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Pseudoholomorphic simple Harnack curves

Erwan Brugalle

Abstract. We give a new proof of Mikhalkin's Theorem on the topological classification

of simple Harnack curves, which in particular extends Mikhalkin's result to real

pseudoholomorphic curves.

Mathematics Subject Classification (2010). Primary: 14P25, 32Q65; Secondary 14P05.

Keywords. Pseudoholomorphic curves, Harnack curves

A non-singular (abstract) real algebraic curve is a non-singular complex
algebraic curve C equipped with an anti-holomorphic involution conjc The

real part of C, denoted by MC, is by definition the set of fixed points of conjc •

If C is compact, then MC is a disjoint union of at most g(C) + 1 smooth

circles, where g(C) is the genus of C. When MC has precisely g(C) + 1

connected components, we say that the real curve C is maximal. Equivalently,
a real algebraic curve C is maximal if and only if the quotient C/conjc is a

disk with g(C) holes (see for example [Vir84b]).
A real map <p : C -> CP2 from a real algebraic curve is a map such that

(f> o conjc conj o <p, where conj([x : y : z]) [x : y : z\ is the standard

complex conjugation on CP2. Note that 0(MC) c M0(C) if (p is real, however

this inclusion might be strict as <j> may map pairs of conjc -conjugated points
to MP2. Given <p : C -» CP2 a real smooth map, a point p e M0(C) is

called a solitary node if there exists a neighborhood U of p in MP2 such that

4>~l(U) (p~l (p) which in addition consists of two conjc -conjugated points at

which the differential of (j> is injective (i.e., locally at p, <p(C) is the transverse

intersection of two complex conjugated disks).
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1. Introduction

Let L0,Li, and L2 be three distinct real lines in CP2 with L0nL| nL2 0.
A simple Harnack curve is a real algebraic map (p \ C CP2 satisfying the

following two conditions:

• C is a non-singular maximal real algebraic curve;

• there exist a connected component O of MC, and three disjoint arcs /0, /1, h
contained in Ö such that 0_1(L, c h

Note that by Bezout's Theorem, the set cp~l{Li) contains finitely many points.
We depict in Figure 1 examples of simple Harnack curves with a non-singular
image in CP2 and intersecting transversely all lines Li. Theorem 1 below says
that these are essentially the only simple Harnack curves.

Let cp : C —> C P2 be a simple Harnack curve, and choose an orientation of
Ö. This induces an ordering of the intersection points of Ö (or C) with L,, and

we denote by s, the corresponding sequence of intersection multiplicities. Let s

be the sequence considered up to the equivalence relation generated

by

(S0>.Sl,S2) ~ (So,Sl,S2), (^0,5I,52) ~ (52,50^l),
and (so, si, s2) ~ C?o, s2, si),

where (wj)i<i<n (wn-;)i<;<« • This equivalence relation is such that s does not

depend on the chosen orientation on Ö, nor on the labeling of the three lines

Li.

Figure 1

Simple Harnack curves of degree d and genus W-1^-2); in particular three

quadrants of RP2 \ (\jf=0)RLi contain k(k2xs> circles in 0(RC), while the fourth

one contains either (fc~1)2(fc~2) or such circles depending on the parity of d.
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Theorem 1 (Mikhalkin [MikOO], Mikhalkin-Rullgärd [MR01]). Let f : C -s- CP2
be a simple Harnack curve of degree d, and suppose that <p(C) is the limit
of images of a sequence of simple Harnack curves of degree d and genus

g(C) MiAMz?) jhen the curve <p(C) has solitary nodes as only singularities

(if any). Moreover if either g(C) 0 or g(C) ^-tgd-2)
^ tflen topological

type of the pair (®LP2, M0(C) (J?=0 depends only on d, g(C), and s.

Mikhalkin actually proved Theorem 1 for simple Harnack curves in any toric
surface, nevertheless this a priori more general statement can be deduced from
the particular case of CP2, see Appendix A.2. Existence of simple Harnack

curves of maximal genus with any Newton polygon, and intersecting transversely
all toric divisors, was first established by Itenberg (see [IV96]). Simple Harnack

curves of any degree, genus, and sequence s were first constructed by Kenyon
and Okounkov in [KO06]. In addition, when g 0 they could dispense with
the hypothesis that 4>(C) must be the limit of images of a sequence of simple
Harnack curves of degree d and genus g(C) (<*-!)(<*-2) jn Theorem 2 below,

we delete this hypothesis for any g.
Because they are extremal objects, simple Harnack curves play an important

role in real algebraic geometry, and Theorem 1 had a deep impact on subsequent

developments in this field. However their importance goes beyond real geometry,
as shown by their connection to dimers discovered by Kenyon, Okounkov, and

Sheffield in [KOS06],

The goal of this note is to give an alternative proof of Theorem 1. Moreover,

our proof is also valid for real pseudoholomorphic curves, which are also very
important objects in real algebraic and symplectic geometry. Note that a real

algebraic map f : C -> CP2 is pseudoholomorphic, but that the converse is

not true in general. Mikhalkin's original proof of Theorem 1 uses amoebas of
algebraic curves, and does not a priori apply to real pseudoholomorphic maps
which are not algebraic.

It is nevertheless possible to read our proof of Theorem 1 in the algebraic

category, by going directly to Section 2.2, and defining the map 7T; : C -»• L,- as

the composition of f with the linear projection CP2 \ (L, n Lf) — L,, with

[i,j,k} {0,1,2}.
We consider CP2 equipped with the standard Fubini-Study symplectic form

iops• Recall that an almost complex structure J on CP2 is said to be tamed

by cops if cofs(v, Jv) > 0 for any non-null vector u e TCP2. Such an almost

complex structure is called real if the standard complex conjugation conj on
CP2 is /-antiholomorphic (i.e. conj oJ J~l o conj). For example, the

standard complex structure on CP2 is a real almost complex structure.
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Let (C, to) be a compact symplectic surface equipped with a complex structure

Jc tamed by to, and a Jc -antiholomorphic involution conjc, and let J be a

real almost complex structure on CR2. A symplectomorphism <p ' C -* CP2 is

a real J -holomorphic map if

dtp o Jq J o dtp and tp o conjc conj o tp.

It is of degree d if </>*([C]) d[CPl\ in H2(C R2; 1). Recall that any
intersection of two J -holomorphic curves is positive (see [MS12, Appendix E]).

The definition of simple Harnack curves extends immediately to the real J -

holomorphic case. Given three distinct real J -holomorphic lines L0, L\, and

L2 in CP2 such that P|f=o 0, a real J -holomorphic curve tp : C ->• CP2
is a simple Harnack curve if C is maximal, and if there exists a connected

component Ö of MC, and three disjoint arcs loJiJi contained in O such that

tp-^L,) C

Theorem 2, Let tp : C —> CP2 be a J -holomorphic simple Harnack curve of
degree d. Then the curve tp(C) has solitary nodes as only singularities (if any).
Moreover if either g(C) 0 or g(C) then the topological type of
the pair ^ME2, M0(C) (jf=0 ML,^ does not depend on J, once d and s are

fixed.

It follows from Theorem 2 that Figure 1 suffices to recover all topological types
of pairs (ME2, Rtp(C) (J U2=0ML,) where tp : C -»• CR2 is a simple Harnack

curve, see Appendix A.l. As in the case of algebraic curves, one may generalize
Theorem 2 to J -holomorphic simple Harnack curves in any toric surface, see

Appendix A.2.
The proof of Theorem 2 proceeds along the following lines: the three

projections from CP2 \ (L, n Lf) to L, induce three ramified coverings

Tct : C -» ; by considering the arrangement of the real Dessins d'enfants
7T"1 (ML,) on C/conjc, we deduce the number of connected components of
Mtp(C) in each quadrant of ME2 \ (u2=0ML,), as well as its complex orientation;
the mutual position of all these connected components is then deduced from
Rokhlin's complex orientation formula.

2. Proof of Theorem 2

Let tp : C —* CP2 be a J -holomorphic simple Harnack curve in CE2 of
degree d and genus g. We define phJ L, (T L;.
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2.1. Construction of the maps 717 : C -»• Li. Gromov proved in [Gro85] that

there exists a unique / -holomorphic line passing through two distinct points
in CP2. By uniqueness, this line is real if the two points are in MP2, hence

there exists a real pencil of / -holomorphic lines through any point of MP2. In

particular if {i,j,k} {0,1,2}, the map CP2 \ {pj,k} Pi, which associates

to each point p the unique intersection point of L, with the /-holomorphic
line passing through p and phk, is a real smooth map. We define n, : C -> L,
as the composition of (p with this projection. By positivity of intersections of
/-holomorphic curves, the map jr, is a real ramified covering.

2.2. Dessins d'enfants on C. We denote by C the quotient of C by conjc
Since C is maximal, the surface C is a disk with g holes.

Let T, C C be the graph n~1(MLl)/conjc Note that r, n <p~l(MP2)

if j 7^ k, in particular r7 fl Fj- fj?=o ^ • We call a triple point an isolated point
in n?=o Fi • By construction, a triple point corresponds to a singular point of
<p{C) in MP2, where at least two complex conjugated non-real branches intersect.

By the adjunction formula (see [MS12, Chapter 2] in the case of / -holomorphic
curves), the graph IJ?=o ^ has no more than (-d~1^d~2i _ g triple points, and

(p(C) is nodal with only solitary nodes in case of equality.
Let {i,j,k} {0,1,2}. We label by + (resp. —) the connected component

of ML, \ {ptJ, phk} containing (resp. disjoint from) <p(0) n L,. We endow each

connected component of T, \7z-~1 ({ptJ, pt,k}) with the sign of the corresponding

component of ML, \ {ptj, Pi,k}- We also denote by (e0, £1) e {+,— }2 the

connected component of MP2 \ ^|jf=0ML,^ which project to the components
labeled by e0 and £1 of ML0 and MLi under the projections of center p\g and

p0,2 respectively.
The map n, : C -» L, is a ramified covering of degree d, so by the Riemann-

Hurwitz formula it has exactly 2(d + g — 1) ramification points (counted with

multiplicity). Given j /i, a subarc of l} connecting two consecutive points in
Ij fl (p~l(Lj) has to contain a ramification point of 7r, in its interior, and a point
of contact of order c of l} with ML7 is a ramification point of multiplicity
c — 1 of 7T,. Alltogether, the set l} U Ik with {;, j,k\ {0,1,2} contains at

least 2(d — 1) ramification points of ji1 (counted with multiplicity). Moreover a

connected component of MC distinct from Ö contains at least two ramification

points of TT,. Since C has g + 1 connected components, if follows that these two

previous lower bounds are in fact equalities, in particular all ramification points
of TT, are real. This implies that each connected component of C \ T, is a disk,
and that the restriction of n, on this disk is a homeomorphism to one the two
hemispheres of L, \ ML,.
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Lemma 3. If g 0, then the arrangement of \jif=0 T; in C depends only,

up to orientation preserving homeomorphism, on d and s. In particular it has

exactly ^~'X^~2) triple points.

Proof. Since 7zt has no ramification point outside O, the graph F, decomposes
C into a chain of disks, where two adjacent disks intersect along (the closure

of) a connected component of T, \ Ö. See Figure 2 in the case when d 6 and

</>"' (L,) consists of 6 distinct points. By definition, the points of F, in /, are

endowed with the sign +.
By the adjunction formula, the number of intersection points of the graphs
and r,, with if j is not more than bi-iX<i-2) _ l + 2 + + d — 2.

However, this number is clearly the minimal number of intersection point of T,

and Vj, and there exists a unique mutual position of those graphs that achieves

this lower bound (see Figure 3a). The lemma follows immediately by symmetry
(see Figure 3b).

P 1,2

M.L i \ MLo

A),i \ ^0,2

(a) RL0 UlLi U1Z.2 in (b) The graph To 7r(j~' (Lq) dots and

squares being points in <p~l(L i) and

<p~l(L2) respectively

Figure 2

Simple Harnack curves of degree d and genus
k(k-1)

(d-l)(d-2)
2 in particular three

quadrants of RF2 \ fiJ,=0)RL, contain 2
' circles in 0(RC), while the fourth

one contains either or k(k+l) such circles depending on the parity of d.
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(a) To U Ti, crosses being points in
(b) To U Ti U T2

Figure 3

In case of positive genus, we have the following lemma.

Lemma 4. The arrangement of U?=o ^ has exactly _ g triple points.

Moreover if d 2k (resp. d — 2k + 1), then Rrp(C) has exactly

{resp. M£±i2) connected components in the quadrant (+,+) {resp. and
k(k~ll connected components in each of the other quadrants.

Proof. Locally around each boundary component of C distinct from Ö, the

graph Uf=o looks like in Figure 4a. In particular, we may glue a disk as

depicted in Figure 4b. Performing this operation to each boundary component of
C distinct from Ö, the lemma is proved with the same arguments as Lemma 3.

Even if this will eventually follows from Theorem 2, we do not claim that

the disk gluing in the proof of Lemma 4 has any interpretation in terms of
degenerations of <p{C). Note that when g — ^ ^ arrangement (J?=o ^
depends only, up to orientation preserving homeomorphism, on d and s. See

Figure 4c in the case d 6.

2.3. Application of Rokhlin's complex orientation formula. To end the proof
of Theorem 2 in the case d 2k, it remains to prove the following lemma. The

case of curves of odd degree is entirely similar, and is left to the reader.
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Figure 4

Lemma 5. The following hold:

(1) 4>(y) bounds a disk in MP2 disjoint from R0(C \ y) for any connected

component y of MC \ Ö;

(2) a connected component of R0(C \ Ö) is contained in the disk bounded by

0(0) in MP2 if and only if it is contained in the quadrant (+,+).

Proof These two facts will be a consequence of Rokhlin's complex orientation
formula ([Rok74] see also [Vir84b]). Since there exists a smoothing 4>'{C')

of 0(C) where ft : C -» CP2 is a real /'-holomorphic curve of degree
d and genus we may assume1 from now on that C has genus
(d-i)(d-2)

^ Analogously, we may further assume for simplicity that 0(C)
intersects transversely the three J -holomorphic lines L,-.

Recall that since C is maximal, the set C\RC has two connected components.
Moreover the choice of one of these components induces an orientation of RC

1 This assumption is intended to simplify the exposition, and is not formally needed for our purposes.
Indeed, there exists a generalization of Rokhlin's formula for nodal curves that we could also have used
here ([Zvo83] see also [Vir96])
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(as boundary). The effect of choosing the other component of C \ MC is to

reverse the orientation of EC. Hence there is a canonical orientation, up to a

global change of orientation of EC, of all connected components of EC. This

orientation is called the complex orientation of EC.
Recall also that a disjoint pair of embedded circles in E P2 is said to be

injective if their union bounds an annulus A. If the two circles are oriented and

form an injective pair, this latter is said to be positive if the two orientations
is induced by some orientation of A, and is said to be negative otherwise, see

Figure 5a and b.

Figure 5
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We denote respectively by n+ and n_ the number of positive and negative

injective pairs of connected components of 0(MC) equipped with their complex
orientation. Rokhlin's complex orientation formula reduces in our case to

,D n+-n_ M^>.
Now we apply Fiedler's orientation rule ([Fie83] see also [Vir84b]) to estimate

the quantities 11+ and n_. Consider the projection jr0 : C —>• Lo, and choose

an arc a of To \ MC. The arc a lifts to a pair of conjc -conjugated arcs in C,
whose topological closure in C, denoted by a, is homeomorphic to S1. The set

ä n MC consists of two ramification points q\ and q2 of jt0 By construction,
each of these two points corresponds to a tangency of <p{C) with a real

J -holomorphic line Dt passing through p\t2 Choose a complex orientation of
MC, and orient ML>i in a way compatible with the complex orientation of M</>(C)

at cj)(qi), see Figure 5c. Transport this orientation to MZ)2 via the portion of
the pencil of J -holomorphic lines through plj2 that intersect <f>(a). Fiedler's
orientation rule states that this orientation of MD2 is still compatible with the

complex orientation of Rcp(C) at <p(q2) see Figure 5c.

It follows from Lemmas 3 and 4 that 4>(qi) is contained in the quadrant

(ei,e2) if and only if <p(q2) is contained in the quadrant (fi'i, —s2), see Figures 3

and 4. Hence Fiedler's orientation rule implies that the complex orientation of
the curve <p(C) is as depicted in Figure 6. In particular if y\ and y2 are two
distinct connected components of <^(MC) which form an injective pair, we see

that this pair contributes to n+ if and only if y,- <p(ö) and y2-t is in the

quadrant (+,+). Hence we deduce from Lemma 4 that

(k - 1 )(k - 2)
n+ < and n_ > 0,+ _ 2

with equality if and only if the conclusion of the lemma holds. Now the result
follows from Equation (1).

Remark 6. It is proved in [MikOO] that the index map defined in [FPT00]
provides a pairing between connected components of M0(C \ Ö) and points with
integer coordinates in the interior of the triangle Ad with vertices (0,0), (d, 0),
and (0, d). It is interesting that this pairing is also visible from the arrangements
T0 U Ti U r2, see Figures 3 and 4. In addition to the pairing, a triangulation of
A^ (dual to a honeycomb tropical curve) is also visible in these pictures. I do

not know whether this subdivision has any interpretation.
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Appendix A

As consequences of Theorem 1, we generalize to simple J -holomorphic
Harnack curves some facts that are well known for simple algebraic Harnack

curves.

A.l. Topological types of simple Harnack curves. Here we deduce from
Theorem 2 all topological types of pairs (MF2, R<p(C) (J U2=0MLj), where

<p \ C CP2 is a simple Harnack curve.

Proposition 7. Let <p : C —> C P2 be a simple J -holomorphic Harnack curve

of degree d. Then the topological type of the pair (MF2, M0(C) |J U?=0ML,-) is

obtainedfrom Figure 1 by performing finitely many of the two following operations:

• the contraction of a circle disjoint from U2=0ML; to a point, see Figure la;

• the replacement of uj consecutive intersection points with ML,- by a point
of order of contact Uj, see Figure lb.

Conversely, any such topological type is realized by a J -holomorphic Harnack
curve of degree d.



Proof. Indeed, let <p' : C' -» CP2 be a simple /'-holomorphic Harnack curve
of degree d and genus suc^ ^at fife') is a smoothing of <p(C),
and (j>'{C') intersects transversely a J '-holomorphic perturbation L[ of L, for
i 0,1,2. According to the proof of Theorem 2, the topological type of the pair
(MP2,M0'(C') U U2=0ML.) is given Figure 1. This proves that the topological
type of the pair (MP2, M<p(C) (J U2_0RL,) is as stated in the proposition.

Analogously, to prove the second statement, it is enough to exhibit a rational
Harnack curve of degree d intersecting each lines L, in a single point of order

of contact d. According to Theorem 2, the map

f: CP1 —> CP2
[x : y] i— l*d yd (x - y)d]

is such a rational Harnack curve.

A.2. Simple Harnack curves in other toric surfaces. Here we deduce the

classification of simple Harnack curves in any toric surface from the classification

of simple Harnack curves in CP2. Theorem 10 below can be proved along the

same lines as Theorem 2. The reason why we restricted to CP2 in Theorem 2

is that, thanks to symmetries, the proof in this particular case is much more

transparent and avoids purely technical complications. Furthermore Theorem 10

can be deduced from Theorem 2 thanks to Viro's patchworking. We briefly
indicate below how to perform this reduction. We refer to [Vir84a, Vir89, Shu05]
for references to patchworking, and to [IS02] for its J -holomorphic version.

Let A c M2 be a convex polygon with vertices in Z2, and let X& be the

complex algebraic toric surface associated to A, see [GKZ94], The complement
of the maximal toric orbit of X& is denoted by 8X&, and is called the toric
boundary of Xa- There is a natural correspondence e Xe between edges

of A and irreducible components of '6X&, which satisfies e D e' 0 if and

only if Xe n Xe> f 0. Note that X& might have isolated singularities located
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at intersections Xe n Xe> of irreducible components of 9Xa- Recall that A

induces an embedding of Xa into some projective space CPN, and we equip

Aa with the restriction, still denoted by cops, of the corresponding Fubini-Study
symplectic form. An almost complex structure J on Xa tamed by cops is

said to be compatible if it coincides with the toric complex structure on Aa
in a neighborhood of dX&, and real if the standard complex conjugation on

(C*)2 Xa \ 9Xa is 7-antiholomorphic.
Let (C, co) be a compact symplectic surface equipped with a complex structure

Jc tamed by co, and a Jc -antiholomorphic involution conjc, and let J be a

real compatible almost complex structure on Xa A real J -holomorphic map
4> : C -> Xa is said to have degree A if 0*([C]) is equal, in H2(Xa;Z), to
the class realized by a hyperplane section of Ia for the embedding induced by
A. By the adjunction formula, a J -holomorphic map <p ' C —> Xa of degree
A which does not factorize through a non-trivial ramified covering has genus at

O

most the number of integer points in the interior A of A. Furthermore <p(C) is

non-singular in case of equality.

Definition 8. Let A C M2 be a convex polygon with vertices in Z2, and let

[ei,..., ejfc] be the natural cyclic ordering on the edges of A. A simple Harnack
curve of degree A is a real J -holomorphic map (p : C —> Xa of degree A, for
some real compatible almost complex structure J on Xa, satisfying the following
three conditions:

• C is a non-singular maximal real curve;

• there exist a connected component Ö of MC, and k disjoint arcs f,...
contained in Ö such that </>"' {Xi) c I,;

• the cyclic orientation on the arcs I, induced by Ö is precisely [l\,... ,1^].

Note that the last condition is non-empty only when k > 4.

Example 9. For A^ the triangle with vertices (0,0), (d, 0), and (0,d), the

surface XAd is the projective plane equipped with a homogeneous coordinate

system, and dXAd is the union of the three coordinate lines. A simple Harnack

curve of degree Aj is a simple Harnack curve of degree d in the sense of
Section 1. Note however that a J -holomorphic simple Harnack curve of degree
d might not be a simple Harnack curve of degree Ad, since J is not required to
be integrable in a neighborhood of the coordinate axis. This additional requirement
is necessary when one wants to consider more general toric surfaces.

As in Section 1, given f : C —» Xa a simple Harnack curve, we encode in a

sequence the intersections of <p{0) with the components of dXa The choice of
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an orientation of Ö induces an ordering of the intersection points of Ö with Xei,
and we denote by s, the corresponding sequence of intersection multiplicities.
Let s be the sequence (si,... ,Sfc) considered up to the equivalence relation

generated by

(Sl, ,Sk) ~ (Ji, .,Sk), (Ji, ,Sk) ~ (Sk,Si,. ,Sk-1),

and

(Sl, ,Sk) ~ {ßk,Sk-1,. •. ,Sl).

Recall that (yi)\<.i<n — (yn—i)i<i<n •

Theorem 10. Let A c M2 be a convex polygon with vertices in Z2, and let
<p : C —> Aa be a simple Harnack curve of degree A. Then the curve <p(C)

has solitary nodes as only singularities (if any). Moreover if either g(C) 0 or

g(C) |Z2 n A|, then the topological type of the pair ((R*)2,M</>(C) D (M*)2)
depends only on A, g(C), and s.

Proof Let us assume for simplicity that <p(C) intersects 9Aa transversely, and

suppose for a moment that we have proved the following:

Claim: for any edge e of A, the cyclic orders on the finite set önMc induced

by Ö and M Ae coincide.

Assuming this claim, one constructs exactly as in the proof of [KRS01, Theorem

2(1)] a simple Harnack curve in CP2 by patchworking <p(C) with finitely many
simple algebraic Harnack curves constructed in [IV96]. Theorem 10 now follows
from Theorem 2.

O

Hence it remains to prove the claim. Let e be an edge of A, and define Xe to
be Xe from which we remove its two intersection points with the other irreducible

components of 9Za Since the almost complex structure on A is integrable
in a neighborhood of 9Aa, there exists a J -holomorphic compactification of

(C*)2 U Xe into CP2 (C*)2 U L0 U L\ U L2 where L, is a J -holomorphic
O

line in CP2, and L0 is a compactification of Xe. The map f induces a J -

holomorphic map <p' : C CP2, and exactly as in the beginning of Section 2.2,

one proves that the map no : C -»• L0 has no ramification point on the connected

component of ö\<p'~l(L\ U L2) containing (p'~] (Lq) This says precisely that

the cyclic orders on the set Ö n induced by O and RAe coincide.
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