
On the Van Est homomorphism for Lie
groupoids

Autor(en): Li-Bland, David / Meinrenken, Eckhard

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 61 (2015)

Heft 1-2

Persistenter Link: https://doi.org/10.5169/seals-630590

PDF erstellt am: 14.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-630590


LEnseignement Mathematique (2) 61 (2015), 93-137 DOI 10.4171/LEM/61-1/2-5

On the Van Est homomorphism for Lie groupoids

David Li-Bland and Eckhard Meinrenken

Abstract. The Van Est homomorphism for a Lie groupoid G =£ M, as introduced by
Weinstein-Xu, is a cochain map from the complex C°°(BG) of groupoid cochains to
the Chevalley-Eilenberg complex C(A) of the Lie algebroid A of G. It was generalized

by Weinstein, Mehta, and Abad-Crainic to a morphism from the Bott-Shulman-Stasheff
complex £2(BG) to a (suitably defined) Weil algebra \N(A). In this paper, we will give an

approach to the Van Est map in terms of the Perturbation Lemma of homological algebra.
This approach is used to establish the basic properties of the Van Est map. In particular, we
show that on the normalized subcomplex, the Van Est map restricts to an algebra morphism.

Mathematics Subject Classification (2010). Primary: 55R40, 58H10; Secondary: 22A22,

53D17, 57R20.

Keywords. Lie algebroids, classifying spaces, equivariant cohomology, Lie groupoids,

symplectic groupoids.

Contents

1 Introduction

2 Lie groupoid and Lie algebroid cohomology

3 The Van Est map C°°(BG) -> C(A)

4 The Weil algebroid

5 The Van Est map £2(BG) -> \N(A)

94

96

102

110

117

119

122

128

131

134

6 Van Est theorems

7 Explicit formulas for the Van Est map

A Simplicial manifolds

B Homological perturbation theory

References



94 D. Li-Bland and E. Meinrenken

1. Introduction

In their 1991 paper, Weinstein and Xu [WX] described an important generalization

of the classical Van Est map [Est2, Est3, Estl] to arbitrary Lie groupoids
G M. Recall that the complex of groupoid cochains for G consists of smooth

functions on the space BPG of p-arrows, that is, /»-tuples of elements of G such

that any two successive elements are composable. Its infinitesimal counterpart is

the Chevalley-Eilenberg complex C#(A) T(aM*) of the Lie algebroid of G.
The generalized van Est map is a morphism of cochain complexes

(1) VE: C°°(B.G) -> C(A).

Weinstein and Xu define this map in terms of the following formula, for

/ e C°°(BPG) and Xl9...,Xpe F(A),

(2) 1(XP) • 1(*0 VE(/) t* J2 sign^AAaV • • • AV(J)/-
S.&p

Here the Xl$ for X e T(A) are the generating vector fields for certain commuting
G-actions on BPG, and i \ M -> BPG is the inclusion as trivial /»-arrows.

Weinstein and Mehta [Meh] indicated a generalization of (1) to a morphism
of bidilferential complexes,

(3) VE: QT(B.G) -> W'#(A),

from the Bott-Shulman-Stashelf double complex (i.e. the de Rham complex of the

simplicial manifold B.G) to a certain Weil algebra of the Lie algebroid A. Their

theory was formulated within the framework of supergeometry. Abad and Crainic

[AC] gave a different construction of the Weil algebra and the Van Est map in
terms of classical geometry, using representations up to homotopy. Generalizing a

result of Crainic [Cra], they proved a 'Van Est theorem', stating that the map (3)
induces an isomorphism in cohomology in sufficiently low degrees (depending

on the connectivity properties of the fibers of the target map of G).
The Van Est map for groupoids, with its associated Van Est theorem, has a

number of important applications. It arises in the context of integration problems
for Poisson and Dirac manifolds [BCWZ, CF2, CZ] as well as for general Lie
algebroids [Cra, CF1, LGTX]. It is a tool in linearizing groupoid actions and

Poisson structures [CF4, Wei2], and is related to the interplay between Cartan

forms and Spencer operators [CSS, Sal]. Finally, it enters the formulation of index
theorems for foliations and more general groupoids [CM, PPT1, PPT2, PPT3].

The proof of a Van Est theorem in [Cra] involves a certain double complex.
In [AC], this is enlarged to a triple complex. In this paper, we will show that this

double/triple complex, in conjunction with the Perturbation Lemma of homological
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algebra, may in fact be used to give a conceptual 'explanation' for the van Est

map itself. The basic properties of the Van Est map follow rather easily from this

approach. For example, one obtains a simple proof of the fact that the Van Est

map restricts to an algebra morphism on the normalized subcomplex, a fact first

proven in [Meh] via different techniques.
Let us briefly summarize this construction for the Van Est map (1). One

begins by considering the principal G -bundles kp: EpG -> BPG, where EPG is

the p + 1 -fold fiber product of G with respect to the source map s. The tangent
bundle to the fibers of kp defines a Lie algebroid Tj?EpG. The structure maps
of the simplicial manifold E.G lift to Lie algebroid morphisms; thus TjrE.G
is a simplicial Lie algebroid. One thus obtains a double complex, with bigraded
summands Cs(TjrErG), and equipped with a Chevalley-Eilenberg differential d

and a simplicial differential 8. Let Tot* C(7>LG) be the associated total complex.
Pullback under the map to the base is a morphism of differential spaces

(4) k* : C°°(B.G) -> Tot* C(7>£G).

Similarly, the identification 7>E0G s*A determines a pullback map C(A) ->
C(7>EoG), which defines a morphism of differential spaces

(5) TT* : C*(A) -> Tot* C(7>EG).

There is also a map Lq : Tot* C(7>EG) -> C*(A) left inverse to j, defined using
the inclusion A 7>E0G with underlying map M E0G. However, since

this inclusion is not a Lie algebra morphism, the map Lq is not a cochain map,
in general.

The simplicial manifold E.G admits a canonical simplicial deformation
retraction onto M c E.G. This determines a homotopy operator h for the

simplicial differential 8 on the double complex C#(7>L.G). We will prove:

Proposition. The composition Lq o (1 + h o d)-1: Tot*C(7>LG) C*(^) is a

cochain map, and is a homotopy inverse to 7Tq

This proposition is a fairly direct application of the Basic Perturbation Lemma

of homological algebra, due to Brown [BRO] and Gugenheim [Gug] (cf. Appendix
B). We will take the composition

(6) VE: (Jo(l+Ao d)"1 o k* : C°°(5.G) - C*(v4)

as a definition of the Van Est map. A more refined version of the Perturbation

Lemma, due to Gugenheim-Lambe-Stasheff [GLS] (cf. Appendix B) applies to
cochain complexes with additional algebra structures. These conditions are not
satisfied for the double complex C#(7>L.G), but they do apply to the normalized
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subcomplex. We thus recover the result of Weinstein-Xu [WX] that the Van Est

map restricts to a ring homomorphism on the normalized subcomplex.
The method generalizes to the Van Est map (3) for the Bott-Shulman-Stashelf

double complex. To this end, we will develop a new geometric description of
the Weil algebra W(A) of a Lie algebroid, as sections of a suitably defined Weil

algebroid. It may be regarded as a translation of the super-geometric approach

of Weinstein and Mehta, and is of course equivalent to the description given by
Abad-Crainic [AC]. Working with the triple complex W#'#(7>E.G) we use the

Perturbation Lemma to define the Van Est map:

(7) VE t* o (1 + h o d')"1 o k* : Q'(B.G) -*

Here d/ is the Chevalley-Eilenberg differential on \N9,9(TjrEmG). Again, we find
that VE restricts to an algebra morphism on a normalized cochains.

Our final result is a direct formula for (7), generalizing Equation (2). Any
section X e T(A) defines two kinds of contraction operators is(X) and \k(X)
on W(A), of bidegrees (-1,-1) and (—1,0), respectively. (If M pt so that
A $ is a Lie algebra, we have WPiQ(%) ® and the two contraction

operators are contractions on Sq* and Ag*, respectively.)

Theorem. For (j) e Qq(BpG), X\,... ,XP e T(A), and any n < p,

i(Xp) • • • i(Xn+l)is(Xn) • • • is(Xx) VE(0)

«* y, -"«£>•
se&p

Here i \ M —> BPG is the inclusion as constant p-arrows, and e(s) is +1 if the

number of pairs (i,j) with 1 <i< j < n but s(i) > s(j) is even, and —1 if
that number is odd.

Our main motivation for developing our approach to the Van Est map are

integration problems for group-valued moment maps. This will be explained in a

forthcoming paper.

Acknowledgments. We thank Marius Crainic, Rui Fernandes, Theodore Johnson-

Freyd, and Xiang Tang for discussions and helpful comments.

2. Lie groupoid and Lie algebroid cohomology

We begin with a quick review of Lie groupoids, Lie algebroids, and the

associated cochain complexes. For more detailed information, see for example,
Mackenzie [Mac], Moerdijk and Mrcun [MM] or Crainic-Fernandes [CF3].
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2.1. The De Rham complex of a simplicial manifold. The basic definitions for

simplicial manifolds are recalled in Appendix A. In short, a simplicial manifold is

a contravariant functor X: Ord -> Man. Here Man is the category of manifolds,
with morphisms the smooth maps, and Ord is the category of ordered sets

[p] {0,..., p) for p 0,1,2,..., with morphisms the nondecreasing maps
[p'\ [p]- One denotes Xp X([p]). Of special significance are the face maps
dt: Xp -> Xp-1 and degeneracy maps et: Xp -> Xp+\, induced by the morphism

[p-1] —>> [p] omitting i, respectively the morphism [p + 1] —>> [p] repeating i.
The simplicial de Rham complex of X. is the double complex Q*(X.), with

the simplicial differential

P+i
8 £(-l)'3f: W/0 W,+i).

z =0

of bidegree (1,0) and the second differential d (—l)pdRh of bidegree (0,1)
where d^ is the de Rham differential. The two differentials commute in the

graded sense, i.e. d<5 + <5d 0, and both are graded derivations relative to the

cup product

(8) <pU cp' — (—\)p q pr* <p A (pr')*0'.

Here pr: Xp+pr Xp and pr^ Xp+pr Xpr are the front face and hack face
projections, induced by the morphisms [p] ->[/? + //], i ii, respectively
[pf] [p + p'],i p + i. If S. -> X• is a simplicial vector bundle, with
the property that the simplicial maps S• are fiberwise isomorphisms, then the

simplical differential 8 extends to sections of S• in an obvious way, and the

cup-product generalizes to a product

QHXp, Sp) ® S'p/) -+ Q.q+q'{Xp+p,, (S ®

Note however that only the simplicial differential 8 is defined on Q*(X.y S.);
the second differential is defined if S• comes with a flat simplicial connection.

Occasionally it is better to work with the normalized subcomplex Q *(X.y S.),
consisting of forms that pull back to zero under all degeneracy maps. The

normalized forms are a subalgebra with respect to the cup product.
Any manifold M can be regarded as a simplicial manifold, by taking Mp M

in all degrees and all simplicial structure maps to be the identity. The simplicial
differential 8 on is given by the identity in odd degrees p > 0 and zero
otherwise.

2.2. Lie groupoids. Let G ^ M be a Lie groupoid. The source and target maps
are denoted by s, t: G M\ they are submersions onto a submanifold M c G

of units. Elements of G are viewed as arrows
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m0 m i

from mi s(g) to m0 t(g). If g and gf are elements with s(g) t(gO> then

we write ggf for their groupoid product. The groupoid inverse will be denoted by

g i-> g_1. Suppose H N is a second Lie groupoid. A smooth map H -> G is

called a morphism of Lie groupoids if it restricts to a map of units and intertwines
all the structure maps for the Lie groupoids. It is depicted as a diagram

(9) H : N

: M

If the map (/x, s): H -> G s N is a diffeomorphism, then we say that G acts

on N along /x. In this case, G x N := G s xß N is called the action groupoid,
its target map

t: G tx N -> A, (g,n) i-> gm t(g,n)

is called the action map, and the map /x: A -> M is the moment map for the

action. In particular, G acts on its space M of units; here N M, with /x the

identity map. A principal G-bundle

(10) P -

ß

M

B

is a manifold P with a G -action along /x, together with submersion k :

such that k ot k os as maps GkP^S, and such that the map

B

(11) : G x P ^ P xB P

is a dilfeomorphism.
To define the cochain complex for a Lie groupoid G

BpG {(gi,.

AT, let

&>) e Gp| s(g,) t(g!+0, / 1,— 1}

be the manifold of p-arrows

(12)
£X £"2

mo «— mi «— iri2
sP

mL

with base points m0,... ,mp e M. For p 0 we put 50G M. Then 2?.G is a

simplicial manifold: the map BG(f): i^G -> i^'G defined by a nondecreasing

map /: [/77] -> [p] takes the /»-arrow (12) to the p'-arrow

*1 ^2
m/(o) w/(i) m/(2)
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where g[ is obtained by composition of arrows (or insertion of trivial arrows).
That is, g\ gm+1 gf(l+1) for /(/) < f(i + 1), and g[ m, for f(i)
f{i + 1). In particular the degeneracy maps et: BPG -> Bp+\G, i 0,..., p
repeat the i -th base point, by inserting a trivial arrow, while the face map
dt\ BPG -> Bp-iG, i 0,..., p drops the i -th base point mt:

For p 1 we have 9o(g) s(g), di(g) t(g). The de Rham complex £2m(B.G)

of this simplicial manifold is a bidifferential algebra, called the Bott-Shulman-

Stasheff complex, after [BSS, Shu]. A 9-cocycle in Qq(B0G) Qq(M) is (by

definition) a G-invariant g-form on M, and a 5-cocycle a e Qq(BiG) Qq(G)
is a multiplicative q -form on G, i.e. the pull-back under groupoid multiplication
Mult: B2G G equals the sum pr* a + pr^ a.

The differential algebra £2°(2?.G) C°°(B.G) (with the simplicial differential
8) is the complex of differentiable groupoid cochains. The inclusion of units

l\ M G, regarded as a groupoid morphism from M M to G M,
defines an injective morphism of simplicial manifolds Mp BPM ^ BPG, with
image the trivial /»-arrows. The complex of germs Q*(B.G)m is defined to be

the quotient of £2*(B.G) by the ideal of forms vanishing on some neighborhood
of Mp c BPG. Similarly we define C°°(B.G)m • Note that these are also defined

for local Lie groupoids.
For each of the complexes considered above, there are also the normalized

subcomplexes. These will be denoted C °°(B9G)y £2 *(5.G), and so on.

Examples 1. (1) Given a manifold M, let Pair(M) M xM M be the pair
groupoid, with source map s(m',m) m and target map t(m/,m) m'.
The inclusion of units is the diagonal embedding M ^ M x M, and

the groupoid multiplication reads as (m'^m^fn'^mf) (m/1,m2), defined

whenever m\ m'2. In this example, any /»-arrow is uniquely determined

by its base points, and the map taking a /»-arrow to its base points defines

an isomorphism 2?.(Pair(M)) M9+1 as simplicial manifolds, where the

simplicial structure on the right hand side comes from the identification of
Mp+1 as the set of maps [p] M. Thus C°°(B. Pair(M)) C°°(M^+1),
with the differential given by the formula

(g2,...,gP) i 0,

dl{gi,...,gp) I (gi? • • • -> gi gi+i -> • • • i gp) 0 <i < p,

(gi,...,gP-i) P.

p+1

(Sf)(m0,...,mp+i) f(m0, rnl,...,mp+1).
1=0
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This complex has trivial cohomology. However, the complex C^Pair(M))m
C°°(Mp+1)m of germs of functions along the diagonal M c Mp+1

is the Alexander-Spanier complex [Spa], which is known to compute the

cohomology of M with coefficients in R.

(2) More generally, given a foliation T on M, one defines a groupoid Pairjr(M),
consisting of pairs of points in the same leaf. The complex C/7(Pairjr(M))M

may be seen as a foliated version of the Alexander-Spanier complex; a

coefficient system is a bundle with a fiberwise flat connection.

(3) Let K be a Lie group, acting on a manifold M, and let G K tx M. Then

C°°(B.G) computes the group cohomology of K with coefficients in the

K -module C°°(M).

Any morphism /: G\ -> G2 of Lie groupoids (cf. (9)), with underlying map

/: M\ -> M2, extends to a morphism of simplicial manifolds f \ BmG\ ^ BmG2,

giving rise to a morphism of bidifferential algebras /*: Q*(B.G2) -> £2#(2?.Gi),
and hence of differential algebras /*: C°°(B.G2) -> C°°(B.Gi). For example,
the canonical morphism (t,s): G Pair(M) defines a morphism of differential

graded algebras C°°(M9+1) C°°(BmG).

2.3. Lie algebroid cohomology. A Lie algebroid is a vector bundle A M
with a bundle map a: A ^ TM (the anchor) and a Lie bracket on the space of
sections T(A) satisfying

[XiJX2\ f[Xl9X2] + (a (X1)f)X2,

for all Xi, X2 g T(A) and / e C°°(M). Morphisms of Lie algebroids

are vector bundle maps such that the differential Tp: TN —> TM intertwines the

anchor maps, and with a certain compatibility condition1 for the Lie brackets on

sections, due to Higgins-Mackenzie [HM, Mac]. Such a morphism is called an

action of A on N along /x if the resulting map B /x* A is an isomorphism;
in this case B is called the action Lie algebroid and is denoted A tx N. Given

an A-action, the composition of /x* : T(A) —> F(A tx N) with the anchor map for

B c A is a subbundle along a submanifold N c M, the condition is that whenever
X\,X2 e TG4) extend sections Y\,Y2 e T(B), then [X\,X2] extends [Y\,Y2] The general case

may be reduced to this case, by replacing the vector bundle map ß by the inclusion B ix B of
the graph of £ (Cf [LM]

(13) B N

A M
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AkN defines a Lie algebra morphism T(A) -> T(7W), X i-> X/v, such that

XN~ßa(X).
The Chevalley-Eilenberg complex of A is the graded differential algebra

C#(A) T(aM*), with product the wedge product, and with the differential
dcE^ C*(^4) -> C#+1(^) given as

(14)
p

(dCE4>)(Xo, ...,XP)= £(-1)' a(X,)4>(X0, ...,X„...,XP)
1=0

+ J2(-Ot+J<K[x„Xj],x0,...,T„...,Tj,...,xp).
KJ

Examples 2. (1) Given an action of a Lie algebra t on M, let A t tx M be

the action Lie algebroid. Then C*(A) C°°(M) ® a*£* is the Chevalley-

Eilenberg complex of t with coefficients in C°°(M).
(2) Given a foliation T on M, let A TjrM c fM be the tangent bundle to

the foliation. Then C#(A) Q9jr(M) is the de foliated Rham complex (i.e.,
the quotient of Q(M) by forms whose pull-back to leaves are zero).

(3) Given an embedded hypersurface N c M, there is a Lie algebroid A T^M
whose sections are the vector fields tangent to N. (For manifolds with
boundary, this is the starting point for Melrose's b-calculus [Mel].) The

corresponding complex C#(A) £2^(M) may be regarded as a space
of forms on M\N developing a 'logarithmic' singularity along N. More

generally, given a Lie algebroid P -> M and a Lie subalgebroid Q -> N
along a hypersurface, there is a Lie algebroid A [P : Q] whose sections

are the sections a e T(P) with the property <j\n e T(ß). See Gualtieri-Li
[GL].

(4) Given a Poisson structure jt on M, the cotangent bundle A T*M acquires
the structure of a Lie algebroid with anchor map a : T*M ^ TM,
and with bracket the Koszul bracket. The resulting differential on the algebra

C*(A) X#(M) of multi-vector fields is the Koszul differential dn [#,•];
its cohomology is the Poisson cohomology of M.

Any morphism of Lie algebroids A\ -> A2, with underlying map /: M\ ->
M2, gives rise to a morphism of differential algebras /*: C*(A2) -> C*(Ai). As

a special case, the anchor map a \ A ^ TM of a Lie algebroid gives a morphism

a*: C(TM) -> C9(A).

The infinitesimal counterpart to the bigraded algebra Q(BG) for a Lie groupoid
is the Weil algebra W(A). A geometric model for W(A) will be described in
Section 4.
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2.4. The Lie functor. For any Lie groupoid G M, the normal bundle

Lie(G) v(M, G)

of M in G has the structure of a Lie algebroid, with anchor map a: Lie(G) ->
TM induced by the difference Tt— Ts : TG -> TM, and with the Lie bracket

on sections defined by the identification

r(Lie(G)) Lie(r(G))
with the Lie algebra of the infinite-dimensional group of bisections T(G).
Equivalently, the Lie bracket comes from the identification of sections X e

r(Lie(G)) with the Lie algebra of left-invariant vector fields XL e £(G) (tangent
to t-fibers). The definition of Lie(G) also makes sense for local Lie groupoids, and

it is known that any Lie algebroid A arises in this way. The precise obstructions
for integration to a global Lie groupoid were determined by Crainic-Fernandes

[CMa].
Any G -action on a manifold N gives rise to a Lie(G) -action, with the action

Lie algebroid Lie(G) tx N Lie(G tx N). For a principal G-bundle P as in (10),
the action Lie algebroid has an injective anchor map, and identifies Lie(G) tx P
with the subbundle ker(T/c) c TP where k: P -> B is projection to the base.

We hence have identifications

/x* Lie(G) ^ Lie(G) tx P ^ ker(Tk),

and a Lie algebroid morphism from ker(Tk) to Lie(G). These remarks apply in

particular to the action of G on itself along t, given by multiplication from the

left, as well as to the action along s, given by multiplication from the right. It
identifies t* Lie(G) ker(Ts) and s* Lie(G) ker(Tt). On the level of sections,

t*X —XR are the generating vector fields for the left action, while s*X XL
are the generating vector fields for the right action. These vector fields satisfy the

commutation relations

[Xl,X2]L, [**, X2*] -[X1,X2f, [Xf, X*] 0.

The differences XL — XR are the generating vector fields for the conjugation
action of the group T(G) on G. (There is no conjugation action of G on itself
unless M pt.) They are tangent to M, and restrict to the vector field a (A).

3. The Van Est map C°°(BG) C(A)

In his proof of the Van Est theorem for Lie groupoids [Cra], Crainic introduced

a double complex with cochain maps from both the Lie algebroid complex and

the Lie groupoid complex. In this section, we will use this double complex to
define the Van Est map itself.
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3.1. The simplicial principal bundle E G. For any Lie groupoid G M let

EPG {(a0, ...,ap)e Gp+l, s(a0) • • • s(ap)}.

(cf. [Aba, page 53] and Appendix A), and let np: EPG -> M be the common
source map, 7tp(ao,... ,ap) s(a0). The space EPG has the structure of a

principal G -bundle

(15) EpG^BpG
Tip

M

for the G-action g.(ao,...,ap) (a0 ,ap g-1) along np, and with the

quotient map kp{üq,... ,ap) {a^a^1,..., ap-\a~l). The collection of the spaces
defines a simplicial principal G-bundle E.G -> B.G: Regarding EPG as maps
[p] -> G whose composition with the source map is constant, the structure

map EPG -> EP'G for a nondecreasing map /: [pf] -> [p] is given by
composition. In particular, the face maps dt: EPG -> EP-\G drop the i -th

entry, while the degeneracy maps et: EPG -> EP+\G repeat the i -th entry. Any
groupoid morphism G\ -> G2 defines a morphism of simplicial principal bundles

E%G\ -> E.G2.

Remark 1. The simplicial manifold E.G may be equivalently defined as

EPG Bp(GkG), where GtxG is the action groupoid for the action g.a ag~l.
Here kp is obtained by applying the functor B. to the groupoid morphism
G tx G -> G. See [Aba, Definition 3.2.4].

3.2. Retraction of EG onto M. For the trivial groupoid M M we have

EPM BPM M in all degrees. The inclusion i\ M -> G as units is a

groupoid morphism, defining a simplicial map

ip \ Mp EPG, m i-> (m,-- - ,m)

with JtpOip idM • In Appendix A.2, we show that there is a canonical simplicial
deformation retraction from E.G onto the submanifold M. In turn, this defines

a homotopy operator for the de Rham complex of E.G. For 0 <i<p let

(16) hPil: EPG Ep+iG, ,ap) i-> at, m,... m),

with p + 1 — z copies of m s(ao) • • • s(ap). The homotopy operator is

given by

p-i
(17) h J2(~iy+1(hp-Uy : SlHEpG) -> Qq(Ep-iG).

1=0
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Thus h8 + 8h id —n*£* For any morphism of Lie groupoids /: G\ -> G2, the

pullback map /*: Q(E.G2) -> Q(E.Gi) intertwines the homotopy operators.

Example 1. In particular, the inclusion i \ M -> G, viewed as a morphism from
M M to G M, satisfies h o t* o h. Note that the simplicial complex
(£2(M.),<5) is simply

^(M) £2(M) 4- ^(M) £2(M) • • • ;

i.e., <5 is the identity in odd degrees p > 0 and zero otherwise. The homotopy
operator h on this complex restricts to the identity in odd degrees p > 0 and

zero otherwise.
There is also a homotopy operator k for the inclusion of £2(M) £2(M.)

as the degree 0 piece, with homotopy inverse the projection. The operator k is

the identity in even degrees p > 0 and zero otherwise.

Proposition 1. The homotopy operator h: Q*(EmG) Q*(Em-iG) has the

following additional properties:

(1) hoh 0.

(2) h is an £2(M) -module morphism, in the sense that

h(a A Jtpß) ha A 7ip_iß

for all a e Q(EPG) and ß e Q(M).

(3) The homotopy operator is an R -twisted derivation, for the algebra morphism
R 7t* o That is,

h(a U a') ha U Raf + (— l)'a'a U haf

for a e Qq(EpG) and a' e Qq'(Ep'G).

(4) 77z£ homotopy operator preserves the normalized subcomplex £2 (E.G). The

composition o h vanishes on the normalized subcomplex.

Proof Part (1) is obtained by duality to its homological counterpart Proposition
12). Part (2) follows since 7tp o hPfl np-i, whence h* t(a A tz*ß) h* ta A

(7tp-i)*ß. For Part (3), note that

(U w I

Ru' i<p-1,(hn-i-p/—i ij (a LJ a — \

where the sign comes from the sign convention for the cup product. Taking sum
of these terms from i 0 to i p + p' — 1, with alternating sign (—1)*+1, the
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sum from / 0 to i p — \ gives ha U Rar, while the sum from i p to

i p + p' — 1 gives (— \)p+qa U haf. As for Part (4), it is clear that h preserves
the normalized subcomplex £2 (E.G). The composition i*_x oh hoi* vanishes

on Q (EPG) with p > 0 since i* vanishes there, and for p 0 since h vanishes

there.

3.3. Van Est Double complex. Let TtEpG ker(Tkp) be the tangent bundle

to the foliation T defined by the fibers of the principal bundle kp: EpG -> BPG.
As for any principal groupoid bundle (see Section 2.4), we have isomorphisms

7t*A A tx EPG TjrEpG,

and the resulting map AkEpG -> A is a Lie algebroid morphism. In fact, TjrE.G
is a simplicial Lie algebroid, and the map to A is a morphism of simplicial Lie
algebroids

7tm \ TjrE.G —> A0,

where Ap A for all p (with all simplicial structure maps the identity). Following
[AC, Cra] we define the Van Est double complex

(18) Cr,s(TjrEG) := Cs(TjrErG),

with the simplicial differential 8 of bidegree (1,0) and the differential d

(—iy&CE of bidegree (0,1); the extra sign is introduced so that [d, 8] d<5 + <5d

0. The space C#(7>£.G) is a bidifferential algebra for the cup product

(19) Cs(TrErG) ® &{TFEr,G) -+ Cs+s'(TFEr+r,G)

defined by 0 U <// (—l)rspr*(f) (pr0*0', with the front face projection

pr: Er+r'G ErG and the back face projection prL Er+r'G Er'G.

Remark 2. For any fixed r, the complex C*(TjrErG) with differential dce is

the foliated de Rham complex £2^(ErG) for the fibration Kr \ErG^BrG.
Consider again the simplicial Lie algebroid Am. The corresponding bidifferential

algebra has summands C*(Ar) CS(A); the simplicial differential 8 vanishes

on this summand when r is even and is the identity map if r is odd, while
d (— l)rdc£ as before. The map ixr \ ErG -> M lifts to a morphism of simplicial

Lie algebroids, TTErG -> A. Regard C°°(B.G) as a bidifferential algebra
concentrated in bidegrees (•,()). We obtain a diagram

C#(7>£.G) C°°(B.G)

C\A.)
where both maps are morphisms of bidifferential algebras.
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3.4. Definition of the Van Est map. The vector bundle morphism

(20) TjrErG ^ErG
Lr

Ar >- Mr

defines a morphism of bigraded spaces

C:C*(7>£.G)^C*(A.),

which is right inverse to ti *. This morphism intertwines 8, but usually not d

since (20) is not a Lie algebroid morphism, in general. Homological perturbation
theory (Appendix B) modifies this map, in such a way that it intertwines the total
differentials d + 8.

The construction uses a homotopy operator for the differential 8. For any fixed

s, the complex Cs{TjrE.G) is the simplicial complex of E.G with coefficients

in the simplicial vector bundle

AST*E.G ^ jr.* A* A*.

Since the maps hTil: ErG -> Er+\G lift to vector bundle morphisms Tj?ErG
n*A TjrEr+lG 7r*+1A, we have a well-defined homotopy operator with

respect to the simplicial differential 8 given once again by the formula (17),
h l)l(hr-i,i)* - On the dense subspace

(21) C°°(E.G) ®Coo(M) C5(A) c Cs(TjrE.G),

it acts as the given homotopy operator on C°°(EmG), tensored with the identity
operator on CS(A).

Both doh and h od are operators of bidegree (—1,1) on C*(7>£.G). Hence

they are nilpotent operators of total degree 0, and 1 + d o h and 1 + h o d are

invertible operators of total degree zero. The Perturbation Lemma of homological
algebra (cf. Lemma 5 in Appendix B) gives the following statement:

Lemma 1. The map

it o (1 + d o ft)-1: Tot* C(TjrEG) -+ Tot* C(A)

is a cochain map for the total differential d + <5, and is a homotopy equivalence,
with homotopy inverse (1 -bftod)-1 o7r*.

Here Tot*C(A) indicates the total complex of the double complex C*(A#).
The inclusion C#(A) C#(A0) c Tot* C(A) is also a homotopy equivalence,
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with homotopy inverse the projection. (The corresponding homotopy operator
k\ C*(,4r) C^(^r_i) is the identity map for r > 0 even, and 0 otherwise - cf.

Example 1.) By composing the two homotopy equivalences, and observing that

(1 + h o d)-1 o 7Tq tTq (for degree reasons), we obtain:

Proposition 2. The map

i*0 O (1 + d O hy1: Tot* C(7>£G) -> C*(T)

intertwines the total differential d + 8 with the Chevalley-Eilenherg differential.
It is a homotopy equivalence, with homotopy inverse the map jTq

Here Lq is regarded as a map on the full double complex, given by 0 on

Cs(TjrErG) with r > 0, and similarly jTq is viewed as a map into the full double

complex. Composing with the cochain map

k* : C°°(B.G) -* C°(7>£.G) c Tot* C(7>£G)

we arrive at the following definition:

Definition 1. Let G M be a Lie groupoid, with Lie algebroid A Lie(G).
The composition

(22) VE t* o (1 + d o h)~l o k* : C°°(B.G) - C*(v4)

is called the Van Est map.

By construction, VE is a cochain map. We will verify in Section 7.2 that it
coincides with Weinstein-Xu's definition of the Van Est map.

Remarks 1. (1) The map VE is functorial: Let G\ -> G2 be a morphism of
Lie groupoids, and let ^41 —> A2 be the corresponding morphism of Lie
algebroids. Lrom the construction of the Van Est map, it is immediate that
the following diagram commutes:

C°°(£.G2)

VE VE

C*(T2) c*G40

(2) Since doh has bidegree (—1,1), the Van Est map has the following 'zig-zag'
form on elements (p e C°°(BPG):

VE(0) (-l)^o 0 (d 0 hV 0 <0-
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(3) The Van Est map can also be written

YE o (i + Mr1 OK*

because (1 + [/z,d])_1 (1 + dh)~l + and do k* =0. This
alternative form turns out to be easier to work with, since [ft, d] is closer to

being a derivation.

(4) For G a possibly local Lie groupoid, we can consider the differential algebra
of germs C°°(B.G)m • Using the double complex C#(7>£.G)m of germs
along McfG one obtains a Van Est map

VEM: C°°(B.G)m (A).

For a global Lie groupoid, the map VE factors as the natural projection
C°°(B.G) -> C°°(B.G)m followed by VEM.

The Van Est map on the full complex of groupoid cochains fails to be an

algebra homomorphism, in general. However, it does respect products on the

normalized subcomplex [Meh, Proposition 6.2.3].

Theorem 1. The Van Est map for the trivial G -module restricts to an algebra
morphism VE: C °°{BmG) C#(A) on the normalized subcomplex.

Proof The compatibility of the homological perturbation theory with algebra
structures is addressed in the work of Gugenheim-Lambe-Stasheff [GLS] (see

Appendix B, Lemma 5). To apply their result, we need to verify the side conditions
ft o ft 0, i* o ft 0 as well as the Ro := jVqLq -derivation property. But these

follow from Proposition 1, and since

C °°(ErG) ®Coo(M) C#(A) c C#(7>£rG)

is a dense subspace.

3.5. Coefficients. The theory described above admits a straightforward generalization

to the case with coefficients. A module over a Lie algebroid A M
is a vector bundle /x: S M, equipped with a linear A-action. The linearity
condition is the requirement that A tx S S is a VB-algebroid [GM2, Mac] over
A M (also called LA-vector bundle). Equivalently, S comes equipped with a

flat A-connection V: T(S) T(A* ® S), i.e.

Vx(fcr) fVxcr + (a(X)f)cr, [V*, Vy] V[x,r].

(For example, if J7 is a foliation on M, then a Tj?M -module is given by a

vector bundle with a flat connection in the direction of the fibers.) One obtains
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a complex C*(A, S) T(aM* ® S), with a differential dce given by a similar
formula (14) as before, replacing a(X) with Vy. Given another A-module S",
the wedge product

C#(A; 5) ® C#(A; 5') -> C9(A; S ® 5'), </> ® 4>' >-> 0 A 0'

is a morphism of differential spaces.

Similarly, a module over a Lie groupoid G M is a vector bundle /x: 5 -> M
with a linear G -action along /x, i.e. the action groupoid G tx S S is a VR-

groupoid in the sense of Pradines [Mac, Pra, GM1]. Equivalently, for any groupoid
element g e G the map Ss(g) -> St(gp v i-> g.v is linear. There is a similar
definition of modules for local Lie groupoids. Any G -module becomes a Lie(G) -

module for the infinitesimal action.

Given a G -module S -> M, we obtain a simplicial vector bundle B.(G\xS) ->
2?.G. We obtain a cochain complex of sections of this bundle, with the simplicial
differential defined as before. (One can also consider the bigraded space of bundle-
valued differential forms, but in order to define a second differential on this space

one needs a G-invariant flat connection on S; see Section 2.1.)

Remark 3. The fiber of BP(G tx S) at a /»-arrow (gi,...,^) (cf. 12) consists

of tuples (v0,... ,vp) of elements vt e Smi, with vl-\ gl.vl. Any such tuple
is determined by the element vp; hence BP(G tx S) ^ BPG xM S.

Consider the G-equivariant simplicial vector bundle Em{G tx S). The common
source map for elements of this bundle defines a vector bundle map onto S,
with underlying map tzp. Thus EP(G tx S) tz*S On the other hand, the total

space of EP(G tx S) is a principal bundle over BP(G tx S), and the quotient map
identifies EP{G tx S) KpBp{G tx S).

The vector bundle npS EP(G tx S) is a TjrEpG-module, hence a double

complex C*(7>E'.G, tt*S) is defined. By repeating the argument from the last

section, we use the homotopy operator on this double complex to define the Van

Est map

YE t* o (1 + h o d)"1 o k* : r(B.(G tx S)) - C'(A, S).

Given two G -modules S,Sf M one obtains a commutative diagram for the

normalized subcomplexes

f(B.(G tx 5)) ® f(B.(G k 5'))
U f(B.(G tx (5 ® 50))

VE0VE VE

C#(A; S) ® C#(A; 5') > C#(A; 5 ® 5')
The argument is essentially the same as in the case of trivial coefficients, see

Remark 10.
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4. The Weil algebroid

As discussed in Section 2.2, the groupoid cochain complex C°°(BmG)
C°°(B.G) extends to the Bott-Shulman-Stasheff double complex Q9(B.G). To

extend the Van Est map to this double complex, we need a description of the

infinitesimal counterpart W*'*(A), the Weil algebra of a Lie algebroid A. The

definition of this algebra, and a construction of the corresponding Van Est map,
was given by Mehta [Meh] and Weinstein (unpublished notes) in terms of super

geometry, and by Abad-Crainic [AC] using their theory of representations up to

homotopy. The geometric model given below, as sections of a 'Weil algebroid', may
be seen as a translation of Mehta-Weinstein's definition into ordinary differential

geometry.

4.1. Koszul algebroids. Let A -> M be any vector bundle. We will define a

'Koszul algebroid' W(A) as a module of Kähler differentials for the bundle of
graded algebras aA* Consider AA* as a bundle of commutative graded algebras,
and let

(23) 0et(Avl*) 0W (A/4*)
i $=.TL

be the graded vector bundle over M whose sections are the graded derivations

of T(aA*). Its fiber öet(AA*)m at m e M is the space of graded derivations

Dm: T(aA*) -> AA^ of the graded T(aA*) -module AA^. Since AA* is graded

commutative, the bundle Det(AA*) is a graded aA* -module.

Proposition 3. There is a short exact sequence of graded AA* -modules

(24) 0 -> AA* ® A -> Det(AA*) -> AA* ® TM -> 0.

Here the second factor in AA* ® A has degree —1, while the second factor in

AA* ® TM has degree 0.

Proof Any derivation Dm e öet(AA*)m is determined by its restriction to
the degree 0 and degree 1 components of T(aA*). There is a bundle map
c)et(AA*) ® T*M ^ AA*, taking Dm ® (df)m to Dm{f) for / e C°°(M).
This is well-defined, since Dm(f) vanishes if / is constant, by the derivation

property. We may also regard this as a map

(25) c)et(AA*) AA* ® TM.

By construction, the kernel of (25) at m e M is the subspace of derivations Dm
such that Dm(f) 0 for all / e C°°(M) T(a0A*). But this subspace is
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exactly a® Am Det(AA^) c her(A^*)m, where the factor Am corresponds
to 'contractions'. This defines an injective bundle morphism AA* ®A -> Det(AA*)
whose image is the kernel of (25). For surjectivity of the aA*-module morphism
(25), it is enough to show surjectivity of the map her°(A^*) -> TM. But any
choice of a vector bundle connection on A defines a splitting of this map.

Remark 4. We see in particular that Der1 (a4*) vanishes for i < —1, and for
i —I coincides with A, acting by contractions. In degree i 0 we obtain the

Atiyah algebroid aut(A) of infinitesimal vector bundle automorphisms of A (or
equivalently of A*), and the sequence (24) becomes the usual exact sequence
0 -> A* ® A -> aut(A) ->TM -> 0 for the Atiyah algebroid.

Thinking of Det(AA*) as a generalization of the tangent bundle (to which

it reduces if rank(A) =0), the corresponding 'cotangent bundle' is the graded

AA* -module

(26) HomA^* (her(AA*), aA*)

of Kühler differentials. Dual to (24), we obtain an exact sequence of graded

AA*-modules

0 -> AA* ® T*M -> -> AA* ®A*^0.

Here the second factor in AA* ® T*M has degree 0 while the second factor in
AA* ® A* has degree 1. More generally, we define a module of Kühler q-forms

t0 exterior power (taken over AA*). That is, consists

of graded bundle maps

(27) Det(AA*) x • • • x Det(AA*) -> aA*

(with q factors) that are AA* -linear in each entry and skew-symmetric in the

graded sense. For q 0 we put aA* Each &qAÄ* is a graded AA*-
module, with summands

W(A) :=

the g-linear maps (27) raising the total degree by p. The 'wedge product'
® £IqaA* ^aa* compatible with these gradings, thus W(A) £2aa*

is a bundle of bigraded algebras. We will denote by

W#'V) := T(W>*(A))

the bigraded algebra of sections. From its interpretation as 'differential forms', it
is clear that this algebra has an exterior differential:
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Proposition 4. The algebra W#'#(A) has a unique derivation dk ofbidegree (0,1)
such that &k°&k — 0 and such that for all f e T(aA*) and all D e T(c)et(AA*)),

(dk4>)(D) D(4>).

Definition 2. The bigraded algebra W(A) with the differential dk will be called
the Koszul algebra of the vector bundle A -> M.

We list some properties and special cases of this construction.

a) Suppose M pt, so that A F is a vector space. Then Det(AF*)
Ab* ® F, where elements of F c)et_1(AF*) acts as contractions.

Dualizing, £2aV* F* (g aF* where the elements of the first factor F*
have bidegree (1,1), and more generally SqV* g aF* where the

elements of SqV* have bidegree (q,q). It follows that

Wp>q(V) SqV* ® Ap~qV*.

The differential dk takes generators of axF* to the corresponding generators
of SlV*; it hence coincides with the standard Koszul differential.

b) At the other extreme, if A M x {0} is the zero vector bundle over M,
then c)et(AA*) TM is the tangent bundle, and &qAÄ* AqT*M. Hence

Wp,q(A) is zero for p > 0, while WQ,q(A) a^T*M.

c) For a direct product of vector bundles A\ M\ and A2 M2, one has

W(A\ x A2) W(A\) K W(A2)

(exterior tensor product of graded algebra bundles) with the sum of the

differentials on the two factors. As a special case, if A M x F is a trivial
vector bundle, then

Wp'q(M x V) 0 a' T*M ® Sq~l V* <g) Ap~q+' V*.
I

For a general vector bundle A, since W(A)\u W(A\u) for open subsets

U c M, this gives a description of W(A) in terms of local trivializations.

d) For any vector bundle A —> M, one has WP,0(A) apA* while
FF°'^(A) AqT*M. The space \Np>q(A) T(Wp,q(A)) is spanned by
elements of the form

(28) fo djcfi • -dfcfq

with sections ^ e T(a/7/A*) satisfying p0 + + pq p. (This follows,

e.g., by considering local trivializations as above.)
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e) Any morphism Ar -> A of vector bundles over M induces a morphism
of bigraded algebra bundles W(A) -> W(A') compatible with the AT*M
module structure. The map on sections W(A) -> W(A') is a cochain maps
with respect to dk •

g) Let f:N^M be a smooth map. For any vector bundle A -> M, the

algebra bundles W(f*A) and f*W(A) are related by'change of coefficients':

W(f*A) AT*N ®f*AT*M f*W(A).

Thus, on the level of sections we have an inclusion Q(N) W(A)

W(/M) with dense image. More generally, for any morphism of vector
bundles A\ -> A>i with underlying map /: M\ -> M2 we obtain a morphism

/*: W(A2) -> W(Ai).
The morphisms

(29) i: fi(AT) -> W(A), tt : W(A) -> fi(AT),

induced by the projection A -> M and the inclusion M ^ A, respectively, may be

regarded as the inclusion and projection onto the subcomplex W0,9(A) ^ a*T*M

Proposition 5. The inclusion and projection (29) are homotopy inverses with

respect to d^. In particular; fAe cohomology of (Tot* W(A), d^) A canonically
isomorphic to the de Rham cohomology of M.

Proof View ixl as the direct product of A with the zero vector bundle lx{0}
over R; thus W(A x R) W(A) El aT*R. The space W(A x R) r(fF(A x R))
may be regarded as differential forms on R with values in W(A). For all s e R

we have morphisms of bigraded algebras ev^: W(ixR) -> W(A) induced by the

bundle map A ^ Ax R, v i-> (v, s). Integration over the unit interval [0,1] c R
defines a map

J : W*'*(/4 x M) -> W-—

with the homotopy property (Stokes' theorem)

J 0 &k + d^ o J evi — evo

The bundle map i x R ^ f (t;,/) 1-^ /t; defines a morphism of bigraded
algebras F: W(A) -^W(ixR), with

evi o F idw(^), evo o F i on.

Since F and the maps evs commute with the differential dk it follows that the

composition / of: W#'#(A) -> W#'#_1(A) is a homotopy operator between these

two maps:

/ o f o dj[ + dj[ o / o f idw(^) —i 0 Tt-

(For a more detailed discussion, see e.g., [Mei, Section 6.3].)
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4.2. Derivations of \N(A). In addition to the 'exterior differential' dk, the

algebra \N(A) has 'Lie derivatives' 1(D) and 'contractions' j(D) defined by
derivations D e T(dzxl (aA*)) Here j(D) is the derivation of bidegree (/,—1)

given on 0 g (cf. (26)) by j(D)<f> <f>(D), while 1(D) is the derivation
of bidegree (z,0), extending D on T(aM*) \N*,0(A) and commuting with dk
in the graded sense. We have the Cartan commutation relations

[l(Dl)J(D2)\ l([Dl,D2]),
[l(D1)J(D2)\ j([D1,D2\),

[j(D1),j(D2)]=0,
[/(D), d*] 0,

[j(D),dK] l(D),

[d*,d*] 0,

for D,D\,D2 e r(Dcr*(/\d*)). The constructions are natural with respect to

morphisms A \ —> A2 of vector bundles: If the map /*: r a A %) ^ V(a A*)
satisfies /* o D2 D\ o /*, then the map /*: \N(A2) -> W(di) satisfies

/* o j(D2) j(D\) O /* and /* o l(D2) /(DO o /*.
In particular, the derivations i(X) e V (Der _1 a A*)) given by contraction with

X e r(A) give rise to derivations

is(X):=j(i(X))9 iK(X):=l(i(X))

of )N(A), of bidegrees (-1,-1) and (—1,0) respectively. In the special case

A V, so that W(V) SV* ® aF* is the standard Koszul algebra, lk(X) is

the contraction operator acting on the second factor while is(X) is the contraction

operator on the first factor. We have [is(X), d^] lk(X) and [ik(X), &k\ 0.

Note also that for / e C°°(M), is(fX) fis(X) but

(30) iK(fX) fiK(X) - d/ o is(X)

where df e QX(M) W0,1(^) acts by multiplication.

Remark 5. There is an alternative geometric model for the Koszul algebra of a

vector bundle A -> M, as follows. For p > 0 let A^ A xm ••• xm A be

the p-fold fiber product over M, with the convention A^ M. Thinking of
A as a groupoid and of A^ as BPA, we have a cup product on C°°(^4^).
We let C°£(A^) c C°°(A^) denote the subspace of skew-symmetric functions,
endowed with the multiplication given by the skew-symmetrization of the cup
product. There is an injective morphism of graded algebras

T(aM*) -* C£G4W),
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taking a section of the exterior power apA* to the corresponding multi-linear,
skew-symmetric function on A^p\

In a similar fashion, let ^^(A^) c £2*(A^) denote the subspace of forms
which are skew-symmetric (for the action of the symmetric group (5P), endowed

with the skew-symmetrized cup product. There is an injective morphism of
bigraded algebras

W'*04) -> n'sk(Aw),

taking a section of Wp,q(A) to a q-form on A^ that is multi-linear (i.e., linear
in each factor). This morphism intertwines the Koszul differential dk with the

de Rham differential. In particular, \N1,q(A) is realized as the space of linear

q-forms on A. This space plays a role in the work of Bursztyn-Cabrera-Ortiz
[BC, BCO] on multiplicative 2-forms.

4.3. The Weil algebroid of a Lie algebroid. Suppose now that A -> M is a Lie
algebroid. The Chevalley-Eilenberg differential dce on sections of aA* lifts to

a differential I {Ace) on sections of W(A). Like all operators of the form 1(D),
it commutes with dk in the graded sense. To simplify notation, we will write

/(dce) dCE •

Definition 3. The bidifferential algebra (W(A), dx, dcß) is called the Weil algebra
of the Lie algebroid A. The total differential dw &k + dcE is called the Weil

differential.

For any Lie algebroid morphism A\ the resulting map /*: T(aA^)
T(aA*) intertwines the derivations &ce hence /*:W(A2) W(Ai) is a

morphism of bidifferential algebras.

Let A -> M be a Lie algebroid, with Weil algebra \N(A). For a section

X e T(A), we obtain a degree zero derivation C(X) [i(X),dce] of T(aA*);
its extension to \N(A) will again be denoted by C(X). We obtain yet another

contraction operator lce(X) := j(C(X)), of bidegree (0,-1). From the Cartan

commutation relations, we see that

Vk(X)Ace] C(X) [iCe(X)AkI Vce(Xx)ak(X2)\ is([Xi9X2]).

4.4. Examples.

Example 2. Consider first the case that M pt, so that A g is a Lie algebra.
Choose dual bases et £ g and el eg*, and let ck (ek, [el9ej]} be the structure

constants. The Chevalley-Eilenberg differential on Ag* is given by the formula
dcE — \ J2ijkcij eleJl(ek)> with i(ek) the contraction operator on Ag*. As we
had seen, Wp,q(g) Sqg* ® Ap~qg*, with dx the standard Koszul differential.
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Letting el e denote the degree (1,1) generators corresponding to the basis

elements, we have dk J2ipli(ei)- operator y(dc^) on the Weil algebra
becomes

j(dcE) ~z eleJis(ek),
Ijk

hence the differential dce '-= K&ce) [j(&CE),&K\ on W(g) is

dCE =--^c* e'eJi(ek) + eleHs{ek).
ijk ijk

One recognizes (W(g), d^, dce) as the standard Weil algebra. Here \srfe) lie^)
is the usual contraction on the aq* factor, lsi^k) is the usual contraction on the

Sg* factor, and 1 cE(ek) Ec!ke'ls(ej)

Example 3. (Lie algebroid structures on trivial vector bundles) Let A -> M
be a Lie algebroid, with a trivialization A M xV as a vector bundle. Thus

W(A) £2(M) <S> SV* <S> Af*. Choose dual bases et e V and el e V*. Viewing
the et as constant sections of A, put ck (ek,[el,eJ]} e By a

calculation similar to that of example 2, we obtain the following formula for the

Chevalley-Eilenberg differential on W(d),

dcE Ee! cM(a(ei))-J2ellM(a(ei))-^J2cv e'eJl(ek) + J2ciJ e'eJls(eic)-
i i ijk ijk

Here lM(afe)) and are contraction and Lie derivative with respect
to the vector field a(^), acting on the Q(M) factor, l(c^) is a contraction on
the Af* factor, ls{^k) is contraction on the SV* factor, and the e\el are the

generators of aF* and SV*, acting by multiplication.
The special case that the ck are constant corresponds to an action Lie

algebroid for an action of the Lie algebra V g on M. Here (C(A),&ce) is the

Chevalley-Eilenberg complex of g with coefficients in C°°(M), and (\N(A),dw)
is isomorphic to W(g) ® Q(M) with differential dwg (g> 1 + 1 (g> dm •> using the

isomorphism given by a Kalkman twist by the operator expel ®im(^))- See

Guillemin-Sternberg [GS] and Abad-Crainic [AC].

Example 4. (Tangent bundle) If A TM, the Chevalley-Eilenberg complex

T(aA*) £2(M) is the usual de Rham complex. Thus, \Np>q(TM) comes with
two kinds of de Rham differentials, d/ dcE and A" d^. As a bigraded algebra,
the Weil algebra \N(TM) is generated by functions / e C°°(M), (1,0)-forms
d'/, (0,1)-forms d"/, and (1,1)-forms d'dl'f. The bidifferential algebra

(31) Q[2](Af) := \N(TM)
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with differentials d/,d// was introduced by Kochan-Severa [Koc] under the name

of differential gorms\ it was subsequently studied by Vinogradov-Vitagliano [VV]
under the name of iterated differential forms. (Obviously, there are generalizations
to n-differential algebras Q[n](M).) Many of the standard constructions for
differential forms generalize with minor changes. In particular, iterated differential
forms can be pulled back under smooth maps, and given a smooth homotopy
F: [0,1] x M -> N, (t,x) i-> Ft(x) one obtains two homotopy operators

h\ h" \ £2[2]C/V) -> Q[2](M), of bidegrees (—1,0) and (0,-1), such that [d',h']
[d" ,h"\ F* — F£ while [d' ,h"\ [d" ,h'\ 0. The homotopy operators are

obtained as pullbacks under the map F, followed by integration over [0,1] with

respect to dft, respectively d"t.

Example 5. (Foliations) Suppose J7 is a foliation of M, defining a Lie algebroid
A TjrM. The inclusion Tj=M -> TM defines a surjective map from (31) onto
the Weil algebra W(7>M). One can think of elements of W(7>M) as differential

gorms in the direction of the foliation and differential forms in the transverse

direction.

Similar to the well-known result for the Weil algebra fF(g), we have:

Proposition 6. For any Lie algebroid A -> M, there is a canonical homotopy

equivalence between (Tot* W(^4), d^) and the de Rham algebra (£2#(M),dM).

Proof The proof is a generalization of the 'Kalkman trick'. The derivation

u j(dce) has bidegree (1,-1), and satisfies

[u, d^] dcE, [u, dcß] 0.

Since u has total degree 0 and is nilpotent, its exponential U u is a well-defined

algebra automorphism of W(^4), preserving the total degree, and with

U o dg ° U 1 dk + dcE dw •

By Proposition 5, the inclusion Q*(M) ^ Tot* W(^4) is a homotopy equivalence
with respect to d^; hence its composition with U is a homotopy equivalence
with respect to dw •

5. The Van Est map Sl(BG) \N(A)

We will now continue the discussion from Section 3 to define a Van Est map
for the Weil algebras.
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5.1. The Van Est triple complex. The simplicial Lie algebroid TtE.G -> E.G
gives rise to a tridifferential algebra W(7>E'G), with summands W,p,q{TjrEG)
\Np,q(TjrErG), and with commuting differentials

d' (-l)rdc*, d" (-l)rdjr

of tridegrees (1,0,0), (0,1,0), and (0,0,1). The product is a cup product, as

before:

a U a' (—1 )r'(p+q} pr* a (pr')W

for a e \Np>q(TjrErG) and a' e,\Np'>q\TjrEr'G), where the right hand side uses

the multiplication in W#'*(7>£V+r/G). We have a diagram, for all r,

W'#(7>£rG) Q9(BrG)

TT*71r

\N9>9(Ar)

Both k* and 7r* are morphisms of tridifferential algebras, where £2#(2?.G) is

regarded as a triple complex concentrated in tridegrees (#,0,#). We also have

the maps
l* : \N*,9(TjrErG) -> \N*,9(Ar)

induced by the inclusion ir\ Ar -> TjrErG. Then is a left inverse to 7r*

intertwining the simplicial differential 8 as well as the Koszul differential A",
but usually not the differential d/.

5.2. The Van Est map for the Bott-Shulman-Stasheff complex. Since the

maps hr^ : ErG -> Er+\G lift to vector bundle morphisms TjrErG TjrEr+\G,
we have a well-defined homotopy operator h ^(—l)I+1(Ar-i,i)* : W(^4r) ->
\N(Ar-i) with respect to the simplicial differential On the dense subspace

£2(ErG) W(^4) c \N(TjrErG),

it is the natural extension of the homotopy operator on Q(E.G). (This is

well-defined, since the latter is a £2 (M)-module morphism, cf. Part (2) of
Proposition 1.) Note that h commutes with A", but usually not with d/. Let

Tot*£w(7>£G) be the bidifferential algebra with summands Tot^ W(7>E'G)

®r+p=n \Np,q(TjrErG), and with the differentials 8 + d/ and A". We denote by
Tot#W(7>E'G) the total complex obtained by summing over all three gradings.

Proposition 7. The composition

o (1 + d' o ft)"1: Tot*2 W(7>£G) -> W'V)
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is a morphism of bidijferential spaces. In fact, it is a homotopy equivalence with

respect to 8 + d/, with homotopy inverse 7Tq It restricts to an algebra morphism
on the normalized subcomplex Tot*2 W (TjrEG).

Proof The first part is a direct consequence of the Perturbation Lemma 4, applied
to Tot*f W(7>£G) for fixed q. We obtain a similar statement for the total

complex Tot* W(7>£G) (with the differential 8 + d where d d' + d"), for the

composition ^ o (1 + do h)~l. By Lemma 5 (cf. the proof of Theorem 1), the

map Lq o (1 + d o h)~l is an algebra morphism on normalized cochains. But this

map coincides with Lq o (1 + d/ o h)~l, because

oo

(1 + d O h)-1 (l+d' oh-ho d'T1 (1+ d' O h)-1 + 0 d")"
n=1

(using that h and d" commute), and oh 0.

Definition 4. The composition

VE: i* o (1 + d' o h)~l o k* : QT(B.G) W*'*(yl).

is the Van Est map for the Bott-Shulman-Stasheff double complex.

By construction, the map VE is a morphism of bidifferential spaces, and it
restricts to an algebra morphism on the normalized cochains. It is an Q(M)~
module morphism, since each of the maps Lq, k* and 1 + d/ o h is an £2(M)~
module morphism.

For local Lie groupoids G, one similarly obtains a Van Est map on the

complex of germs,
VEM: Q*(B.G)m -+ W*'*04).

The latter is surjective, and as we shall see in the next section, admits a right
inverse which is a morphism of bidifferential spaces. The Van Est map for a

global Lie groupoid G factors through the localized Van Est map VEm

6. Van Est theorems

The Van Est map can be viewed as a differentiation procedure from Lie
groupoid cochains to Lie algebroid cochains. In some situations, it is possible to
obtain an integration procedure in the opposite direction. In our approach, the

Van Est map was constructed using a homotopy operator with respect to 8; to
obtain a cochain map in the other direction one wants a homotopy operator with
respect to the differential d.
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Note that the principal G-bundles kp EPG BPG are trivial: For any fixed

i S p, the submanifold of elements (ao,...,ap) e EPG with at e M defines a

section. Taking i 0, the corresponding right inverse to kp is the map

jp: BPG -* EPG, (gi,...,gp)\^ (t(g1),g~[1,...,(g1---gpy1).

As before, we regard Q'(B.G) as a bidilferential algebra concentrated in bidegrees

(•,0, •). The morphism of bigraded spaces

j*. \N9>9(TjrE.G) ->

(given by the obvious pullback map in tridegree (•, 0, •), and equal to zero in all
other tridegrees) is a left inverse to k* It is a cochain map with respect to d/, d"

(in particular, y* od' 0), but since y. is not a simplicial map it is neither a

cochain map with respect to 8, nor an algebra morphism.
Consider the very special case that the t-fibers of G are contractible, in

the sense that there is a smooth deformation retraction Xt: G -> G, depending

smoothly on (t,g) e [0,1] x G, and such that

(32) X(\m iAm, Ao=idG, X\=Lot, toXt=t
for all t g [0,1], g e G. One then obtains deformation retractions XPit: EPG ->
EPG with

kpAßpG =&BPG> hp,0=iAEpG, kPii=jpOKp, Kp o XPit Kp,

by the formula

• • • ->dp) {Xt(ciQ^, o\üq Xf(üo),..., apa0 A^(^o))-

In turn, these define homotopy operators (cf. Example 4)

k: \Np'q(TjrErG) \Np~l,q(TjrErG)

(i.e., kdf + d'k id—k* j*), with kd" + d"k 0.
For a general Lie groupoid G, or even a local Lie groupoid, one can always

choose a germ of a deformation retraction X along the t-fibers. The properties (32)

are to be understood as equalities of germs along M (or along [0,1] x M). The

germ determines a homotopy operator kr: \Np,q(TjrErG)M V\lp~1,q(TjrErG)M
for the complex of germs. We obtain:

Proposition 8. For any local Lie groupoid G ^ M the map VEm ^Iq{B.G)m
\N*,q (A) is a homotopy equivalence, for all fixed q. Given a germ of a retraction

of G onto M along t-fibers, the corresponding operator k defines a homotopy
inverse:

J: O (1 + 8kr1 O 7Tq : W'*04) - n'(B.G)M.
Similar assertions hold for the Van Est map VE of global Lie groupoids with
contractible t-fibers.
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Proof. Reversing the roles of d and 8 in the Perturbation Lemma 4, we see that

j* o (1 + 8k)_1: Tot* W(7>£G)M -> Sf(B.G)M

is a cochain map, and is a homotopy inverse to (1 + k8)~lK* k* Here we
used that k8 vanishes on the range of k* for degree reasons. On the other hand,

by Proposition 2, the map Lq o (1 + d o A)-1 is homotopy inverse to Xq

Remark 6. Once again, we can write this 'reverse Van Est map' as a zig-zag:
In bidegree (p,q), it reads as

(-1yj; o (Sky o n*: w(A) -> nq(BpG)M.

The following result is due to Weinstein-Xu [WX] in the case q 0, and to

Bursztyn-Cabrera [BC] in the general case.

Proposition 9. Let G M be a local Lie groupoid. In bidegrees (p,q) with

p 0,1, the map VEm • ^q(BpG)m \Np,q(A) restricts to an isomorphism on
8 -cocycles. Similar assertions hold for global Lie groupoids with 1 -connected

t-fibers.

Proof. On £2q(BoG)M W0,q(A)M Qq(M), the map VEm is just the identity
map. The space ker(<5) c \N°>q(A)M consists of (locally) G -invariant q-forms,
while ker(d') consists of q-forms that are ,4-invariant. But these two spaces
coincide. It follows that VEm restricts to an isomorphism on 8 -cocycles in

bidegree (0,q), as well as on 8 -coboundaries in bidegree (1 ,q). Since VEm
induces an isomorphism in cohomology for the differentials 8, d/, it must then

also restrict to an isomorphism on 1-cocycles. For global Lie groupoids G M,
consider the quotient map Qq(BpG) Qq(BpG)m A <5-cocycle in Qq(B0G) is

a (globally) G -invariant form; if G is 0-connected this is the same as a locally
G-invariant form, i.e. a cocycle in Qq(BoG)M • A <5-cocycle in Qq(BiG) is a

multiplicative form on G. Such a form is uniquely determined by its restriction
to an arbitrarily small open neighborhood of M in G, i.e., by its germ. Hence

the map Qq(B\G) £2q(BiG)m is injective on 8-cocycles. If the t-fibers are
1 -connected, then any germ (along M) of a multiplicative form extends uniquely
to a global multiplicative form. Hence the map is also surjective in that case.

Remark 7. The prescription in [WX] is equivalent to the one given here: Any
cocycle a e Cl(A) T(A*) defines a closed left-invariant foliated 1-form
aL e £2^(G), for the foliation given by the target map. If the t-fibers are

simply connected, one obtains a well-defined function / e C°°(G), such that

f(g) is the integral of aL from t(g) to g, along any path in the t-fiber. This

function / is multiplicative.
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For a global Lie groupoid, one has Crainic's Van Est theorem:

Theorem 2 (Crainic [Cra]). Suppose G M is a Lie groupoid with n -connected

t-fibers. Then the Van Est map VE: C°°(B9G) —C#(A) induces an isomorphism
in cohomology in degrees p < n. For p n + I the map in cohomology is

injective, with image the classes [co] such that for all x e M, the integral of co

(regarded as a left-invariant foliated form) over any n + 1 -sphere in t_1(x) is

zero.

(A generalization to Q(BG) was obtained by Abad-Crainic in [AC].) Using
the homological perturbation theory, one can construct the inverse in degrees

< n on the level of cochains, given a homotopy operator. The assumption that
the t-fibers are n -connected implies that the fibers of any principal G -bundle

are n -connected. In particular, this applies to Kr: ErG -> BrG. It follows that

C*(7>E.G) has vanishing d-cohomology in bidegree (r,s) for all s <n. Let

x<nC° (TjrE.G)

be the truncated foliated de Rham complex for G, given by Cs(TjrErG) in
degree s < n and by Cn(TjrErG) n ker(d^) in degree n. The truncated complex
has vanishing d-cohomology in degrees (r, s) with s > 0. Hence there exists a

homotopy operator

k: r<nCs(TjrErG) -* r^C5'1 (T^ErG)

with kd + dk id —k* j * By the Perturbation Lemma, the composition

j* O (1 + Sk)-1: r<„Cs(T^ErG) - C°°(BrG)

is a cochain map for the total differential. It gives the desired cochain map

j* o (1 + 8k)'1 o TT* : t<nCp(A) -+ C°°(BPG).

7. Explicit formulas for the Van Est map

Until now, we expressed the Van Est map in terms of the Van Est double

complex. We will now derive more explicit formulas, thus confirming that this
definition agrees with those of Weinstein-Xu [Weil] and Abad-Crainic [AC]. We

will directly consider Q'(B.G) ; the results for C°°(BmG) will be special cases.

7.1. The Lie algebroid Tj=G. Let G be a Lie groupoid with Lie algebroid
A Lie(G). Let T be the foliation of EqG G defined by the submersion
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Ko t, and let 7>G be the corresponding Lie algebroid. Recall that any X e T(,4)
induces derivations

is(X), iK(X), iCE(X), C{X)

on \N9,9(A). The left-invariant vector field XL e T(7>G) defines similar
derivations of W#'#(7>G). The inclusion i: M -> G lifts to a morphism of
vector bundles A -> TtG, defining a pullback map i*: W#,#(7>G) -> W#,#(,4),

with

i* odK dKo i*, i* o is(XL) is(X) o i*, i* o i^(XL) iK(X) o

On the other hand, since A Tj?G is not a Lie algebroid morphism, the map i*
does not intertwine dce, £(X), ice(X) (for X e T(^4)) with the corresponding
derivations of W(7>G), in general. Instead we have

Lemma 2. For all X e T(^4),

t* ° ice(Xl - XR) ice(X) o i*, i* o L(Xl - XR) C{X) o t*.

To explain the left hand side of these equations, note that any vector field
Y e £(G) in the normalizer of T(7>G) (i.e., such that [F, •] preserves T(7>G))
defines an infinitesimal automorphism of 7>G, giving rise to a derivation C{Y)
of T(aT£G), and hence to derivations lce(Y) j(C(Y)) and C{Y) 1{C(Y))
of \N9,9(A). This applies to the vector fields XL as well as to the vector fields

XR, hence also to the vector field Y XL — XR (generating the adjoint action).
The Lemma follows since [XL — XR,-] on T(7>G) induces [X, •] on T(^). It
will be convenient to introduce the operator

(33) V: W'#(7>G) -> Vf+1>*(A), V dCE o i* - i* o dCE,

measuring the failure of l* to be a cochain map for dcE.

Lemma 3. For all X e T(^),

ik(X)OV + Voik(Xl)=I*O£(-Xr),
is(X) oV-Vo 1S(XL) i* O iCE (—Xr).

Proof. Using the above commutation relations we calculate

isPO o V isPO o (dcE ° — i* o dcE)

(ice(X) + dCE ° i*(Z)) o i* — i* o its(XL) o dc£

o ic^(^fL — XR) + dc^ °t*° ispfL)
— O lC£pfL) — O dc£ ° ls(XL)

L* oice(-Xr)+VOIs(Xl).
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which proves the second identity. The first follows by taking a commutator with
dK.

On elements f e Qq(G) W°'#(7>G), these formulas become (for degree

reasons)

\K{X)V(j) i* o C{-XR)(j) g

is(X)V</> l* o\{-XR)(j) g Qq~l(M),

where i(—XR) is the usual contraction operator on differential forms.

7.2. A formula for the Van Est map. The vector fields —XhR e X(ErG)
are invariant under the principal G-action, hence they descend to vector fields
Xl$ g X(BrG). The —XhR generate the G-action on ErG given by left
multiplication on the i -th factor; similarly the Xl$ generate the following G-
actions on BrG,

g.(gl,...,gr) (.gl,---,gi-l,gig~l,ggi + l,gi+2,---,gr)-

These define Lie derivatives and contractions on Q(BrG), with

K* O 1(*'•») lK(-X''R) O k*, K* O C(X1'*) C{-Xl'R) O K*.

For elements a e \Np'q(A), X\,...,XP e r(^4) and all n < p we put

a(Xu...,Xn,Xn+1,...,Xp)
isiXp) is(Xn+1)iK(Xn) iK(X\)a e Qq~n(M).

This expression is C°°(M)-linear in X\,... ,Xn, but not in Xn+i,... ,XP, due

to (30).

Theorem 3. The Van Est map VE: Q'(B,G) —\N'-'(A is given by the following
formula, for f e Qq(BpG) and X\,... ,XP e r(d),

VEmX1,...,Xn,Xn+1,...,Xp)

-•*E • • £< • x*S>.
se&p

Here i\ M BPG is the inclusion as constant p-arrows, and e(s) is equal to

+ 1 if the number of pairs (i, j) with 1 < i < j < n but s(i) > s(j) is even,

and equal to —I if that number is odd.

Observe that the formula does not involve the generating vector fields for the

i 0 action.
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Remarks 2. (1) This formula is similar to the expression obtained in Abad-
Crainic [AC, Proposition 4.1]. However, in contrast to the result in [AC], no
recursion procedure is needed.

(2) The same formula holds true for local Lie groupoids, using the complex

Q*(B.G)m of germs.

(3) Restricting, we obtain the following formula for the Van Est map C°°(BmG) ->
C(A):

M
VE(/)(*! ,...,xr)=Y, sign^AVäV • • • AVw) /

se&r

This is the formula given by Weinstein and Xu [Weil].

(4) Mehta points out in [Meh, Section 6] that the formula in Theorem 3 can be

obtained from that of Weinstein and Xu [Weil] (c.f. [Meh, Definition 6.2.1]),
via an appropriate modification to the signs due to the Koszul sign rule.

The proof will require some preparation. To simplify notation, denote by
® •= ®£2(Af) the (algebraic) tensor product of modules over commutative graded

algebra Q(M). We will use the pullback s* to regard £2(G) as an £2 (M)-module;
there is a natural multiplication map (not to be confused with cup product)

fi*°(G)®...®fi*r(G) -> Qqo+"'+qr(ErG),
(35a)

00® • • • •-> pro 00 • • • pr* 0r.

The Weil algebra W*'*(A) is also a module over Q(M) ; the pullback jr* defines

an embedding as a subspace of W#'*(7>ErG). We obtain an injective map, with
dense image

(35b) fi*°(G)® • • • ®fi^ (G)®\Np>q(A) -> )Np>qo+-+qr+q(TjrErG)

For cj)t e £2(G) and a e W(A), we will identify <fio<g) - - <gxfir<g)a with its image
under this map. On the image of this map, the homotopy operator h, the differential
d/ (— l)rdc£, and the homomorphism R. 7r* o read as

r-1
A(00® • • • ^(— 1)* + 10O® • • • ®01® 1® • • • ®1 ®£*(01 + 1 • • -0r)of,

1=0 r—i — 1

d'(0o® • • • ®0r®a) =(-l)*0+ -+4r EE 4>o® • • • ®C(Xv )<i>j ® • • • ®<pr®ßvot

7=0 v

+ (-1 )qo+-+qr+r<po® <&<pr®&CE<X

R(<t>0® • • • ®<pr®<x) 1® ' • • ® l)®i*(<fto • ••4>r)oi

r+1
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Here the second formula is to be understood locally, in terms of a local frame

Xi,..., X/c of sections of A, with dual sections ß1,..., ßk of A* The last two
formulas imply that

(36) [d/, R\((/)o® • • • ®0r®a) (-l)r (1® • • • ® 1)®X>(0O • • • fr)ot
r + l

The following formula involves the restriction V: Qq(G) -> \N1,q(A) of the map
(33).

Proposition 10. We have the following formula, for fa e £2Ql (G) and a e \Np,q(A)

r-1
(37) [d', Ä](0o® • • • ("l)r ^(-l)'+«o+-+9. «/,0®...

1=0

•••®0i® 1® • • • ®1 ®(X>(0, + i - -<f)r)0t).

r—i — 1

Proof Using that h is an F-derivation, one obtains the following property of
[d', h\ under cup product:

(38) [d/, h\(x U y) [d/, h\x U Ry + xU [d/, h\y — (—1 )'x'ftx U [d/, R]y.

for x,y £ V\T>9(TjrE.G). Here \x\ denotes the total degree of x. In particular,
take x </>o®l, as in (35a), with </>0 e ß^°(G). We have |x| qo + 1, hx
—0o, [d/, h\x 0, and

x U y (—l)q°m<po®y

for y e VJm>m(TjrEmG). Hence the formula (38) gives

[d\fc](0o®3O (-l)«°0o®[d', A]y - U [d', R]y.

If y £ \N(TjrEr-\G), then we obtain, using (36),

[d', R]y (—l)r_1 1® • • • ®1 ®P(0i • • •fr)a.
r

Hence we find

[d',h\(<f>o®y) (-1 )q°fo<S>[df,h\y + (-l)r(-l)^°0o®l® • • • ®1®£>(0i •••0r)a,

which proves the Proposition.

Proposition 11. For <fio,... ,<fir e Q(G) and a e \Np>q(A), we have

LqO(1 + [d', A])"1 (00® • • • ®0r <8>a)
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Proof. Using induction on r, we use Proposition 10 to prove
(40)

[<f, h]r(<po® ®4>r®a) {-\y+rqv+ir-1)qi+---+qr-l(p(i®((V(pl) (V<pr) a).

For r 1 this is just a special case of Proposition 10. For r > 1, we apply the

induction hypothesis for rf r — 1 to the formula for [d/, h\(f0(g> • • • (g>0r<8>a), as

given in Proposition 10. Only the term with i r —1 gives a nonzero contribution,
and yields (40).

Remark 8. The result (39) may also be written

(iq <S> V <S> - - - <S> V <S> id)(0o ® ® fr ® ot),

followed by the multiplication map W(A) ® ••• ® W(A) -> W(A). The signs

appear naturally here, according to the super-sign rule: The first V moves

past 0o, the second V moves past 0o,0i, and so on. Hence we obtain

qo + (#o + qi) + + (qo + + qr-1) rqo + (r — l)#i + • • • + qr-1 sign

changes.

of Theorem 3. Given Xi,...,Xr g T(^4) and any n < r we obtain, for all

0o,..., G £2(G),

((* o (1 + [d', A])_1(0O® * * * 1))(*1, • • • V„+ 1, ..,Xr)
(-i)rq<>+-+q'-Hs(Xr) is(Xn+1)iK(Xn) • ixOnOVo 2>^1 • • • V4>r)

c {(£(-Xl'R) C(-Xnn'R)i(-Xnnll'R) i(-Xrr'R) +

+ s.p.)(<po® ®<Pr)y

here the lower dots signify a signed permutation of the Xfs. Consequently, for

0 G Q(BrG) this gives

(tS o (1 + [d', A])-1 O <(<£))(*!, Xn, Xn + l, Xr)

,;Z
se&r

Here the sign e(s) is the sign of the permutation putting s(1),..., s(n) C {1,..., r}
in order; in other words, it is 1 if the number of pairs 1<i<j<n with

s(i) > s(j) is even, and is —1 if that number is odd. This implies the formula

given in Theorem 3, because —Xl,R is icr -related to XhK

Example 6. Let us examine these calculations for the case of a pair groupoid
G Pair(M) M xM. Here Lie(G) TM, and for X e T{TM) £(M) we
have

XL (0,X), XR (-X,0).
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The map V: C°°(M x M) Cl(TM) ^(M) is given by

V(u ® ur) —z/dn, n, z/ G C°°(M).

We identify i^G M^+1, where the p + 1-tuple (m0,... ,m^) corresponds
to with ^ Similarly, E^G M^+1 x M, where

(m0,..., mp, m) corresponds to (a0,..., ap) with at (ml, m). Given u0 ® ®
G C°°(Mp+l) with iq G C°°(M), the pullback to EPG is fo®-'®fp with

fi ut <g> 1, with £>(/0 —drq. Thus

to ° (1 + [d^])_1(/o® (—l)pModwi •••dMp.

Hence the Van Est map becomes (up to a sign) the standard map from the

Alexander-Spanier complex to the de Rham complex:

YE: C00(MP+1) -> QP(M), u<s®---®up^ (-l)*w0dwi • • • dup

A. Simplicial manifolds

In this section we give a quick review of simplicial techniques used in this

paper. Standard references include Bott-Mostow-Perchik [MP], Goerss-Jardine

[GJ].

A.l. Basic definitions. Let Ord denote the category of ordered sets. The objects
in Ord are [0], [1], [2],..., where [n] {0,and the morphisms in Ord are

the maps /: [m\ -> [n] such that i < j =>- /(/) < f(j). Any such morphism

may be written as a composition of face maps dJ degeneracy maps eJ

dJ : [n\ -> [n + 1], j 0,... ,n + 1, eJ : [n + 1] -> [n], j 0,... ,n

given by

A simplicial manifold is a contravariant functor from the category Ord to the

category of manifolds. We denote by Xn the image of [n] {0,and
by X(f): Xn -> Xm the map corresponding to a morphism /: [m] -> [n]. We

will write dt := X(3I), and e* := X(el). Associated to any topological category
C is a simplicial space B.C, called its simplicial classifying space (or nerve)
[Seg]. Here B0C is the set of objects of the category, B\C the set of arrows

(morphisms in C), B2C the set of commutative triangles, and so on.
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Example 7. If G M is a Lie groupoid (regarded as a category), the space

BPG is the manifold of /»-arrows, as in Section 2.2.

Example 8. For any fixed />, the set [/>] {0,..., p} may be regarded as the

objects of a category, with a unique arrow z0 ^— h for any 0 < io < i\ < p.
The corresponding space Bn[p] is the set of n-arrows of this type,

z'o -< i\ < • • • -< in

where 0 < i0 < • • • < in < p. Equivalently, Bn[p] is the set of nondecreasing

maps [n] -> [/>]. Any morphism [m] -> [n] in the category Ord determines a

simplicial map Bn[p] -> Bm[p] for the category [/>], by composition. We will
denote this (discrete) simplicial manifold by A.[/>] := B.[p], since its geometric
realization is the standard /»-simplex. Any nondecreasing map [/»] -> [/>'] defines

a morphism of simplicial manifolds A.[/>] -> A. [/?'], with geometric realization
the corresponding map of standard simplices.

A.2. Simplicial homotopies. The two morphisms 3°,31: [0] [1] give rise to

simplicial maps
d°„ ai: A.[0] —>• A.[l],

corresponding to the inclusions of the end points. A simplicial homotopy between

two morphisms of simplicial manifolds /#°, f} : X. —> F. is a morphism

H.: A.[l]xZ. -+Y.

such that

H. o (32 x id^.) /.°, H. o (3i x id*.) Z.1 •

Homotopy is an equivalence relation provided X. satisfies the Kan condition

[GJ]; in particular this is the case for the simplicial classifying space of
a groupoid. To spell out the homotopy condition in more detail, note that

A/?[l] {a_i,ao,... ,otp} with

O/(0=C
C 1 > J

hence Hp is determined by the maps HPJ Hp{otj, •) for —1 </</>. The

condition that H• be a simplicial map becomes

a j-j
i < j |ffP+i,;+i°f» ' ^ 7

d, o Hp < e, o Hp <

[Hp-1,7 0 Z i > J \Hp+hj 0i 1 > J

and the boundary conditions are
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Hp-i — fp > HPtP — fp

The map (d°)p takes the unique element of Ap[0] to a-\, while (9X)^ takes it
to Up.

Associated to any simplicial space X is its Moore complex (ZX.,S), where

ZXP are Z-linear combinations of elements in Xp, and

p

sP zxp -+zxp-i.
J —0

Any simplicial homotopy gives rise to a homotopy operator for the Moore

complexes, by the formula

p

(41) hp\ ZXp -* ZYp+1, hp YS-W+lhp,j
J —0

with hpj (x) Hp+i9j(j(x)). That is, h. satisfies hp-idp + dp+ihp fp - fp
See Goerss-Jardine [GJ, Lemma 2.15].

For the following result, recall that for any foliation J7 of a manifold M,
the groupoid Pairjr(M) M consists of pairs (mo,mi) of elements in the

same leaf, and Bp Pairj?(M) consists of p + 1-tuples (m0,...,m^) of elements

m, g M, all in the same leaf. Any smooth map /: M M preserving leaves

extends to a simplicial map

(42) f.: B. Pair^(M) B. Pair^(M)

where fp(mo,..., m0) (/(m0),..., /(mp)). The following result may be

regarded as a special case of [Seg, Proposition 2.1]. The proof is a straightforward
verification.

Proposition 12. Let J7 he a foliation of a manifold M, and f: M —> M a
smooth map preserving leaves. Then

(43) HptJ(mo,...,mp) (m0,... ,m}, f(mJ+1),..., f(mp)),

defines a a simplicial homotopy H. between (42) ami identity map. The

corresponding homotopy operator is given by

p

hp y](-l)J+1hp,j: 1BP Pair^r(M) Z^+1Pair^(M)
J —0

where (cf (41))

hPJ (m0, ...,mp) (m0, f(rn.j), f(mJ+l),f(mp)).
Thus, hp-1 o 3p dp+i °hp id— fp. If f is a retraction (i.e., f o / /), then

the homotopy operator has the additional property hp+\ o hp =0.
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We will use the following special case: Suppose ri \ Q -> M is a surjective
submersion admitting a section l: M -> Q. The submersion defines a foliation of
Q, where Bp PairT Q is the p + 1 -fold fiber product Q xM • • • xM Q.
Take / t o n: Q -> g. The proposition shows that the two maps

jr.: ß(,+1) -> Af, i%: M —> ß(,+1)

are simplicial homotopy inverses, with an explicit homotopy operator

p

hp(q0,...,qp) (q0, ,q,,m,... ,m)
1=0

where m n(qo) n(qp).

B. Homological perturbation theory

In this paper we used the following two results, Lemmas 4 and 5, which are

special cases of results from homological perturbation theory.
Let (C#'#,d, 8) be a double complex, with differentials 8 of bidegree (0,1)

and d of bidegree (1,0) so that [d, 8] d<5 + <5d 0. We assume that Cr,s is

non-zero only in degrees r, s > 0. The corresponding total complex is given by
Tot* C ®r+^=#Cr'^ with the total differential d + 8. Suppose that

i: £>*'* ^ C*'*

is a subcomplex for both differentials d and 8, and that there exists an operator
h of bidegree (—1,0) suchthat2

[A, 8\ h8 + 8h 1 — / o p,

with p: C*'# a left inverse to i. This equation shows that i is a homotopy
equivalence with respect to 8, with homotopy inverse p. Indeed, poi id, while
the projection operator II i o p is <5-homotopic to the identity. Note however

that p need not intertwine the differential d.

By the following result, one can modify p and i to obtain a homotopy
equivalence for the total differential d + <5. It is a version of the Basic Perturbation
Lemma [BRO, Gug, GLa, GLS, HK]. See Crainic [Cra] and Johnson-Freyd [Joh]
for some recent applications.

Lemma 4 (Brown [BRO], Gugenheim [Gug]). Put pr p( 1 + dA)-1, V

(1 + Ad)-1/, h' A(1 + dA)-1. Then:

2 In what follows, the brackets [•,•] indicate graded commutators for the total degree.



132 D. Li-Bland and E. Meinrenken

(1) The map Ef Vpr is a cochain map relative to the total differential d + 8.

In fact, it is homotopic to the identity with the homotopy operator h':

[h',d + 8\ 1 -i'p'.

(2) If h preserves the suhcomplex D, and commutes with d on D, then EE is

again a projection onto D. Furthermore, in this case p' is a cochain map
with respect to the total differential, and is a homotopy equivalence, with

homotopy inverse i'.

Proof (1) We have (1 + hd)h' h hfl + dA), hence

(1 + hd)[h', d + 8](l + dh) A(d + <5)(1 + dh) + (1 + Ad)(d + 8)h [A, d + 8].

where we used d<5 + 3d 0. On the other hand, [A, 8] 1 — z'/? implies

(1 + Ad)(l - i V)(l + dA) [A, d + 8].

Comparing the two formulas, we see [hjd + 5] 1 — i'p'.
(2) We have

p'i' p( 1 + Ad)_1(l + dA)_1z p( 1 + [d, h])~li.

Hence, if [d, h] vanishes on D, then p'i' pi 1 so that n/ i'p'
is again a projection. If h preserves D, so that (1 + Ad) restricts to an

invertible transformation of D, we see that n/ has the same range as n.
Since n/ is a cochain map with respect to d + 8, the same is true of p'.

Remark 9. The second part of this Lemma applies in particular if h vanishes

on D. Note also that if h2 0, then D is preserved by A, since [A, n]
[A, 1 — [A, 5]] =0.

Let us now make the additional assumption that the bidifferential space C#'#

has a compatible algebra structure f ® f \-> f U f, with £>*'* a subalgebra.

Thus, in particular d and 8 are derivations of this algebra structures. We also

assume that the projection p is an algebra morphism and that (Ct*t, d + 8) is a

differential algebra.

Lemma 5 (Gugenheim-Lambe-Stasheff [GLS]). Suppose the homotopy operator
A is a n-derivation, that is,

h(<j) U \jr) hf U Uf + (—1 )^(f) U h\jf.
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Assume furthermore that h satisfies the 'side conditions'

h o h 0, p o h 0

Then the map ET n(l -f d/z)-1: Ct*t D*ot c Ct*t is a morphism of differential
algebras.

Proof Observe that hh 0 implies that h commutes with n 1 — [h,8]. Hence,

ph 0 =>- nh 0 =>- hU 0 ^ hi =0. That is, h vanishes on D. It follows
that V i, hence n' n(l + dh)~l n(l + [d,A])_1. With H [d,A], we
obtain

oo

n' n(i + h)_1 ^{-X)kiiHk.
k=0

The n -derivation property of h implies the following property of H:

H(<p U f) H<t> U Tlx/r + <f> U Hf + (-1 )w+1h<p U [d, n]^.

Iteration of this formula, using HTl 0 and [H,h] 0, gives

k

Hk(4> uf) J2H>C~J(P u nk~JnJf + J2h(Pik) u fik)
7=0 v

with certain elements Now apply the projection n. Since n is an

algebra morphism, and Tlh 0 and HTl 0, we obtain

k

YlHk{<p U t) Y^, nHk~J<p U UHJf,
7=0

which gives Tiff U f) Tl'f U TA'f as desired.

Remark 10. The same proof also gives the following more general statement,

applicable to bilinear maps of bidifferential spaces. We will again write this

bilinear map as a 'cup' product, although it might be for example a module

action, a Lie bracket, etc. Thus suppose

U: C\ 0 C2 —^ C3

is a morphism of bidifferential spaces. Suppose that U restricts to a bilinear map
on subcomplexes iv: Dv Cv, that pv \ Dv -> Cß are compatible with U in
the sense that pfffi U f) pi(f) U pi(f), and that we are given homotopy
operators hv for the 8 -differentials, i.e.,

[hv,8\ 1 - ivpv.
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If hv have the 'derivation property'

ft3(0 U \jr) h\<p U 112^ + (—U ^2^

for cj) e Ci, \jf e C2, and if the side conditions 0 and pvhv 0 are

satisfied, then II= nv(l + dftv)_1 are cochain maps for the total differentials,
with

n'3(0u^) n;(0)un'2(^).
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