This concludes the proof that Weil restriction for quasi-projective schemes is

compatible with the topology on adelic points.

Though Example 2.2 shows that X(F) is a discrete closed set in X(AF) for
finite type affine F-schemes X (as F is discrete and closed in AF), globalizing
to the non-affine case usually destroys such properties. The following example
shows that for separated X, it can happen that the Hausdorff space X(AF) is

compact with X(F) a dense proper subset that is neither closed nor discrete

in X(AF). In general, a dense proper subset of a compact Hausdorff space

can have the discrete topology as its subspace topology, such as {l/n}n>i
inside {0} U {l/«}„>i.)

Example 4.3. Choose n > 0. Since P"(G„) Pn(Fv) for all v j oc, the

bijection in Theorem 3.6 yields a bijection

P"(Af) P"(Foo) x n P"(0„) P"(Foo) x Y[ P"(FV) n P"(FV)
v\oo vfoo V

with the infinite product defining the topology (so it is compact Hausdorff).
In the special case n 1, when AF is identified with the set of -points
of the standard affine line in its resulting subspace topology is induced

by the product topology on YlvFv (so it is not locally compact).
For any finite non-empty set S of places of F, let Fs lives • By

weak approximation in the affine space of matrices Matw+i over F, GLw+i (F)
is dense in GLw+i(Fs). Thus, PGLw+i(F) is dense in PGLw+i(E5), so any
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point in Pn(Fs) can be moved by a suitable projective change of coordinates

over F so that its projection into each Vn(Fv) (v e S) is not in the standard

hyperplane at infinity. It then follows from weak approximation in affine

n-space that Pn(F) is dense in PW(F^). Varying S, Pn(F) is dense in PW(A^).
The subspace topology on Vn(F) is not the discrete topology, as we can see

by computing away from the standard hyperplane at infinity.

PROPOSITION 4.4. Let X -A Y be a proper map between separated
F -schemes of finite type. The induced map X(AF) -A Y(AF) between locally
compact Hausdorff spaces is topologically proper.

In particular, if X is proper over F then X(AF) is compact, and

if moreover Xs is a finite type (DF,s -scheme with generic fiber X then

X(AF) Xs'(Apjf) far every sufficiently large finite set of places S' of F
that contains S.

Proof. By increasing S if necessary, by Theorem 3.4(2) we can assume

that X -A Y arises from a proper map Xg -A Yg between separated finite type

Opj-schemes. Since X(AF) has an open covering given by the Xs(AF^')
for S' containing S, the assertions for F-proper X are immediate from the

general properness assertion for X(AF) -a Y(AF). Thus, we focus on this
latter assertion.

For any v £ S, the valuative criterion for properness ensures that under the

map XV(FV) -A YV(FV) the preimage of lyV(CC) is (Qv). Hence, for any S'

containing S, the preimage of Yg(Ap^) under Y(AF) is Xg(Ap^).
Upon renaming V as S, it suffices to prove that Xs(AFjs)—> YS(AF^S) is proper.
Since Ys(AFj) is a topological product of the spaces YV(FV) for v £ S and

the compact spaces ^ YV(FV) for v ^ S, and similarly for Xg,
we are reduced to proving that if /: X Y is a proper map between

separated schemes of finite type over a locally compact field K, then the

map X(K) —) Y(K) between locally compact Hausdorff spaces is proper.
We will say that a proper map of schemes is projective if it factors,

Zariskidocally over the base, as a closed immersion into a projective space

over the base. The properness assertion on K-points is clear when /: X Y

is projective in this sense. In general, we shall argue by induction on
dimX (allowing any Y), the case of dimension 0 being clear (for all Y).
We may assume that X is reduced and irreducible, so by Chow's Lemma
there is a surjective projective birational ^-map f:Xf -a X with X' a

reduced and irreducible scheme such that X' is also projective over Y.
Choose a proper closed subset Z C X such that / is an isomorphism
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over X-Z. Clearly X(K) Z(K) and Z(K) is 7(/Q-proper
since dimZ < dimX. Also, X'(K) is 7(/f)-proper and X(/Q-proper since X'
is projective over Y and X, so the maps Z{K)]\X'{K) -A Y(K) and

Z(K)\\X'(K) -» X(K) are proper. Hence, the map X(K) Y(K) between

Hausdorff spaces is proper.

The final topic we address in this section is openness properties for the

map on adelic points induced by a smooth (e.g., etale) map of schemes. This
is inspired by the fact that if X' -a X is a smooth /Gmorphism between

arbitrary algebraic A'-schemes for a field K complete with respect to a

nontrivial absolute value then the induced map X'(K) -A X(K) is open. Let
us first briefly review the reason for such openness on /Gpoints.

By working Zariski-locally, any smooth map factors as an etale map to

an affine space [EGA, IV4, 17.11.4]. This reduces us to the case of an etale

map, and by the local structure theorem for such maps [EGA, IV4, 18.4.6(h)]

we may work Zariski-locally to get to the case when X Spec B and X'
is Zariski-open in Spec{(B\u\/(h))h') for a monic h £ B[u\ with positive
degree. It therefore suffices to consider the case X' Spec((B\u\/(h))h>). By
expressing B as a quotient of a polynomial ring over K and lifting h to a

monic polynomial over such a polynomial ring, we may suppose that X is an

affine space over K.
The setup is now a consequence of "continuity of (simple) roots" over K.

That is, if g J2cjUj £ K\t] is a monic polynomial of degree n > 0 and

if uq £ K is a simple root of g then we claim that for any e > 0 there

exists 5 > 0 such that every degree- n monic polynomial G =J2CjUj £ K[u\
satisfying | C, — cj\<6 for all j < n has a unique root uf0 £ K satisfying
\uf0-uo\ < s and it is a simple root. This is very classical in the archimedean

case, and in the non-archimedean case it is a key ingredient in the proof of
Krasner's Lemma; see [BGR, 3.4, p. 146] (with t 1 there) for a proof.

The analogous openness result for adelic points requires additional

hypotheses. For example, the Zariski-open immersion of the multiplicative
group into the affine line over F induces the natural inclusion Af -A AF
which is not even a topological embedding and does not have open image.
Even if we restrict ourselves to surjective etale maps there are counterexamples:

the nth-power map Gm Gm for n > 1 not divisible by char(E) is a

finite etale map that induces the nth-power map A^ whose image is

not open. The defect of these examples is that they have fibers which are either

empty or geometrically disconnected. This is bypassed by the hypotheses in
the next result.
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Theorem 4.5. Let f: X' —) X be a smooth surjective F -map between

separated F -schemes of finite type. If the fibers are geometrically connected

then the induced map X\Ap) -A X(Ap) is open.

This result is stated and proved in [Oes, Ch. I, 3.6] in the affine case (and

our proof is simply a more general version of the argument to avoid affineness

hypotheses).

Proof. By Theorem 3.4(2) we may and do choose a finite set S of places

of F so that / is the map on generic fibers induced by a smooth surjective

Qf,s-map fs: Xfs Xs with geometrically connected fibers, where Xfs

and Xs are separated G^-schemes of finite type. By varying through
finite T D S (promptly renamed as 5), it suffices to prove that the induced

map X's(Af,s) —^ Xs(Af,s) is open. This is a map of product spaces, and more
specifically is the product of the induced maps X'V(FV) XV(FV) for v £ S

and I^(OJ -A Xs^Ou) for v ^ S. These latter maps on (Dv -points are

induced by the corresponding maps on Fv -points, so (by definition of the

topology on a product space) we are reduced to checking two facts:

(i) the smooth TVmap fv:X'v Xv induces an open map on Fv-points for
all v,

(ii) for all but finitely many v ^ 5, the map (0V) -A XS,V(0V) is surjective.
The openness of the map on Fv -points for all w is a special case of

the more general fact, explained in the discussion immediately preceding
Theorem 4.5, that if K is any field complete with respect to a nontrivial
absolute value and f: X' -a X is a smooth map between ^-schemes locally
of finite type then the induced map X'(K) -A X(K) is open.

Returning to our setup over Qf,s, it remains to show that fs induces

a surjective map on 0V -points for all but finitely many v £ S. Letting kv

denote the finite residue field at v, it suffices to prove surjectivity of the

map on kv -points for all but finitely many such v. Indeed, granting such

surjectivity for a particular v ^ S, if x: SpecO^ -AXs,v is a section then the

pullback of the smooth öv -map fs)V along x is a smooth Qv -scheme that (by
hypothesis) has a rational point in its special fiber. Since (Dv is henselian, such

a rational point in the special fiber lifts to an (Dv -point [EGA, IV4, 18.5.17],
and this lies in X's (öv) over x as desired. The surjectivity on kv -points for
all but finitely many v £ S is an assertion in algebraic geometry for separated
schemes of finite type over 0F,s and has nothing to do with adelic points.
To prove it we may pass to connected components of X and increase S by a

finite amount so that the smooth and geometrically connected (and non-empty)
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fibers of fs have a common dimension d.
We now appeal to the following relative version of the Lang-Weil estimate

for smooth geometrically connected varieties over a finite field, allowing for
families over finite fields with varying characteristics:

LEMMA 4.6. Let f: Y -A B be a smooth separated surjective map between

finite type Z -schemes such that the fibers are geometrically connected of
dimension d. There is a constant C > 0 such that for all closed points b G B,

(4.1) \#Ybm))-qdb\<Cqdb~1/2,

where qt #k(b).

Proof. This is [Dell, Cor. 3.3.3] applied to the constant sheaf Qi on Y

(which is pure of weight 0), but for the convenience of the reader we say

a bit about what underlies the proof. By stratifying B, we can assume it is

a Z[l/f]-scheme for a prime £. Consider each £-adic sheaf R'/i(Q^) on B.
It is constructible, vanishes for i > 2d, and has fiber at a geometric point b

over a point b G B naturally identified with Hlc(Y^ Q^). Also, for i 2d this
sheaf is Qe(—d) since / is smooth with geometrically connected non-empty
fibers of dimension d.

The Grothendieck-Lefschetz trace formula implies
2d

mm)) yy-l)'Tr(<^|H
1=0

for each closed point b G B, where fb is the geometric Frobenius element

in Gal(k(b)/k(b)). The contribution for i 2d is and by Deligne's
generalization of the Riemann Hypothesis [Dell, Thm. 3.3.1], the eigenvalues
of fb on Hlc(Y-ß,Qi) are ^-Weil numbers of weight at most i (i.e., algebraic

numbers whose complex embeddings all have a common absolute value q^2
for some w <i). In particular, the ith trace term in the above formula is an

algebraic number all of whose complex embeddings have absolute value at

most ntffr2, where nx is an upper bound on the fibral ranks of the constructible
sheaf Rlf(Qi). Allowing i to vary from 0 to 2d — 1, we obtain (4.1).

We apply the lemma to fs to conclude that for any closed point
x e Xs with associated residue field k(x) of size qx there is an estimate

|#fs~l(x)(k(x)) — qdx | < Cqx~1^2 for a constant C > 0 that is independent
of v. Hence, if qx is sufficiently large then the fiber ffl(x) must have a

k(x) -rational point. This applies in particular to any kv -point of Xs when #kv
is sufficiently large, and so applies to all but finitely many v ^ S.
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5. Algebraic spaces

We now show how Weil's topological method works for adelic points
of separated algebraic spaces of finite type over a global field F (and we
also consider the non-separated case over local fields). In this section, we

assume the reader is familiar with the basic properties of algebraic spaces,
as developed in [Kn]. We will work with quasi-separated algebraic spaces (as

is the case throughout [Kn]), which is weaker than the separatedness that we
shall need to obtain the main topological results in the adelic setting.

The first step is to verify that Theorem 3.4 is valid with finitely presented

algebraic spaces in place of finitely presented schemes. This is proved by an
etale descent argument to upgrade from schemes to algebraic spaces, and is

explained in (the proof of) [Ols, Prop. 2.2] apart from the property of having
fibers non-empty and geometrically connected of pure dimension d. So now
we address this latter fibral property.

By using etale scheme covers, the condition that fibers are non-empty of
pure dimension d can be reduced to the settled scheme case. For the property
of geometric connectedness of fibers, we need to do more work. Exactly as

in approximation arguments for schemes, it suffices to prove:

Lemma 5.1. If Xo —> Spec(^o) is a finitely presented algebraic space
over a ring Bo and n E Z is an integer then the locus in Spec(^o) where

the geometric fiber has n connected components is constructible.

Proof. By applying the descent of finitely presented algebraic spaces

through the limit process (using an expression for B0 as a direct limit of
noetherian subrings), it suffices to treat the case when Bo is noetherian.

Noetherian induction reduces the problem to showing that if B0 is a domain
then the number of connected components of the geometric generic fiber
coincides with the number of connected components on the geometric fibers

over some dense open in the base.

Since we have "spreading out" for algebraic spaces as well as the other

properties in Theorem 3.4(2) (especially the properties of being a closed

immersion or open immersion), we can conclude by arguing exactly as

in the case of schemes [EGA, IV3, 9.7.7] (using dense open schemes in

quasi-compact quasi-separated algebraic spaces, and reducing certain steps in
the argument back to the scheme case by using etale scheme covers; e.g.,
reducedness can be verified using an etale scheme cover, and to carry over
[EGA, IV3 9.5.3] to algebraic spaces we use that an open subset of a scheme
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of finite type over a field is dense if and only if the same holds after pullback
to an etale cover).

We also require the analogue of Theorem 3.6 for algebraic spaces, but we
first focus on the set-theoretic aspect:

PROPOSITION 5.2. Let Xs be a separated algebraic space of finite type

over Öf,s- The map (3.2) is bijective.

Proof. The proof of injectivity goes exactly as in the scheme case, due

to the separatedness hypothesis (to circumvent the fact that the diagonal of a

general algebraic space does not factor as a closed immersion followed by an

open immersion). For surjectivity, we can focus on the factor ring nv^S
of Aaway from S.

Choose a collection of points xv £ Xs(öv) for all v £ S. We seek to

construct x £ ^(EEgs Q-u) recovering xv for all v £ S; there is at most one
such v, and to prove that such an x exists we will use the settled scheme

case and etale descent.

Let 7t: Us ^ Xs be an etale cover by an affine scheme, so this map
is separated (as Us is separated). Its pullback along xv is an etale cover
of Spec 0V, and the special fibers of these maps have degree bounded

independently of v since the fibers of it have bounded degree (as for any
quasi-compact etale map to a quasi-separated quasi-compact algebraic space).

Let A be a uniform upper bound on such fiber degrees, and for each v £ S

let 0V -A 0^ be an unramified extension of degree d Nl. Thus, the

restriction x'v £ Xs(0'v) of xv lifts to some u'v £ Us(Q'v). Since Us is affine,
there is a unique u' £ Us(fl 0^) recovering u'v for every v ^ S.

Let R ELgs and Rf EEgs so R —» Rf is a finite etale cover
of degree d (express each ö'v in the form Öv[t]/(fv) for a monic polynomial

fv £ öv[t] with degree d and irreducible reduction, so Rf R[t]/(f) for

/ (fv) £ R[t] C Yl Qv[t]). Moreover, this is a Z/(d)-torsor by choosing an

identification of Z/(d) with the cyclic Galois groups for the factors rings. We

have constructed a point x' := irou' £ XS(R') which recovers the -point x'v

for each v £ 5, and it suffices to descend x' to an R -point of Xs (since
such a descent necessarily recovers for each v £ S, due to the injectivity
of Xs(öv) Xs((D'v)). Since the functor Xs is an etale sheaf, it suffices to
show that x' is Z/(d) -invariant. By the settled injectivity, it suffices to check
such invariance on the separate factors. Since x'v descends to xv for all v £ S

by construction, we are done.
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To bring in topologies, we need to address the local case. The role of
completeness will be clarified by working with henselian valued fields: a

valued field is a field k equipped with a nontrivial absolute value, and it is

henselian if this absolute value uniquely extends to every algebraic extension.

A characterization of the henselian property is that k is separably algebraically
closed in k. (The complete case is all we will actually need, so the reader

may skip ahead to Proposition 5.4 and restrict attention to complete ground
fields.) By [Ber, 2.4.3], in the non-archimedean case k is henselian if and

only if its valuation ring is henselian in the sense of commutative algebra.

In general if kf/k is a finite separable extension field of a valued field k
then the nonzero finite reduced k-algebra k' ®kk is the direct product of the

completions of kf at the finitely many valuations extending the one on k.
Thus, if k is henselian then k' k is a field of degree \kf : k] over k,
so the archimedean henselian fields are precisely the algebraically closed

subfields of C and the real closed subfields of R (equipped with the induced

valuation). If k is henselian then the functor k' ^ k! (g>k k is an equivalence
between the category of finite etale k-algebras and the category of finite etale

k-algebras: this is obvious in the archimedean case, and is [Ber, 2.4.1] in the

non-archimedean case.

Lemma 5.3. Let k be a henselian valued field. For any etale map Y' -a Y
between locally finite type k-schemes, the natural map Y'(k) -A Y(k) is a local
homeomorphism.

Proof. We may work Zariski-locally on both Y and Y'. By the Zariski-
local structure theorem for etale morphisms [EGA, IV4, 18.4.6(h)], we may
assume Y SpecB is affine and Y' Spec{(B[x\/(h))h') for a monic h E B\x]
with positive degree, say degree n. Compatibility with base change allows

us to reduce to the universal case when Y is affine n-space over k and h

is the universal monic polynomial of degree n. The assertion now takes on
a concrete form: it is exactly "continuity of simple roots" as discussed just
after the proof of Proposition 4.4, except that we are relaxing completeness
to the henselian condition.

Since Y'(k) Y(k) is a local homeomorphism (by the known complete
case) and the inclusions Y'(k) -A Y'(k) and Y(k) -A Y(k) are topological
embeddings, it suffices to prove that under the map Y'(k) -A Y(k), the fiber

over any y E Y(k) consists entirely of k-rational points. This problem concerns
the k-scheme Y' Spec{(k[x\/(h))h') for monic h E k[x] with degree n > 0 :

we claim that all simple zeros of h in k lie in k. Equivalently, we claim
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that all &-points of a finite etale &-algebra E are &-points. This says that the

natural map

Hornk(E, k) -A Hornk(E, k) Hom^(k % E, k)

is bijective, which is a special case of thz functorial equivalence between finite
etale ^-algebras and finite etale k-algebras for henselian valued fields k.

PROPOSITION 5.4. Eet k be a henselian valued field, and X a (quasi-
separated) algebraic space locally of finite type over k. There is a unique

way to topologize X(k) so that the following properties hold: it is functorial,
compatible with fiber products and the case of schemes, open (resp. closed)
immersions in X are carried to open {resp. closed) embeddings in X(k), and
etale maps are carried to local homeomorphisms.

If X is separated then the topology on X(k) is Hausdorff, and it is

totally disconnected (resp. locally compact) when k is non-archimedean (resp.

locally compact).

If k is complete and X is smooth then X(k) admits a unique functorial
k -analytic manifold structure which agrees with the scheme case and carries
etale maps to k -analytic local isomorphisms.

I am grateful to A.J. deJong and L. Moret-Bailly for independently
suggesting the method of proof below; it is much simpler than my original
method (which required completeness and separatedness throughout, and more

importantly rested on the main theorem from [CT], entailing a long detour

through Berkovich spaces).

Proof. The uniqueness holds due to the requirement on etale maps and the

fact that for every x G X(k) there exists an etale map U —X from a scheme U

admitting a point u G U(k) such that u x [Kn, II, Thm. 6.4]. (This ensures,

using a large disjoint union, that there is an etale scheme cover U —»X such

that U(k) -A X(k) is surjective.) For separated X the Hausdorff property of X(k)
is a formal consequence of the desired compatibility with closed immersions
and fiber products, and the assertions concerning local compactness and total
disconnectedness are also easy to verify via the scheme case when X is

separated (using that X(k) is Hausdorff to establish the totally disconnected

property).
To prove existence with the asserted properties, consider the etale

maps f:U—>X from finite type k-schemes U. As we vary through such

maps, the images f(U(k)) C X(k) cover X(k). We claim that the strongest
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topology on X(k) making the maps U(k) -A X(k) continuous (i.e., a subset

of X(k) is open when its preimage in each such U(k) is open) does the

job.
If /: U X and f:U' X are two such etale maps, consider

the induced maps <fi: U(k) X(k) and <pf: U'(k) X(k). For an open
set V' C U'(k), (j)~l{<i)'{y)) P\(P2l(y')) where pt is the ith projection
on (U xx U')(k) U(k) xX(k) U'(k). Equip (U xx U')(k) with its natural

topology using that U xx U' is a scheme. Then the pt are local homeo-

morphisms, due to Lemma 5.3 and the projections U xxU' =4 U,U' being
etale maps of schemes, so is open in U(k). Thus, if a subset

of X(k) is the image of an open set in some U'(k) (such as being contained

in <fi'(U'(k)) with open preimage in U'(k)) then it has open preimage in any
other U(k). In particular, any open set in U(k) has image in X(k) whose

preimage in U(k) is open (by taking U' U).
It follows that if we declare a subset of X(k) to be open when it has open

preimage in every U(k) (i.e., we consider the strongest topology making all

maps U(k) X(k) continuous) then in fact all maps U(k) X(k) arising from
schemes U etale over X are continuous and open. In particular, since there

is always an etale map U X from a scheme U such that the continuous

open map U(k) -*X(k) is surjective, it follows that the topology on X(k) is

functorial in X.
To prove that the topology is compatible with fiber products, consider a

pair of k-maps X',X" =4 X and compatible k-maps U' ,U" =4 U among
schemes etale over these algebraic spaces. Then U' xv U" X' xxX" is an

etale map from a scheme, and the composite map

(U' Xu U")(k) u'(k) xu(k) U"(k) A X'(k) xx(k)X"(k) (X' xxX")(k)

as well as the middle map h are continuous and open. Thus, since the

left map is a homeomorphism, it follows that the right equality is continuous

and open on the image of h when we use the fiber product topology
on X'(k) xX(k)X"(k). Varying these etale schemes, it follows that the identification

X'(k) xX(k)X"(k) (Xf xxXn)(k) is a continuous open bijection, hence

a homeomorphism.
To complete the proof of existence, it remains to verify that if /: X' -A- X is

an open immersion (resp. closed immersion, resp. etale) then X'(k) —) X(k) is

an open embedding (resp. closed embedding, resp. local homeomorphism).
Assume / is an open (resp. closed) immersion, and let U X be an etale scheme

cover such that U(k) —) X(k) is surjective. The pullback U' := U xxX' is an

open (resp. closed) subscheme in U and U'(k) U(k) xx{k)X'(k) topologically
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due to the established compatibility with fiber products. Since U' U is

an open (resp. closed) immersion, U'(k) -A U(k) is an open embedding
(resp. closed embedding). Thus, for any subset T C X'(k) that is open (resp.

closed), its image in X(k) has pullback in U(k) that is equal to the image
under U'(k) <-A U(k) of the preimage of T in U'(k). This implies that f(T)
is open (resp. closed) in X(k) since U(k) X(k) is topologically a quotient
mapping.

Now consider the local homeomorphism property for X'ik) -A X(k)
when f\X'—±X is etale. Choose a separated etale scheme cover U -A X
such that U(k) -A X(k) is surjective, and a separated etale scheme

cover U' -» X' xx U such that U'(k) -A (X' xx U)(k) is surjective. Using such

covers, by Lemma 5.3 the local homeomorphism property for X'(k) -A X(k)
is reduced to the special case of U(k) -A X(k) for an etale map U -A X
from a separated scheme. Since the diagonal U -A U xx U is an open and

closed immersion of schemes (as U is separated and U X is etale),
likewise the natural map U(k) (U xx U)(k) U(k) xx^ U(k) is an open
and closed embedding (when using the fiber product topology on the

target). Thus, for every u £ U(k) there is an open neighborhood in U(k) on
which U(k) X(k) is injective, so the continuous open map U(k) —> X(k) is

a local homeomorphism.

Finally, we address the k-analytic manifold structure when X is smooth

and k is complete. We wish to use the structure on each U(k) transported
via the local homeomorphism U(k) —» X(k) for etale maps U X from
schemes U. To verify that this defines a k-analytic structure, we have

to check the k-analyticity of the transition maps, which amounts to the

observation that for any two etale maps U,U' =4 X from schemes, the maps

PuPi' (U xx U')(k) U(k) xx{k) U'(k) =4 U(k),U'(k) are local k-analytic
isomorphisms (by the known scheme case, ultimately resting on the k-analytic
inverse function theorem and the Zariski-local description of etale maps). This

k-analytic structure is easily proved to be functorial and to carry etale maps
of algebraic spaces over to local k-analytic isomorphisms.

Example 5.5. Let G be a unipotent algebraic group over a henselian

valued field k of characteristic 0 (such as a p-adic field\ i.e., a finite extension

of Q^) and V a reduced k-scheme of finite type equipped with a G-action

(e.g., the coadjoint representation Lie(G)*, as in the orbit method). For d > 0

let Vd C V denote the reduced locally closed subscheme of points whose

G-orbit has dimension d. (This is locally closed due to applying semicontinuity
of fiber dimension to the action map G x V V.)
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The universal action map G x Vd Vd x Vd defined by (g, v) (g.v, v)
is flat over the diagonal (since the closed subscheme of the V-group G x V
defined by the condition g.v v is the V-scheme exp(Gxy)/y(kerß) for
the differentiated vector bundle map B: q x V Tany/^ over V, and ker B
is a subbundle over Vd due to B having constant rank over Vd). Thus,

by [Del2, Prop. 3.11] there is a finitely presented algebraic space X over
k and a faithfully flat map Vc\ -A X that identifies X with the fppf sheaf

quotient of Vd by its G-action, so we denote X as Vj/G. Generally Vd/G
is highly non-separated. The topological space (Vd/G)(k) is locally Hausdorff
and locally compact (and locally totally disconnected). For p-adic k and the

coadjoint representation V Lie(G)* there is interest in using sheaf theory
on (Vd/G)(k) to study the smooth representation theory of G(k) over C.

COROLLARY 5.6. Let f: X Y be a proper map between (quasi-
separated) algebraic spaces locally offinite type over a local field k (possibly
archimedean). The map X(k) -A Y(k) is topologically proper.

Proof. We can choose an etale scheme cover Y' Y such that the local

homeomorphism Y'(k) Y(k) is surjective. It suffices to prove properness of
X(k) x Y(k) Y'(k) -A- Y'(k), so we can applying base change along Y' -A Y to
reduce to the case that Y is a scheme. By using Chow's Lemma for algebraic

spaces [Kn, IV, 3.1], the method of proof of Proposition 4.4 reduces the

problem to the easy case when X is a projective space over Y.

COROLLARY 5.7. Let X be a {quasi-separated) algebraic space locally of
finite type over the valuation ring R ofafield k equipped with a nontrivial non-
archimedean absolute value, and assume that R is henselian. The subset X(R)
in X(k) is open and closed, and if k is locally compact and X is of finite
type over R then X(R) is quasi-compact.

Proof. By construction, the topology on X(k) is obtained from that on the

spaces U(k) for schemes U etale over Xk. In particular, for any scheme U
etale over X the open set U(R) in Uk(k) has open image in X(k). Since R

is henselian, any R-point of X is in the image of U(R) for some etale

map U X (by taking U such that there is a rational point in the fiber
of U —X over the closed point of the chosen R -point of X, and using that R

is henselian). This proves that X(R) is open in X(k). Using a huge disjoint
union, we can construct an etale scheme cover U —) X such that U(R) —) X(R)
and U(k) -A X(k) are surjective. The full preimage of X(k) — X(R) in U(k)
is U(k) — U(R), which is open in U(k), so since U(k) —X(k) is a continuous
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surjective open map it follows that X(k) —X(R) is open in X(k). Thus, X(R)
is also closed in X(k).

Now assume that k is locally compact and X is of finite type over R.
To build the etale scheme U X such that U(R) X(R) is surjective, we

just have to lift the rational points in the special fiber of X Spec R. But
the residue field is a finite field and X is of finite type, so by using a finite
stratification of X by schemes we see that there are only finitely many rational

points in the special fiber. Thus, U can be constructed as finite type over R,
so U(R) is quasi-compact and therefore X(R) is quasi-compact.

As an application of Corollary 5.7, we can carry over verbatim the proof
of Theorem 3.6 to show that for a separated algebraic space Xs of finite

type over 0^, the product topology on Xs(Af,s) via Proposition 5.2 and

Proposition 5.4 is locally compact Hausdorff and induces an open embedding

Xs'(AF,s') Xs"(AFj"),

where Xs> and Xs» are as in Theorem 3.6.

Since Theorem 3.4 is valid for algebraic spaces, the natural map

\hxiXs(AF^') Xs(Ap)

is bijective for any separated algebraic space Xs of finite type over QFjS

(where S' varies through the finite sets of places containing S). Thus, exactly
as in the scheme case, we can functorially topologize X(\F) for any separated

algebraic space X of finite type over F (recovering our earlier topological
constructions when X is a separated F-scheme of finite type). Exactly as in the

scheme case, this is locally compact, Hausdorff, has a countable base of opens,
and is compatible with fiber products and closed immersions. Proposition 4.4
carries over with the same proofs (using Corollary 5.6). For general interest,

we record the latter:

Proposition 5.8. Let f: X Y be a proper map between
separated algebraic spaces locally of finite type over a global field F. The

map X(AF) -A Y(Af) is topologically proper.

The openness result for a smooth surjective E-morphism (as in Theorem

4.5) lies somewhat deeper:
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Theorem 5.9. Let f'.X' -A X be a smooth surjective map between

separated algebraic spaces of finite type over a global field F. Assume that
the fibers of f are geometrically connected. Then the map X'{AF) X(AF)
is open.

Proof. The argument for the scheme case carries over except for the step

of checking surjectivity at the level of rational points over the finite residue

fields at all but finitely many places. For this we just need Lemma 4.6 to be

valid for algebraic spaces of finite presentation over Z. The basic formalism
of etale cohomology works for noetherian algebraic spaces with essentially
the same proofs because of: the finite stratification in locally closed schemes

for noetherian algebraic spaces, formal GAGA for noetherian algebraic spaces

[Kn, V, §6], Nagata's compactification theorem for algebraic spaces (recently
proved, e.g. in [CLO]), and the fact that separated algebraic space curves over
a field are schemes [Kn, V, 4.9ff].

The Grothendieck-Lefschetz trace formula also carries over, since excision

for cohomology with proper supports allows us to use a stratification in schemes

to reduce to the known case of schemes. Thus, we just need that Deligne's
Riemann Hypothesis [Dell, Thm. 3.3.1] holds for separated algebraic spaces
of finite type over a finite field. Once again we can use the excision sequence
and a stratification in schemes to reduce to the known scheme case.

Finally, we address how the topology on X(k) for an algebraic space X
over a field k as in Proposition 5.4 interacts with Weil restriction through
finite extensions kf /k, and then deduce a corresponding global result for adelic

points. We first record how Weil restriction behaves for algebraic spaces:

Lemma 5.10. Let R Rf be a finite locally free ring extension,
and X' a {quasi-separated) algebraic space of finite type over Rf. The

Weil restriction X := Res^/y^pf') as a functor on R-schemes is a (quasi-
separated) algebraic space of finite type over R. If X' is separated (resp. of
finite presentation) over Rf then the same holds for X over R.

See [Ols, Thm. 1.5] for more general results on Weil restriction for algebraic

spaces.

Proof. Let U' -A Xf be an etale cover by an affine scheme, so ResR,/R(Uf)
is an affine scheme of finite type over R (and of finite presentation when X'
is of finite presentation over R'). Since any finite algebra over a strictly
henselian local ring is a finite product of such rings [EGA, IV4, 18.8.10],
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the induced etale map ResR>/R{Uf) ResRt/R(X') of etale sheaves on the

category of R-schemes is surjective. Moreover, the fiber square of this map
is the functor ResR>/R{U' xX' U'). The fiber product U' xx> Uf is quasi-

compact, separated, and etale over U' under either projection because the

same holds for the etale map U' -A X' (since U' is separated and X'
is quasi-separated). But any quasi-compact etale map is quasi-finite, so by
Zariski's Main Theorem [EGA, IV3, 8.12.6] such maps U' xX' U' =$ U'

are quasi-affine when separated. (See [EGA, II, 5.1.9] for the equivalence
of the two natural meanings of "quasi-affine" for finite type schemes over a

ring.) Hence, the finite type Rf -scheme U' xX' U' is quasi-affine, so it is also

quasi-projective over R!. It follows that ResR>/R{U' xx> U') is represented by
an R-scheme of finite type (even quasi-projective, by [CGP, A.5.8]).

The projections ResR>/R{U' xx> U') =4 ResR>/R{U') are etale since the

maps U' xx> U' =4 U' are etale, and the diagonal

5: ResR>/R{UfxX'Uf) —> RcsRffR(Uf)xspQC(R)R^R'/R(U/) ResR>/R{UfXsvec(Rf)Uf)

is the Weil restriction of U' xx> U' U' Xspec^o U', so 5 is a closed

immersion when X' is separated.

We conclude that Res/?//R(Xf) is an etale sheaf quotient of an affine scheme

equipped with a representable etale equivalence relation having a quasi-compact
diagonal 6 that is a closed immersion when X' is separated. The category of
(quasi-separated) algebraic spaces is stable under the formation of quotients by
etale equivalence relations having quasi-compact diagonal [LMB, Prop. 1.3],
so Res/?//R(Xf) is an algebraic space and it is separated when X' is separated.

It is finitely presented over R when X' is finitely presented over R' since in
such cases by construction Res^/jR(X') admits a finitely presented etale cover

by an affine scheme of finite presentation over R.

PROPOSITION 5.11. Let kf/k be an extension of henselian valued fields,
and X a {quasi-separated) algebraic space locally of finite type over k.

(1) If \kf : k] is finite then for any {quasi-separated) algebraic space Y' of
finite type over kf, the identification of sets Resk'/k(¥'){k) Y'{k') is a

homeomorphism.

(2) The natural map X{k) X{k) X^{k) is a topological embedding.

(3) Assume X is covered by separated Zariski-open subsets. The natural

map X{k) X{kf) Xk>{k') is a topological embedding, and it is a
closed embedding when k is closed in k'.

We will not use (3) (whose proof rests on [CT] when \kf : k] is infinite).
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Proof. First consider (1). For / G Y'(k'), choose an etale map U' -A Y'

from an affine scheme U' such that there exists u' G U'ik') over y'.
Then U := Resk'/k(Uf) is an affine scheme of finite type over k and the

induced map U Y is etale (by the functorial criterion, or the construction
of Y). Moreover, this latter map carries the point u G U(k) U'(k')
corresponding to u' over to the point y G Y(k) Y'(k') corresponding to /.
In the commutative square

U(k) — u'(k?)

Y(k) — Y'ik')

the vertical maps are local homeomorphisms onto their images, and the top
horizontal map is a homeomorphism due to the known case of affine schemes

of finite type. Thus, the bijective bottom horizontal map is a homeomorphism
between open neighborhoods of y and /. Since / was arbitrary, we are done

with (1).

For (2), let /: U -A X be an etale cover by a separated scheme such

that U(k) X(k) is surjective. In the commutative diagram

Uik) ^ U(k)

f f
X(k) ^X(k)

the vertical maps are local homeomorphisms (with the left side a quotient
map), the top map is a topological embedding (since U is a scheme), and

the bottom map is injective. It follows that the bottom map is continuous.

To prove that it is a topological embedding, let V C U(k) be an open
set which is the preimage of its image in X(k). We can choose an open
set V' C U(k) which meets U(k) in exactly V. The image f(V') C X(k) is

an open set, and obviously f(V) C X(k) But the reverse inclusion
also holds. Indeed, if v G X(k) has the form f(y') for some v' G V' C U(k)
then necessarily v' G U(k) since the etale k-scheme Ux has all k-points
necessarily k-rational (as k is henselian). This forces v' G V' n U(k) V,
so v G/(V) as required and (2) is proved.

It follows from (2) that in general the property of X(k) X(k')
being a topological embedding is reduced to the analogous assertion using
the completions of k and k!. If k is closed in k' then the resulting
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equality kf D k k in k' forces X(k) X{k') D X(k) inside X{k'), so in such

cases X(k) is closed in X(k') when X(k) is closed in X(kf). Thus, to prove (3)

we may and do now work with complete ground fields. (If \k' : k\ < oc
then [kf : k] < [kf : k] < oo.) We also may and do assume X is separated,
since the problem is Zariski-local on X.

First we consider the finite-degree case of (3) (with complete fields), as

this admits a simpler proof than the general case. By working Zariski-locally
on X we may assume it is of finite type over k, so Res^//k(Xk/) is an algebraic

space over k. Consider the diagram

Xik) -A X(kf) ~ XAk') ~ Resk,/k(Xk,)(k)

in which the first bijection defines the topology on X(k') and the second

bijection is a homeomorphism (by (1)). The composite map is induced on k-
points by the canonical map of k-schemes j: X Resk,/k(Xk>), so to settle the

case when \kf : k] is finite it suffices to prove that j is a closed immersion. It
is equivalent to say that the base change jk>: Xk> -a Reskt/k(Xk/)k' is a closed

immersion. This is a section to an instance of the canonical k'-map

tt: Resk,/k(Y% ^ Y'

defined by Y'(k' ®k A') —^ Y'(A') for k! -algebras A' and (quasi-separated)

algebraic spaces Y' of finite type over kf, so it suffices to note that ir is

separated when Y' is separated. (If Ay /k> is a quasi-compact immersion, so the

same holds for ARev/k(Y')/k /k(&Yf/kf) then any section to ir is quasi-

compact. Hence, even without completeness, X(k) X(k') is a topological
embedding whenever \kf : k] is finite and Ax/k is a quasi-compact immersion.)

To handle the cases when \k' : k] is not assumed to be finite (so we may
and do assume k is non-archimedean, as otherwise we are in the settled finite-

degree case), we will appeal to a more difficult (but ultimately equivalent)
construction of the topology in the non-archimedean complete case, resting

on the main theorem in [CT]. That theorem provides a functorial theory
of analytification Xan (in the sense of rigid-analytic spaces) for separated
algebraic spaces X locally of finite type over k, compatible with fiber products,

open and closed immersions, etale maps, the scheme case, and extension of the

ground field. Moreover, by [CT, Ex.2.3.2] it satisfies the expected functorial

property X(k) Xan(k) as sets. Thus, by using an admissible affinoid open
covering of Xan, this provides another way to topologize X(k) compatibly with
all of the properties required for the uniqueness in Proposition 5.4 (since rigid-
analytic etale maps are local isomorphisms near rational points). Hence, we

recover the topology in Proposition 5.4. Since the formation of Xan respects
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extension of the ground field, the injection X(k) X(k') is topologically
identified with the natural injection Xan(k) -A (Xan)kfkf) that is seen to be a

closed embedding by working with the constituents of an admissible affinoid

open covering of Xan.

COROLLARY 5.12. Let f: X -A Y be a finite map between separated
algebraic spaces locally of finite type over a henselian valued field k. If k is

algebraically closed in k then X(k) -A Y(k) is topologically proper.

The hypothesis that the henselian k is algebraically closed in k holds

if char(k) 0 or k is non-archimedean with an excellent valuation ring.

Proof. Consider the commutative diagram

X(k) ^X(k)

Yik) >- Y(k)

in which the horizontal maps are topological embeddings (Proposition 5.11(2)).
It follows that the diagram is topologically cartesian since it is set-theoretically
cartesian (due to the hypothesis that k is algebraically closed in k). Hence,

it suffices to consider the case when k is complete. We may also work
locally on Y(k), and for any y G Y(k) there is an etale map U -A Y from a

scheme U containing u G U(k) mapping to y. Then U(k) -A Y(k) is a local

homeomorphism near u, so we may pass to X x Y U -A U in place of X -a Y

to reduce to the case when Y is a scheme.

By working Zariski-locally on Y we can then assume that Y Spec(A) is

affine and the Y-finite X is a closed subscheme of Spec(A[q,... • • • ,K))
for some monic hj G A[tfi with positive degree. This reduces the problem
to the special case X Spec (A[>]/(/*)) for a monic h G A[t] with positive
degree. Since a topologically closed map between Hausdorff spaces is proper
when its fibers are finite, it suffices to prove closedness of the map on k-points.
Such closedness follows from the version of "continuity of roots" over k k

(without simplicity requirements) given in [BGR, 3.4.1/2].

Example 5.13. We now show if the hypothesis on X in Proposition

5.11(3) (which is always satisfied in the scheme case) is weakened

to the condition that the quasi-compact Ax/k is an immersion, then the closed

embedding property for X(k) -A X(k') can fail even when k is complete with
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respect to a nontrivial discrete valuation and k! jk is finite separable As the

proof of Proposition 5 11 suggests, the place to look for such X is among those

algebraic spaces which fail to admit an analytification in the sense of [CT]
Let k'/k be a separable quadratic extension of fields, and assume k is complete

with respect to a nontnvial non-archimedean absolute value Let X be the

algebraic space obtained from the affine line L over k by "replacing" the origin
with Spec(k7) In concrete terms, this is the quotient of the affine k7-hne L'
by the free action of the affine etale L-group G obtained from (Z/2Z)L by

deleting the non-identity point over the origin of L The smooth irreducible

algebraic space X L' /G is a lower-dimensional version of the 2-dimensional

non-analytifiable example in [CT, Ex 3 1 1], and as in that example the diagonal

Ax/k 1S easily checked to be a quasi-compact immersion (even affine)

By construction there is a natural etale map X -A L that is an isomorphism
over L - {0} and has fiber Speck7 over 0 Thus, X(k) -A L(k) k misses 0

and hence is a homeomorphism onto kx The construction of X makes sense

using any quadratic etale algebra (l e we allow k x k, and uniquely identify its

k-automorphism group with Z/2Z) In that sense, the formation of X commutes

with any extension of the ground field Thus, is the affine k! - line with a

doubled origin, so X(k') X^(kf) is the non-Hausdorff space built from k'

by doubling the origin The map X(k) -A X(k') is identified with the inclusion
of kx into the k7-hne with doubled origin This has non-closed image

Here is the analogue of Example 4 2 for algebraic spaces

Proposition 5 14 Let F' /F be a finite extension of global fields,
and X' a separated algebraic space of finite type over F' For the separated

algebraic space X Res^/^CX7) of finite type over F, the bijection of
sets X(Af) Xf(AF>) is a homeomorphism

Proof By carrying over the same argument as in the scheme case,

we reduce the problem to the case of local fields This case is settled by
Proposition 5 11(1)

REFERENCES

[Ber] BERKOVICH, V G Etale cohomology for non Archimedean analytic spaces
Inst Hautes Etudes Sei Publ Math 78 (1993), 5-161

[BGR] Bosch, S U Guntzer and R Remmert Non-Archimedean Analysis
A systematic approach to rigid analytic geometry Grundlehren der
Mathematischen Wissenschaften 261 Springer Verlag, Berlin, 1984



WEIL AND GROTHENDIECK APPROACHES TO ADELIC POINTS 97

[BLR] Bosch, S W Lutkebohmert and M Raynaud Neron Models Ergebnisse
der Mathematik und ihrer Grenzgebiete (3) 21 Springer-Verlag, Berlin,
1990

[CT] CONRAD, B and M Temkin Non-archimedean analytification of algebraic
spaces J Algebraic Geom 18 (2009), 731-788

[CGP] Conrad, B O Gabber and G Prasad Pseudo-Reductive Groups
New Mathematical Monographs 17 Cambridge University Press,
Cambridge, 2010

[CLO] Conrad, B M Lieblich and M Olsson Nagata compactification for
algebraic spaces, 2010, to appear m J Inst Math Jussieu

[Con] CONRAD, B Fmiteness theorems for algebraic groups over function fields,
2010, to appear m Compositio Math

[Dell] DELIGNE, P La conjecture de Weil II Inst Hautes Etudes Sei Publ Math
52 (1980), 137-252

[Del2] Categories tannakiennes In The Grothendieck Festschrift, II, 111-
195 Progress m Mathematics 87 Birkhauser Boston, Boston, MA,
1990

[EGA] Grothendieck, A Elements de Geometrie Algebnque Inst Hautes Etudes
Sei Publ Math 4, 8, 11, 17, 20, 24, 28, 32 (1960-7)

[Kn] KNUTSON, D Algebraic Spaces Lecture Notes m Mathematics 203
Springer-Verlag, Berlm-New York, 1971

[LMB] LAUMON, G et L Moret-Bailly Champs algebriques Ergebnisse der
Mathematik und ihrer Grenzgebiete 3 Folge A 39 Springer-Verlag,
Berlin, 2000

[Mil] MlLNOR, J W and J D STASHEFF Characteristic Classes Annals of
Mathematics Studies 76 Princeton University Press, Princeton, N J

University of Tokyo Press, Tokyo, 1974

[Oes] OESTERLE, J Nombres de Tamagawa et groupes unipotents en caract-
enstique p Invent Math 78 (1984), 13-88

[Ols] OLSSON, M C Horn-stacks and restriction of scalars Duke Math J 134
(2006), 139-164

[We] Weil, A Adeles and Algebraic Groups Progress m Mathematics 23
Birkhauser, Boston, Mass 1982

(Regu le 2 septembre 2010)

Brian Conrad

Department of Mathematics
Stanford University
Building 380, Sloan Hall
Stanford, CA 94305

USA
e-mail conrad@math Stanford edu


	Weil and Grothendieck approaches to adelic points

