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Constructions of torsion-free countable, amenable,
weakly mixing groups
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and Alexander Olshanskii

Abstract. In this note, we construct countable, torsion-free, amenable, weakly mixing

groups, which answer a question of V. Bergelson. Some results related to verbal subgroups

and crystallographic groups are also presented.
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1. Introduction

Weak mixing of a group action on a measure space is a property stronger than

ergodicity. It plays an important role in the modern theory of dynamical systems
(see for instance [G103], [BG04], and the references there). For actions of cyclic
groups, it was introduced by Koopman and von Neumann in [KvN32]. Later, von
Neumann introduced the class of so-called "minimally almost periodic groups"
([vN34], see also [vNW40]), which can be characterized by the property that every
ergodic measure-preserving action of such a group on a finite measure space is

in fact weakly mixing. At present, it is customary to call such groups weakly
mixing groups, or WM groups for short. At the beginning of the development of
the subject, locally compact groups were involved; but abstract groups play an

important role in recent investigations, and we restrict the discussion to them in
the present article. The case of amenable groups attracted special attention in the

paper of Bergelson and Furstenberg [BF09], establishing a relation between the

WM property and Ramsey theory (see also the recent [BCRZ14]).



322 R. Grigorchuk, R. Kravchenko and A. Ol'shanskii

For finitely generated groups, property WM is the same as having no nontrivial
finite quotients (see (1) and (2) in Proposition 2.2 below). For amenable groups
(finitely generated or not), property WM is equivalent to having no nontrivial
finite quotients or abelian quotients ((3) in Proposition 2.2). Thus locally finite

simple groups, such as the group Altfin(N) of finitary even permutations of N,
are WM. These groups are torsion groups.

A few years ago V. Bergelson, in a private discussion with the first author,
raised the following question:

Question 1.1. Does there exist an infinite, torsion-free, amenable, WM group?

We give a positive answer to this question, providing examples satisfying some
additional conditions.

This is done in two ways. First, we follow ideas of B. H. Neumann and

H. Neumann [Ne49, NN59], later developed by P. Hall [Ha74] and other

researchers. This leads, see Corollary 3.2, to an example of a countable WM

group which is orderable (and hence torsion-free) and locally solvable (and hence

amenable). Additional tools allow us to construct simple groups that answer

Question 1.1.

As an alternative, we use groups of type F'/N', where F is a free group,
N a normal subgroup of F, and N' the commutator subgroup of N. Groups
of type F/N', and more generally of type F/V(N) where V(N) is some verbal

subgroup of N, and their subgroups, were studied intensively in the '60s of the

last century by many researchers (from [M39] to [Sh65] and much more) mostly
with the purpose of studying varieties of groups (see [N67]). They also play a role

in the study of orderable groups, as can be seen from [KK74] and the literature
cited there. We show that groups of type F'/N' lead to examples of WM groups
under the condition that F/N is an amenable WM group.

The principal difference between these two constructions is the following. The

first one is an embedding construction, that is flexible enough to embed groups
with any combination of the properties in the list below into groups with the

same properties and extra ones.

Be torsion-free,

be locally indicable,

be amenable,

(C) be elementary amenable,

be subexponentially amenable,

be right orderable,

be orderable.
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In contrast, subgroups of groups given by the second construction are rather

special: they can be regarded as generalizations of torsion-free crystallographic

groups (see Proposition 5.2). In particular, every non-free subgroup H of the

group F/N' has a nontrivial free abelian normal subgroup; moreover, H must
have non-trivial intersection with N/N' (see Proposition 4.8).

In the study of amenable groups, an important role is assigned to the splitting
of the class AG of amenable groups into the disjoint union of the class EG of
elementary amenable groups and the class AG^EG of non-elementary amenable

groups. A further splitting involves the class SG of subexponentially amenable

groups, so that AG splits into three classes: EG, SG ^ EG and AG^SG. We

provide examples of groups answering Question 1.1 that belong to these classes.

A group property stronger than to be torsion-free is the property to be orderable.

We provide examples with various orderability properties. Unfortunately all our
examples are infinitely generated, and it would be interesting to answer Bergelson's

question within the class of finitely generated groups. Such examples would not
be right orderable since a nontrivial finitely generated right-orderable amenable

groups can be mapped onto Z [Mo06], An interesting open question related to
the above discussion is:

Question 1.2. Does there exist a finitely generated torsion-free, amenable, simple
group?

Our note contains also some results concerning verbal subgroups (this is related

to the second construction of WM groups), and a construction of crystallographic

groups, which is also based on the use of groups of type F'/N'.

2. Preliminaries

Since our note lies between group theory and ergodic theory, we provide more
details and give more definitions than would be required for a paper in one field.

Let G be a group. Assume first that G is countable (but see Definition 2.1

below). Recall that a measure-preserving measurable action a of G on a

probability measure space (X, B, /x) is

(a) ergodic if every G -invariant measurable subset of X has measure either 0

or 1,

(b) weakly mixing if, for every ergodic measure-preserving measurable action

of G on a probability measure space (F, C,v), the product action of G on

X x Y is again ergodic.
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Characterizations in terms of the associated unitary representation 71 of G on
the Hilbert space {/ e L2(X, B, ß) \ fx fd\i 0} are standard (see for example
[Sc84]):

(a') a is ergodic if and only if jt does not have any non-zero G-invariant
function,

(b') a is weakly mixing if and only if n does not have any non-trivial finite
dimensional subrepresentation.

A countable group G is called WM, or weakly mixing, or minimally almost

periodic, if one of the following equivalent conditions holds (i.e. if they all hold):

(i) G has no non-trivial finite-dimensional unitary representations.

(ii) G does not admit non-constant almost periodic functions.

(iii) Every ergodic measure preserving action of G on a probability measure

space is in fact weakly mixing.

Equivalences (i) o (ii) and (ii) <=> (iii) are proven in [vN34] and [Sc84]

respectively.
For example, an infinite cyclic group Z is not WM. Indeed, the action of Z

on the circle {z e C | |z| 1} for which the generator 1 e Z acts by a rotation

z 1—> e2n,ez with 0 irrational is ergodic and not weakly mixing. Note that the

group with one element is WM; other examples of WM groups appear below.

On the one hand, it is necessary to assume that G is countable for the proofs

we know of some of the equivalences stated above; this is quite explicit in [Sc84],
where groups are assumed to be locally compact and second countable. On the

other hand, for the following definition and for what follows in this article, the

countability assumption is irrelevant.

Definition 2.1. A group is weakly mixing, or shortly WM, if it has no non-trivial
finite-dimensional unitary representations.

First we provide an alternative characterization of WM groups in the presence
of amenability or finite generation.

Proposition 2.2. Let G be a group.

(1) If G is WM then G has no non-trivial finite or abelian quotients.

(2) If G is finitely generated, then G is WM if and only if it does not have

non-trivial finite quotients.

(3) If G does not have non-cyclic free subgroups (in particular if G is amenable),
then G is WM if and only if it does not have non-trivial finite or abelian

quotients.
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Proof. (1) We check the contraposition. If G is a group which has a non-trivial
finite or abelian quotient p : G Q, then Q has a non-trivial finite-dimensional

unitary representation p, and thus G has the non-trivial finite dimensional unitary
pulled back representation pop. Hence G is not WM.

(2) It suffices again to show the contraposition: if G is finitely generated and

not WM, then G has a non-trivial finite quotient.

By hypothesis, there exists a non-trivial unitary representation n : G Gin)
for some n > 1. If G is finitely generated, so is tr(G). Mal'cev proved [Ma40]
that all such groups are residually finite. In particular, n(G) has a non-trivial
finite quotient, and therefore G also has a non-trivial finite quotient.

(3) It suffices to show: If G has no non-cyclic free subgroups and is not WM,
then G has a non-trivial finite quotient or a non-trivial abelian quotient.

By hypothesis, there exists a non-trivial unitary representation jt : G —> U(n)
for some n > 1. Observe that n(G) is non-trivial and has no non-cyclic
free subgroups. By the Tits alternative [Ti72], n{G) is virtually solvable. We

distinguish now two cases: if tt(G) has a proper subgroup of finite index, so has

G (by pulling back), and G has a non-trivial finite quotient; otherwise jt(G) is

solvable and non-trivial, hence n(G) has a non-trivial abelian quotient, and so

has G.

The following two corollaries are straightforward consequences of the proposition.

Corollary 2.3. Let H be a finitely generated group without finite quotients, for
example the finitely presented Higman's group with 4 generators and 4 relations
constructed in [Hi51]. For every proper normal subgroup N of H, the quotient
H/N is a WM group.

In particular, H is a WM group, and, for every maximal normal subgroup
N of H, the quotient H/N is a simple WM group.

Every non-elementary hyperbolic group G has a non-trivial finitely presented

quotient H, itself without non-trivial finite quotients [0100], and such a quotient is

WM by Corollary 2.3. Similarly, there are 2^° non-isomorphic "monsters" [0189,
Theorem 28.7], and they are WM groups. A monster is here a non-abelian infinite

group in which every proper subgroup is cyclic; these groups are 2-generated
and simple.

Recall that a group is called locally finite if all its finitely generated subgroups
are finite; locally solvable groups are defined similarly. Such groups are amenable,
indeed elementary amenable (see the definition below).

Corollary 2.4. Infinite simple locally finite groups are WM.
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It is known that there are uncountably many pairwise non-isomorphic examples
of countable infinite simple locally finite groups. The simplest example, Altfi„(N),
has been cited in the introduction. Other examples are provided by the projective
special linear groups PSL„(AT), where n > 2 is an integer and K a locally finite
field; on the one hand, there are uncountably many pairwise non-isomorphic
locally finite fields (see [BS89], in particular Theorem 2.4 and Corollary 2.9);
on the other hand, for different n or K, the groups PSL„(AT) are pairwise
non-isomorphic (see [SW28, Satz 2], or § IV.9 in [Di71]). For one more class of
examples, we refer to [KW73, Corollary 6.12],

These groups are amenable torsion groups and are not finitely generated;

compare with Question 1.2. The following question is also open:

Question 2.5. Does there exist an infinite, finitely generated, torsion, amenable,

simple group?1

A remarkable class of infinite finitely generated amenable simple groups has

recently been discovered by K. Juschenko and N. Monod [JM13]. They proved
that topological full groups [[T]] associated with minimal homeomorphisms T
of Cantor sets are amenable, confirming in such a way a conjecture raised by K.

Medynets and the first author. The commutator subgroup of such a group is simple
and finitely generated when the homeomorphism is a subshift over finite alphabet
[Ma06]. Observe however that these groups are neither torsion nor torsion-free.

Recall that a group G is amenable if it has invariant mean, equivalently
if it has a left invariant finitely additive probability measure /i defined on the

algebra of all subsets of G, normalized by the condition pt{G) 1. The class

AG of amenable groups contains finite groups, abelian groups, and groups of
subexponential growth; it is closed under the following four operations: (i) taking
subgroups, (ii) taking quotients, (iii) extensions, (iv) direct limits (the latter

operation can be replaced by directed unions). The class EG of elementary
amenable groups is the smallest class of groups containing finite and abelian

groups, and closed under the operations (i) to (iv); it was introduced by M. Day
in [Da57]. The class SG of subexponentially amenable groups is the smallest

class of groups containing finitely generated groups of subexponential growth and

closed under the operations (i) to (iv); it was introduced in [Gr98]. The obvious
inclusions EG c SG c AG are proper [Gr98, BV05], We will say that an

amenable group has the type of amenability T\, Ti or Ts if it is in the class E G,
SG^EG, or AG^SG, respectively. A classical reference about amenable groups
is [Gre69]; more recent sources of information include the survey [CGH99] and

the monograph [CC10].

1 After the current article was submitted, the question was answered affirmatively by V. Nekrashevych
in [N16].
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Recall that a group is orderable if it has a linear order (also called a total

order) that is invariant with respect to both left and right multiplication. A group
is right (left) orderable if it has a linear order invariant with respect to right (left)
multiplication. To be orderable is a stronger condition than to be right orderable;
the latter is equivalent to be left orderable, and is stronger than to be torsion-free.

In our first construction (Section 3 below), we deal with restricted and

unrestricted wreath products of groups. It is known that a restricted wreath

product of (right) orderable groups is (right) orderable; an unrestricted wreath

product of right orderable groups is right orderable [MR77, Theorem 7.3.2],
but an unrestricted wreath product of orderable groups need not be orderable.

Nevertheless, there is a way to set a bi-invariant order on some special subgroups
of unrestricted wreath products (see Part (d) of Lemma 3.6). The books [KK74]
and [MR77] are good sources of information about orderable groups.

3. The first construction of torsion-free WM groups

Our first construction shows how to embed a group into a simple group in
such a way that various properties are preserved, first of all the properties of
torsion-freeness and amenability. This construction uses ideas from [Ne49, NN59]
and [Ha74], and some of our statements are simplified versions of statements that

can be found in these articles. We present proofs for the reader's convenience.

We begin with the simplest way of obtaining examples that answer Question 1.1

in the affirmative. The corresponding groups are elementary amenable, as they

are locally solvable groups.
For a group G, the commutator subgroup is denoted by G' or [G,G]. The

group G is perfect if G' G. Recall that the derived series (G^),s>o is defined

inductively by G® G and G('s+I) [G('!\ G(,s)] for s > 1. A group G is

solvable if G(s> {1} for s large enough, and its solvable length is then the

smallest integer s such that G(s) {1}. The group G is indicable if it has an

infinite cyclic quotient, and locally indicable if all its finitely generated nontrivial
subgroups are indicable.

The next theorem refers to the list (C) of group properties defined in the

Introduction.

Theorem 3.1. Let (V) be any combination of the group properties of (C). Every
countable group with Property (V) embeds in a countable perfect group with

Property (V).

Corollary 3.2. There is an infinite, countable, orderable, locally solvable and

perfect WM group.
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Remark 3.3. Recall that orderable groups are locally indicable (Corollary 2,

Section 2.2 in [KK74]). Also right orderable amenable groups are locally indicable

[Mo06], In fact, local indicability of the groups involved can be seen directly
from the construction if we start with indicable group and proceed as in the proof
of Lemma 3.6.

The next result is a strengthening of Theorem 3.1:

Theorem 3.4. Let (V) be as in Theorem 3.1. Every countable group with Property
CD) embeds in an infinite countable simple group with Property (V).

Corollary 3.5. There exists an infinite, countable, orderable, amenable, simple
WM group.

Moreover, such examples exist in each of the three classes EG, SG ^ EG,
and AG ^ SG, as defined near the end of Section 2.

The following Lemma 3.6 is the key argument in proving Theorem 3.1. It is

also the starting point for the construction leading to the simple groups mentioned

in Theorem 3.4. We recall first the definitions of wreath products.
Let A, B be two groups. Their unrestricted wreath product A UB is the

semi-direct product defined by AB xi B, where AB is the group of maps from B

to A, with pointwise multiplication, and where xi refers to the action of B on
Ab by shifts. Their restricted wreath product is the subgroup A I B := xi B

of A UB, where is the group of maps from B to A with finite support.
Recall that the restricted wreath product of two (right) orderable groups is

(right) orderable [Ne49].
For a e A, we define 8a e by <5a(l) a and 8a{b) 1 for 6 ^ 1. By

the inclusion a i-x 8a, we identify A with a subgroup of AlB. Also, we identify
B with a subgroup of AlB, in the natural way. A fortiori A and B are also

subgroups of A UB.

Lemma 3.6. Let G be a group and H a subgroup of the unrestricted wreath

product Gz xi Z.

(a) If G is torsion-free, then H is torsion-free.

(b) If G is locally indicable, then H is locally indicable.

(c) If G is solvable of derived length s, then H is solvable of derived length

<5 + 1.

(d) If G is amenable, then H is amenable.

Suppose moreover that G is countable. There exists a countable subgroup H of
Gz * Z with the following properties.
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(e) G is a subgroup of [H, H].

if) If G is amenable, then H is amenable of the same type of amenability as

G.

(g) If G is (right) ordered, then H is also (right) orderable with an order
extending the order on G.

Proof Claims (a) to (d) are straightforward; their proofs are left to the reader.

For g e G, define fg e Gz by fg(n) g if n < 0 and fg(n) 1 if
n > 0. Let a be the standard generator of the active group Z; it acts on Gz

as the shift to the left, that is o(f)(n) f(n + 1) for all n e Z. Observe that

[.fgM fgaf~la~l fg<y(f~l) Sg.

Let now H be the subgroup of Gz * Z generated by a and all fg, g e G.

(e) By the observation just above, we have G < [H, H].

(f) Let U be a subgroup of H n Gz generated by a finite set S of elements

of the form ff', with g e G \ {1} and i e Z. Since every ff' : Z —>• G has

only two different values, the set Z is a disjoint union of finitely many subsets

Zfc Zk(U) such that every function Z —> G in S, and thus more generally in

U, is constant on each Zk. Therefore U is embeddable into a product of finitely
many copies of G, and it follows that U is in the same class, EG, SG or AG,
as G is in.

Since every finitely generated subgroup of H n Gz is contained in a subgroup
of the kind of U above, the countable group H n Gz is an ascending union of
finitely generated subgroups of the kind of U above. It follows that H D Gz is

in the same class, EG, SG or AG, as G is in. This holds also for H, because

we have an extension H n Gz H —» q(H) in which the right-hand term is

a subgroup of Z. (Here, q : Gz xZ -» Z denotes the canonical projection.)
Since G < [H,H], we conclude that H is in the same class, EG, SG \ EG
or AG^SG, as G is in.

(g) Assume that G is right-ordered; denote by G+ {g e G | g > 1}

its cone of positive elements. Elements of Gz » Z are written (f,m), with

/ Gz and me Z. For / e Gz with /(/) 1 for i large enough, set

ijWdX max{/ e Z | /(/) f 1}; we write /ax —oo when /(/) 1 e G for all
i e Z. Observe that zax is well-defined for all / in 5, and therefore for all

/ e Gz with (f,m) e H for some me Z. Set

H+ {(f,m) e H \ m > 0 or m 0 and /(zj^ax) e G+}.

It is easy to check that H+ is a subsemigroup of H, that H+ U Hfl H ^ {1},
and that H+ n H+ 0. It follows that H+ is the cone of positive elements of
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a total right order on FT, defined by h\ > h2 if h\hfl e H+. This order extends

the right order given on G.
Assume moreover that G is ordered, and more precisely that the order given

on G is two-sided, equivalently that G+ is invariant by conjugation. It is again

easy to check that H+ is invariant by conjugation, i.e. that H is an orderable

group, with the order defined by H+ extending the given order on G.

Proof of Theorem 3.1. Let Go be a group with Property CD), for example
Go Z, with the canonical order. Define inductively a nested sequence
G0 < ••• < G, < G,+1 < ••• where G,+i is obtained from G, by the

same construction as H from G in Lemma 3.6. Define G to be the union

U;>0 Gi. Then G is perfect: for any g e G, there exists j > 0 such that

g e Gj < [Gj+\,Gj+\]. Since Property (V) holds for every G, by Lemma 3.6,

it holds also for G.

Proof of Corollary 3.2. Let G0 be a countable indicable orderable soluble group,
e.g. Go Z. Let (G,),>o and G be as in the previous proof. Then G, is solvable

for all i > 1 by Lemma 3.6(c), so that G U(>o ^ *s locally solvable. Moreover,
G is orderable, amenable and perfect, by Theorem 3.1.

Since G is perfect, it does not have any nontrivial abelian quotient. Since

G is locally solvable, every finite quotient K of G is solvable; as moreover
K' K, this implies K {1}. Hence G is WM, by Proposition 2.2(3).

For the proof of Theorem 3.4, it is convenient to have the following lemma.

Lemma 3.7. Let A,B be two groups, G AlB their restricted wreath product,
and N a normal subgroup of G containing a non-trivial element b from B.

Then N contains [A, A],

Proof Let x,y e A. Then x and byb~l commute, because b 1. Also,

y byb~l (mod N). Thus xy yx (mod N), or equivalently [r,j]eJV.

Proof of Theorem 3.4. First step: construction of a group C containing a given

group A. Let A be a group. For every integer i > 0, denote by At an isomorphic

copy of the group obtained from A as FT is obtained from G by the construction

of Lemma 3.6, and let <p, : A, —> Al+\ be an isomorphism. Define inductively
W, by Wq Aq and IV, W,-x t A, for / > 1. For every i > 0, identify
W, with a subgroup of Wl+1 as indicated just before Lemma 3.7, and define

W U=o W,.
Define inductively monomorphims as follows. Let ifro \W0 ^ W\ extend

the isomorphism f0, by mapping W0 A0 onto the acting group A, of the

wreath product W\ AqIA^. Assume by induction that the monomorphism
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ijf,-i : Wt~i <—> W/ Wi-i l A, is already defined for i > 1. Then the

monomorphism ft : W, B)_i I Ay Wl+1 W, l A,+x is given by the

pair of monomorphisms i/^-i and 0,. (Here we identify as above the last W,

with a subgroup of Wl+\ and use the following property of wreath products: if
X < Y and Z < V are group pairs, then X and Z generate a subgroup in Y I V

canonically isomorphic to X lZ.) Thus, the series of isomorphisms xf induces

an injective endomorphism <p on the union W U^0 IF, with (pi A,) Al+1
for all i > 0.

Define C to be the HNN extension of W with stable letter t e C such that

twt~l (p(w) for every w e W.
Observe that, for any a e A0, a ^ 1, the normal closure N of a in C

contains A. Indeed, N contains tat~l e A\ ^-{1}, so that N contains A'0 by
Lemma 3.7, hence N contains A by Lemma 3.6. (Recall that A is identified
with a subgroup of A0, and therefore also with a subgroup of C.)

Second step: construction of a simple group H. Let us denote by 9 the

construction of the first step, so that a group A is a subgroup of the group
C 0(^4). Iteration provides an ascending series 6{A) < 82(A) 0(0(^1)) < •••
Define H IJ^o (^) to be the union of the groups in this series.

Then H is a simple group. Indeed, let a e H, a ± 1; then a e 6l (A) for
some i. The normal closure N of a in 0,+l (A) (and a fortiori in H) contains

0'(/4), as in the last observation of the previous step. Similarly, N contains
9J (A) for every j > i. It follows that N H.

Third step: if A has some property of (C), then H has the same property.
Let us assume that A has some property (V) of the list (C). For all / > 0, the

group At has (V) by Lemma 3.6. We claim that so does W.

Suppose first that (V) is local indicability. Then W has (V), because this

property is closed under subgroups, Cartesian products, group extensions and

direct unions.

Suppose now that (V) is (right) orderability. This property is stable by restricted

(right) products; see Proposition 4 in Section 1.1 of [KK74], or proceed as in
the proof of Lemma 3.6. Consequently, if Ao is (right) orderable, say with some

(right) order, then IT,+i is (right) orderable, with a order extending that of VP,,

for all i > 0. It follows that W is (right) orderable.

The group C is a semidirect product of the group W := yJtL0t~lWtl and the

infinite cyclic group (/). Because of the properties of the endomorphism <p, and

by induction on / > 1, each of the groups t~lWtl has a (right) order extending
the (right) order on its subgroup t~'+1Wt'~l. Hence the group W has a (right)
order extending that on A. Finally the (right) order on C extending this is given
by the following rule: tmw > 1 for all w e IV when m > 0, and for w > 1 in
W when m 0; we leave it to the reader to check that this indeed defines a
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positive cone, and that the resulting order is two-sided if the original order on
A is two-sided (using that the endomorphism <j> preserves the order).

We have shown that, if A is (right) orderable, with some (right) order, then

6{A) has a (right) order extending that of A. Similarly, this (right) order extends

to 6l (A) for all i > 0, and therfore to H.
If (V) is another property of the list (C), then it extends from A0 to H by

standard arguments, and the proof is complete.

Proof of Corollary 3.5. Let first H be the group obtained as in Theorem 3.4 from
the group with one element. Then H is elementary amenable and orderable; it
is also infinite and simple, and therefore it is a WM group by Proposition 2.2(3).

Let now Q be any of the 3-generated 2-groups of intermediate (between

polynomial and exponential) growth constructed by the first author in [Gr84],
It is well-known that groups of subexponential growth are amenable, and the

class EG does not contain groups of intermediate growth, i.e. of growth between

polynomial and exponential [Ch80]; hence Q belongs to the class SG - EG. We

present it in the form F/N, where F is a free group of rank 3. It is known
that Q is a residually finite 2-group, and therefore the intersection of all the

derived subgroups is trivial. Hence the group A F/N" is orderable (see

Corollary 2 on Page 109 of [KK74]). We have A e S G, since the class S G is

closed under extensions, and A EG, since the homomorphic image Q is not
in EG.

Let H be the group obtained from A as in Theorem 3.4. Then H e SG,
by Theorem 3.4, and H £ EG, since A is a subgroup of H. Hence H is the

required example in SG ^ EG.
Finally, let B be the Basilica group that was constructed in [GZ02], It is

2-generated residually finite 2-group amenable [BV05], but not subexponentially
amenable [GZ02]. Therefore, if we replace Q by B in the argument of the

previous paragraph, we obtain the desired example H e AG ^ SG.

Remark 3.8. Note that the Basilica group B is right orderable. To explain this we

use some facts from [GZ02] and the terminology from [BGS03]. There are two
natural embeddings of B' in itself, given by the geometry of the tree on which
B acts. We denote their images by B'0 and B[, each isomorphic to B'. They are

commuting subgroups with trivial intersection in B'. Proposition 2 and Lemma 7

from [GZ02] show that B is weakly regular branch over its commutator subgroup

B', and the relation B' (B'0 x B\) x (c) holds, where c is the commutator of
the two standard generators of B. Hence B'/(B'0 x B[) is infinite cyclic, while

B/B' ~ Z2. It follows that B contains a descending sequence (H„)n>o of normal

subgroups with trivial intersection, with H0 B, H\ B', and Hn isomorphic
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to the direct product of 2"_1 copies of B'; moreover, Hn/Hn+\ ~ Z2"
1

for
n > 1, and H0/H\ ~ Z2 as already noted. Since the quotients Hn/Hn+i are

torsion-free abelian, B is right orderable by a result of Zaiceva (Proposition 1,

Section 5.4 in [KK74]).

At present, it is not known whether or not the group B is orderable.

4. The second approach to WM groups

The following lemma is well known (see [Hi55]) in case G is a free group.
The same proof works in the following version.

Lemma 4.1. Let G be a group such that, for every subgroup H < G, the

abelianization H/H' is a torsion-free group. Then, for every normal subgroup
N < G, the quotient G/N' is a torsion-free group.

Proof. Let N < G and a e G; set H {a, N) (a)N. It suffices to show that

H/N' is torsion-free. Consider the exact sequence

1 — H'/N' — H/N' H/H' — 1.

Since H' < N, we have H'/N' < N/N', and it follows that H'/N' is torsion-
free. Hence H/N' is an extension of a torsion-free group by a torsion-free group,
so that H/N' itself is torsion-free.

We also need the following result, of independent interest. To the reader not
familiar with the notion of variety of groups, we suggest, instead of an arbitrary
variety, to think of the variety of abelian groups, replacing in the statement and

the proof the notation V(G), for a verbal subgroup, by the notation G', for a

derived subgroup. Only this special case will be used later.

Recall that, if we have a set of words in a countable group alphabet, the

corresponding variety is the class of all groups which have these words w as

left-hand sides of identical relations w 1 (or laws). A variety is proper if it is

not equal to the class of all groups. Let V be a variety and G a group; the verbal

subgroup V(G) is the subgroup of G generated by all values of the words when
their letters are replaced by elements of G. Note that V(G) is normal, indeed

fully characteristic in G, and that G/V(G) e V; moreover, G is in V if and only
if V(G) {1}. Let K be a normal subgroup of G; then V(G/K) V(G)K/K.
If V is a variety, there is a variety V2 defined by the equality V2(G) V(V(G))
for every group G.

We prove the following theorem:
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Theorem 4.2. Let F be a non-cyclic free group and N a normal subgroup of
F. Let V be a proper variety of groups. Then the group V(F)/V(N) has a
non-trivial quotient in V if and only if F/N has.

Proof. Preliminary observations: if a group G is in V2 and non-trivial, then

G/V(G) is in V and non-trivial. Indeed, V(G/V(G)) {1}, and G/V(G) {1}
is impossible (otherwise G V(G) V2(G) {1}).

We show first the easy implication: assuming that there exists a non-trivial
quotient it : V(F)/V(N) —»• Q, with Q in V, we have to show that F/N has

a non-trivial quotient in V. For this, the group F can be arbitrary (it need not
be free and non-cyclic).

We claim that the group F/V2(F)V(N) is not in V. Indeed, since {1}
V(Q) ^ Ö # {!}' we have

V2(F)V(N)/V(N) V(V(F)/V(N)) < 7T-1(V(ß)) ^ *"'(0) V(F)/V(N),

so that V2(F)V(N) is properly contained in V(F); this implies that

V(F/V2(F)V(A0) - V(F)/V2(F)V(N) # {1},

and the claim is proved.
Now we use the claim as follows. In the group F/V2(F)V(N), the normal

subgroup V2(F)N/V2(F)V(N) belongs to V, being a homomorphic image of
N/V(N). It follows from the claim that this normal subgroup is proper, i.e.

V2(F)N f F. The nontrivial quotient G F/V2(F)N belongs to the variety
V2 since it is a homomorphic image of F/V2(F). Therefore, by the preliminary
observation, G has a nontrivial homomorphic image in V. So has the group
F/N, as required, since in turn, G is a homomorphic image of F/N.

We show now the converse implication, for which we will use a non-trivial
result on non-cyclic free groups. Assume that F/N has a non-trivial quotient
G e V; that is we have a normal subgroup M > N with F/M G. Then

H := V(F)/V(M) is in V, because V(F) < M. The group H is non-trivial
by Theorem 43.41 in [N67], since M ± F and the variety V is proper. As

V(N) < V(M), it follows that H is a quotient of V(F)/V(N), and this ends the

proof.

Theorem 4.3. Let F be a non-abelian free group of at most countable rank and

N < F a normal subgroup.

(1) If F/N is amenable, then F'/N' is countable, torsion-free, amenable, of
the same type of amenability as F/N.

(2) If F/N is a nontrivial amenable WM group, then F'/N' is a countable

torsion-free, amenable, WM group.
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Proof. (1) Assume that F/N is amenable. Since N/N' and F/N are amenable,

so is the group F/N' of the extension

(1) 1 —> N/N' —» F/N' — F/N — 1,

and the subgroup N/N' of F/N'. It follows from Lemma 4.1 that the group
F'/N' is torsion-free. If F/N is elementary amenable, then F/N' and hence

F'/N' are elementary amenable. If F/N belongs to the class SG ^ EG, then

F/N' also belongs to this class and hence F'/N' belongs to SG \ EG as

F/N'/F'/N' F/F' is abelian. Finally, if F/N belongs to the class AG \ SG
then the same argument shows that F'/N' e AG \ SG. This proves (1).

(2) We assume that F/N is an amenable WM group. By (1) and by Proposition
2.2(3), it suffices to prove that F'/N' does not admit any non-trivial finite or
abelian quotient. Note that abelian groups form a proper variety; by Theorem

4.2, indeed by its easy part, F'/N' cannot have a non-trivial abelian quotient,
otherwise F/N would have a non-trivial abelian quotient, in contradiction with
Proposition 2.2(1).

Suppose F'/N' had a non-trivial finite quotient. Then F'/N' would have a

finite simple non-abelian quotient H. The subgroup F'IT N/N' of N/N' being
normal and abelian, H would in fact be a quotient of F'/(F' n N), which
is isomorphic to F'N/N, the commutator subgroup of F/N. Since F/N is

WM, we would have F/N (F/N)', and H would be a factor of F/N, in
contradiction with Proposition 2.2(1).

To prove the second statement, it remains to show that F'/N' is non-trivial.
Suppose instead that F' N'. Then N contains F' so F/N is abelian. Since

it is also a nontrivial WM group, we obtain a contradiction with Proposition
2.2(1).

Remark 4.4. Suppose that F is a non-abelian free group, and N a normal

subgroup in F. If F/N has a non-trivial finite quotient, then F'/N' also has a

non-trivial finite quotient. Indeed we then have that there is a normal subgroup
N < R < F such that F/R is finite. It follows that F/R' is virtually a free abelian

group, and hence is residually finite. Thus F'/R' < F/R' is also residually finite.
Moreover F'/R' is non-trivial by the Auslander-Lyndon result ([AL55, Corollary
1.2]), since F R. It remains to observe that F'/R' is a homomorphic image
of F'/N' since N' < R'.

The same conclusion is true if, in the above statement, one replaces the variety
of abelian groups by any proper variety V (i.e. if one replaces the commutator
subgroup N' by V(N)); just use P. Neumann's theorem 43.41 from [N67] instead

of Auslander-Lyndon's theorem). Also, the class of finite groups can be replaced
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by any star class, as defined by K. Gruenberg in [Gru57], if this class is closed

under homomorphic images. Gruenberg's star property of an abstract class V of
groups is defined as follows:

A class V of groups has the star property if
(1) V is closed under taking subgroups and direct products of two groups from

V;
(2) if A is a normal subgroup of B, if A is a residually V-group and B/A e V,

then B is a residually V -group.

Examples of star classes include classes of finite groups, of finite p -groups, and

of solvable groups. Some results about star classes and residual properties of
groups of the form F/V(N) have been obtained by Baumslag, Dunwoody and

Andreev-Ol'shanskii [Ba63, Du65, A068].
By Theorem 4.3, in order to construct a countable torsion-free, amenable,

WM group, it suffices to construct a countable amenable, WM group G: simply

present G as G F/N, then F'/N' answers Bergelson's question. Here are

some examples.

Example 4.5. Let Altfi„(N) be the group of all finitely-supported even permutations

of the natural numbers. This group is locally finite and therefore amenable.

Because it is also simple, Corollary 2.4 implies that it is a WM group. So

if Altfin(N) F/N then, by Theorem 4.3, F'/N' is a countable torsion-free,
amenable, WM group.

Example 4.6. Let T be a minimal homeomorphism of the Cantor set C, i.e. a

homeomorphism such that the orbit {T'x \ i e Z} is dense in C for every x e C.
Define its full topological group [[7]] as the group of those homeomorphisms

g of C such that there exists a closed and open partition C LJ"=i Cs with
the property that the restriction of g to any Cs coincides with some power
pks(g) 0f where ks(g) is some integer (see [Ma06] or [JM13]). Let [[7]]'
be the commutator subgroup. By [Ma06], [[7]]' is a countably infinite simple
amenable group, which is finitely generated in case (T, C) is a subshift over a

finite alphabet (see [LM95]). So, if F/N [[7]]', then Theorem 4.3 implies that

F'/N' is a countable torsion-free, amenable, WM group.
The group F/N [[7]]' is infinite simple amenable, and therefore not

elementary amenable by [Ch80, Corollary 2.2], Since (F/N')/(F'/N1) ~ F/F'
is abelian, it follows that F'/N' is not elementary amenable.

Proposition 4.7. The group F'/N' from Example 4.5 is elementary amenable

group, while the group F'/N' from Example 4.6 is amenable but not elementary
amenable.
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Proof. Consider a free group F, a normal subgroup N, and the quotient
G F/N.

If G is elementary amenable, the extension (1) of the proof of Theorem 4.3

shows that F/N' is also elementary amenable; hence so is its subgroup F'/N'.
This occurs for Example 4.5, since Altfin(N) is locally finite, and therefore

elementary amenable.

If G F/N is amenable, so is F/N', again by the extension (1) of Theorem

4.3. If G F/N is simple non-abelian, it is in particular perfect, so that

F'N/N F/N, and F'/N' factors onto G. If moreover G is not elementary
amenable, F'/N' has the same property. This is the case of G [[T]]' in

Example 4.6.

The next statement gives important information about the subgroups of F/N'.

Proposition 4.8. Let H be a non-free subgroup of F/N'. Then the intersection
H n N/N' is nontrivial and therefore H has a nontrivial normal free abelian

subgroup.

Proof. Let M N/N' and assume that H (T M is trivial. Then HM is a

semidirect product, and we have an exact sequence

(2) 1 —» M —> HM —> H —^ 1.

Since HM is a subgroup of F/N' of the form P/N' for some P, N < P < F,
we have an exact sequence

(3) 1 —> M —> P/N' H —> 1

with P free and N < P. Let y : P »-// be defined as y ßa, where

a : P >P/N' is the canonical projection. Observe that

H ^ (P/N')/(N/N') s P/N

and therefore Ker y — N.
We are going to show that, for any //-module A, the second cohomology

group H2(H,A) vanishes. This will imply that H has cohomological dimension
1 and hence, by Stallings-Swan famous result [S68, S69], that H is a free group,
in contradiction witht the hypothesis.

So assume that for some groups A and G with A abelian, we have a short

exact sequence

(4) 1 —> A G H —> 1.

Then there is homomorphism <p : P G making the diagram
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P

commutative. Indeed, let B {b\, 62, • • •} be a basis of P. Then {y(bj)} generate
H. For each j fix a preimage g; e n~l(y(bj)) and define <p(bj) g,. This
defines (p.

Since mp(N) y(N) 1, we have <p(N) C i(A) and so <p(N') 1 because

A is abelian. Therefore the homomorphism <p factorizes through 1// : P/N' -> G

and thus there is a homomorphism £ : M ^A making the diagram

1 M ^ P/N' H ^ 1

*
1 >- A > G ^ H ^1

commutative. Now if ß : H -> P/N' is a splitting homomorphism for the top
row, i.e. ßß id, then <pß splits the bottom row, as required.

5. Concluding remarks

We conclude by including an observation not related to WM groups, but
related to the use of groups of type F'/N', that have appeared in Section 4.

Crystallographic group are discrete groups of isometries of «-dimensional
Euclidean spaces which have bounded fundamental domains. By a theorem of
Bieberbach, they can equivalently be defined strictly in terms of group theory,
and this is the definitions that suits our needs here:

Definition 5.1. A crystallographic group is a group G containing a normal

subgroup of finite index N which is free abelian of finite rank and is such that
the centralizer Cg(N) coincides with N.

Recall that Cg(N) is defined as the group of those g e G which commute
with every element of A. If A is abelian, then clearly N < Cg(N) ; hence it is

the reverse inclusion that matters in the definition above.

Proposition 5.2. Let F be a finitely generated free group and N a normal
subgroup offinite index.

Then every subgroup of F/N' (for example F'/N') is crystallographic.

This proposition immediately follows from the following
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Lemma 5.3. Let G be a finitely generated torsion-free group, which is virtually
abelian. Then G is crystallographic.

Proof. It follows from our assumptions that there exists a maximal normal abelian

subgroup H having finite index in G. Since G is finitely generated and torsion-

free, H is free abelian of finite rank. Suppose Cg(H) f H. The center of
Cg(H) has finite index in Cg(H) since it contains H. Therefore, by a well
known theorem of Schur, Cg{H)' is finite, and indeed trivial since G is torsion-
free. Thus, Cg(H) is abelian contrary to the choice of H.
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