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Galois involutions and exceptional buildings

Bernhard Mühlherr and Richard M. Weiss

Abstract. We apply the theory of descent for buildings to give elementary constructions

of the exceptional buildings of type A2, B2, C3 and F4 as the fixed point building of
a Galois involution of a building of type Eç, E-j or E% or, in one case, a pseudo-split

building of type F\.

Mathematics Subject Classification (2010). Primary: 20E42, 51E12, 51E24.
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1. Introduction

In this paper we apply the theory of descent for buildings introduced in [MPW]
to give elementary constructions of the exceptional buildings of type A2, B2, C3

and F4 as the fixed point buildings of a Galois involution of either a building
of type E6, E-j or E% or, in one case, a pseudo-split building of type F4 (as

defined in 15.3). Our main results are 11.21, 12.11, 13.12, 14.11, 15.4 and 17.14.

The notion of a building was introduced by J. Tits in order to give a uniform
geometric/combinatorial description of the groups of rational points of an isotropic
absolutely simple group. The buildings that arise in this context are spherical.
In [Tit2], Tits classified irreducible spherical buildings of rank at least 3 and this
classification was extended to the rank 2 case in [TW] under the assumption that

the building satisfies the Moufang condition (which is automatic when the rank
is at least 3). The classification in the rank 2 case is carried out by studying
commutator relations; in [TW, Chapter 40] it is used to give another proof of the

classification in rank greater than 2. The question of existence is settled in [TW,
Chapter 32] for the rank 2 case and in [TW, 40.56] for the remaining cases

using the geometric ideas introduced by Ronan and Tits in [RT], This replaced
the earlier existence proofs for the exceptional buildings in [Tit2, 5.12 and 10.3]

and [TW, 42.6], where existence is proved using the theory of Galois descent in

algebraic groups (see 5.6).
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The result of this classification is that most spherical buildings satisfying the

Moufang condition are the spherical buildings associated with absolutely simple

algebraic groups. The exceptions are buildings determined by algebraic data

involving infinite dimensional structures, defective quadratic or pseudo-quadratic
forms, inseparable field extension and/or the square root of a Frobenius endomor-

phism. Most notable among these exceptions are the indifferent quadrangles, the

Moufang quadrangles of type F4 and the Moufang octagons.
The classification results in [Tit2] and [TW] do not reveal the connection

between a spherical building and its ambient split building which is the central

concern in the theory of Galois descent. In [MPW, Part 3], this shortcoming was
remedied with a theory of descent for buildings. This theory gives, in particular, a

combinatorial interpretation of the Tits indices which appear in [Titl]. It applies,

moreover, to buildings of arbitrary type. Some central results of this theory are

summarized in §6 below and they are applied to buildings of type E6, E7, Es

and F4 in subsequent sections.

This paper can thus be seen as a contribution to Tits' larger plan of interpreting
the classification of isotropic absolutely simple algebraic group purely in the

language of buildings.
The results in this paper provide uniform proofs of [MPW, 34.3-34.9];

see [MPW, 34.12]. These results, in turn, are applied in [MPW, Chapter 36]

to the study of exceptional affine buildings. Precursors of the results in this paper
can be found in [Mue] and [MM1].

We confine our attention in this paper to those exceptional groups which can
be constructed as fixed point buildings of Galois involutions (as defined in 4.15

below). This allows various simplifications in the arguments. In particular, we

do not treat the Moufang hexagons (which require the action of a larger Galois

group) in this paper. The Moufang octagons can be constructed as fixed point
buildings of involutions, but these involutions involve a Tits endomorphism rather

than a Galois group; see [dMSW] for more about this case.

All known proper Moufang sets can be described in terms of our theory of
descent as fixed point buildings of relative rank 1. The methods used in this paper
provide a point of access to these buildings which we are presently pursuing.
See, in this context, [CdM] and [MM2],

This paper is organized as follows: In §2—§5, we give background material

in the theory of buildings, in §6 we summarize the results about descent we

require and in §7 and §8 we make some observations about buildings of type
An and Dn in terms of linear algebra. The proofs of existence for various forms

of buildings of type E(l, £7 and Es begin then in §9, where we describe an

anisotropic Galois involution of a building of type Dn. The existence proofs are

carried out in §10—§15 by extending this involution (for certain small values of n)
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to involutions of various ambient buildings. In §16 and §17, finally, we apply our
methods to construct the quadrangles of type F4.

Notation 1.1. We will follow the conventions used in [TW] that ab b~lab and

[a,b] — a~1b~1ab for all elements a,b in some group and we will compose
permutations from left to right. (When we are not composing them, however, we

will usually write functions on the left.) If i < j are integers, we denote by [i, j ]

the interval {m e Z | i < m < j} ; we only use this notation when i and j are

subscripts.

2. Coxeter groups

Let II be a Coxeter diagram with vertex set S and let (WW) be the

corresponding Coxeter system. An automorphism of (W, S) is an automorphism of
the group W that stabilizes the generating set S There is a canonical isomorphism
from Aut(W, S) to Aut(II) and we will think of these two groups as being the

same.

Notation 2.1. Let £ be the graph with vertex set W in which two vertices

x and y are joined by an edge labeled with the element j of 5 whenever

x~xy s. Thus each edge of £ has a unique label in the set S. We call this

label the type of the edge. The group W acts on £ by left multiplication and

can, in fact, be identified with the group of type-preserving automorphisms of £.
See [Weil, 3.10] for the definition of a root of £.

Lemma 2.2. The only automorphism of £ stabilizing every root is the identity.

Proof. If c and d are distinct vertices of £, there is a root of £ containing
c but not d (by [Weil, 3.20]). Thus a non-trivial automorphism of £ cannot
stabilize every root of £.

Notation 2.3. Let J be a spherical subset of S (by which we mean that the

subgroup Wj (J) is finite) and let wj denote the longest element of the

Coxeter group Wj with respect to the generating set J. By [Weil, 5.11], the map
s h» wjswj is an automorphism of the subdiagram of II spanned by the set

./. We denote this subdiagram by II j and this automorphism by op7. The map

opj is called the opposite map of Id j.
Remark 2.4. The map opj stabilizes every connected component of II j and

acts non-trivially on a given connected component if and only if it is isomorphic
to the Coxeter diagram An for some n >2, to D„ for some odd n > 5, to E6

or to h(n) for some odd n > 5.
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Suppose now that ('W, S) itself is spherical, equivalently, that the graph E is

finite.

Notation 2.5. We say that two vertices of E are opposite if they are at maximal
distance in E. Let £(x) xws for all x e W, where ws is as in 2.3 with
J S. Every vertex of E has a unique opposite vertex, and the unique vertex

opposite a vertex x is precisely £ (x).

Notation 2.6. Let op ops be as in 2.3. By [Weil, 5.11], £ maps edges of type
s to edges of type op(.y). The automorphism op is trivial if and only if ws is

in the center of W and in this case, £ is given by left multiplication by ws

Remark 2.7. The permutation op of S c W extends to a unique automorphism
7i of E fixing the vertex 1. Tire automorphisms n is simply conjugation by ws
The automorphisms n and £ commute and their product is left multiplication by

ws.

Proposition 2.8. The automorphism £ defined in 2.5 is the unique automorphism

of E mapping every root to its opposite.

Proof. By [Weil, 5.1], no root of E contains two opposite vertices. In other

words, £(a) C —a for each root a. Since all roots contain the same number

of vertices (namely | W1/2), we conclude that £ maps each root to its opposite.
Uniqueness holds by 2.2.

Remark 2.9. Suppose that (W, S) is the spherical Coxeter system associated with
a root system <E>, so S is the set of reflections corresponding to the walls of a

unique chamber c of O. If op is non-trivial, then all the roots of <E> have the

same length. Hence there always exists a unique automorphism of <b fixing c

and inducing the permutation op on S. We can thus think of jt and £ in 2.7 as

automorphisms of $ and it follows from 2.8 that £ is the unique automorphism
of <I> mapping every root of <E> to its negative.

Remark 2.10. Let <5 and £ be as in 2.9. If <t> is of type Dn with n >4 even,
then by 2.4, 2.6 and 2.9, ws is the unique automorphism of 4> mapping every
root of to its negative.

3. Buildings

Let (W, S) be a spherical Coxeter system and let A be a building of type
(WW) as defined in [Weil, 7.1]. (All buildings considered in this paper are



Galois involutions and exceptional buildings 211

assumed to be spherical and thick.) Thus A is a graph whose vertices are called

chambers and whose edges are labeled by elements of S. The apartments of A

are the subgraphs isomorphic to the graph E defined in 2.1. We assume that A
is Moufang as defined in [Weil, 11.2], This means that A is irreducible and of
rank |Sj at least 2 and that for each root of A, the corresponding root group
Ua defined in [Weil, 11.1] acts transitively on the set of apartments containing a.

Notation 3.1. We denote by the subgroup of G := Aut(A) generated by all
the root groups of A.

Remark 3.2. Let E be an apartment of A, let c be a chamber of E, let oq,..., an
be the roots of E containing c but not some chamber of E adjacent to c and

let D be the subgroup of generated by the 2n root groups U±a],..., U±an

By [Weil, 11.22], the stabilizer Dy, induces the group W on E and hence D
contains Uß for all roots ß of E. By [Weil, ll.ll(ii)], therefore, D contains Uß

for all roots of A containing c. Since A is connected and D acts transitively
on each panel containing c, D acts transitively on the set of chambers of c.
Thus D G^.

Moufang buildings were classified in [Tit2] and [TW], There is a summary
of the classification in [Wei2, Appendix B], We will use the notation for these

buildings given in [Wei2, 30.15].

Notation 3.3. Suppose that (K,L, Q) is a regular quadratic space of finite Witt
index I > 1. We denote by B(Q) the building defined in [MPW, 35.5] whose
chambers are the maximal flags of subspaces of L that are totally isotropic with

respect to the quadratic form Q.

Proposition 3.4. Let (K,L, Q) be a regular but not hyperbolic quadratic space
with finite Witt index I > 1. Then B{Q) B®(A), where A is the anisotropic

part of (K.L, Q) and B^(A) is as in [Wei2, 30.15],

Proof. By [MPW, 35.6], it suffices to assume that I 1. Let L K © K © L
and let Q : L -> K be the quadratic form given by Q(x, y, v) xy + Q(v) for
all (x,y,v) e L. Then B(Q) is a residue of B(Q) and we have B(Q) ^ Bp(A)
by [MPW, 3.8 and 3.20] applied to g.

The remaining results in this section will be needed in §13.

Definition 3.5. Let E be an apartment and let R be a residue of A containing
chambers of E. We say that a root a of E cuts R if it contains some but not
all chambers of the apartment En R of R. Equivalently, a root cuts a residue

if the residue contains panels in the wall of the root.
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Notation 3.6. Let II be the Coxeter diagram corresponding to (W, S), let J
be a subset of S such that the subdiagram IT j spanned by J is irreducible
and \J\ >2 and suppose that K is a subset of S such that / fl K 0 and

[/, K] — 1. Let L J U K, let R be a /-residue of A, let T be an L-residue

containing R, let n be the restriction of the projection map proj R (as defined

in [Weil, 8.23]) to T, let Gt,j denote the subgroup G consisting of those

elements of the stabilizer Gt which induce an automorphism of the Coxeter

diagram fl mapping J to itself and let

for all g e Gt,j and all chambers x of R. By [MPW, 21.40], f is a

homomorphism from Gt,j to Aut(i?).

Notation 3.7. Let R, T, tt, etc., be as in 3.6, let E be an apartment containing
chambers of R, let a be a root of £ cutting R, let g be an element of Gj,j
stabilizing E, let Rt R and let R2 Rg By [MPW, 21.38(i)], the residues R\
and R2 are parallel as defined in [MPW, 21.7], By [MPW, 21.19(i)], therefore, a
cuts R2 and by [MPW, 21.8(v)], the restriction if of it to R2 is an isomorphism
from R2 to R\. Let X denote the set of apartments of A containing a (so

E e X) and for i e [1,2], let 7/ be the set of apartments of R, containing
the root a n Ri of Ri. The map A h» A D Rt is a bijection from X to 7/ for

i e [1,2], By [Weil, 8.23], n{A n R2) C A n /?, for all A e X. Since if is a

bijection, it follows that

(3.8) â(A n R2) ADR1

for all A e X. Hence, in particular, we have

(3.9) if (a (T R2) a IT R\.

For i e [1,2], let ipi denote the map that sends each element of Ua to its

restriction to /?,. By [Weil, 9.3 and 11.10] Ua acts faithfully on X, the root

group Uac\Ri of Rj acts faithfully on 7,- and <pt is an isomorphism from Ua

t° ILn«; such that

Aa (A n Rifi(a)

for all A e X, all a e Ua and for i e [1,2]. By (3.8) and (3.9), therefore,

x'£(g) —

(3.10) if 1

<pi(a) • n (p2{a)

for all a e Ua. This means that if we identify Ua with Uaf2Ri via <pi for

i e [1,2], then if simply centralizes the root group Ua.
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Proposition 3.11. Let R and £ be as in 3.6, let £, a, g and (p\ be as in 3.7

and let ß — ag. Then tj(g) is an automorphism of R, ß is a root of £ cutting
R, ß n R (a n R)^8^ and for each a e Ua, the restriction of a8 e Uß to R

equals cpi(ae UßnR-

Proof By 3.6, £(g) e Aut(R). By [MPW, 21.19(1) and 21.38(1)], ß is a root of E

cutting R. We can thus replace a by ß everywhere in 3.7. By (3.9), therefore,

ß n R (a n JR)^). The last assertion holds by 3.10.

Remark 3.12. Let a, £, etc., be as in 3.11 and for each root y of E cutting
R, let Uy be identified with the root group Uydr of R via the map that sends

an element to its restriction to R. Then the last assertion in 3.11 says simply that

a8 afor all a e Ua.

4. Simply laced buildings

We continue to let A be a spherical building of type (W, S) satisfying the

Moufang condition. In this section we assume that A is simply laced and split.
This means that there exists a field E such that A is isomorphic to f\n(E) for

some n > 1, to D„(2?) for some n > 3, to E6(£), to Et(E) or to E8(£).

Notation 4.1. Let 0 be the corresponding root system of type A„, Dn, E$, E1

or Eg, let ot\,...,an be the basis of the root system <t> described in [Bou, Plate I
or IV-VII] and let d be the unique chamber of which is the intersection of
the half-spaces determined by the roots cti,... ,an, let E be an apartment of A
and let c be a chamber of E. We denote the reflection associated with a root ß

of 4> by Sß and we identify W with the Weyl group of 4> in such a way that
S — san}. There is then a unique W -equivariant bijection 6 from the

set of chambers of S to the set of chambers of <1> mapping c to d. The bijection
9 induces a bijection from Aut(4>) into Aut(S) that carries the stabilizer of d
to the stabilizer of c and it induces a bijection from the set of roots of E to
the set of half-spaces associated with the roots of 4> and thus to $ itself. From

now on, we identify Aut(4>) with its image in Aut(E) under 9 and we identify
the roots of £ with the corresponding roots of 0. In particular, W C Aut(T)
is the group of type-preserving automorphisms of E and to each root ß of 4>,

we have a root group Uß of A (as defined in [Weil, 11.1]).

Theorem 4.2. There exists a collection of isomorphisms Xß : E -> Uß, one for
each root ß of <$>, and a mapping r: <3> x <L> —> {1, — 1} such that for all ordered

pairs (a,ß) of roots of such that a ^ ±ß and for all s,t e E, the following
hold:
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(i) [xa(s),xß(t)] xa+ß(x(a,ß)st) ifa + ße 4>.

(ii) [xa(s),xß{t)]= 1 ifa + ßf^.
(Iii) Uf~a(t) if t ^ 0.

Proof. The building A is the building obtained by applying [TW, Prop. 42.3.6]
to the root group data associated with the corresponding Chevalley group. The

assertions (i) and (ii) hold, therefore, by [Ste, (R2) on p. 30]; see also [Car,
Ihm. 5.2.2], Assertion (iii) holds by [Ste, (R7) on p. 30 and Lemma 59 on

p. 160],

Remark 4.3. Let a e <$> and suppose that Uf Uf^' ^ for some g e U-a
and some t e E*. Since the identity is the only element of U-a normalizing
Ua, it follows from 4.2(iii) that g x_„ (/).

Notation 4.4. We call a set {xß}ße$ satisfying the three conditions in 4.2 for

some map r a coordinate system for A and we call the map r the sign function
°f {xß [jSeo • This notion depends, of course, on the choice of the apartment E
and the choice of the identification of 4> with the set of roots of E which we
made (once and for all) in 4.1.

If {xß}ße$> is a coordinate system, then we obtain new coordinate system

(with a new sign function) by choosing ß e and replacing Xß and X-ß by

x'ß and x'_ß, where x'ß{t) xß(—t) and x'_ß(t) x^ß(—t) for all t e E.

Notation 4.5. We call two coordinate systems {xß}ß$ and {x'ß}ß$ equivalent
if there exists a map ß h-> Sß from the set of positive roots 4>+ to {1,-1}
such that x'ß(t) Xß(sßt) and x'_ß(t) x-ß(Eßt) for each t e E and for each

j3e$+.

Proposition 4.6. Let {xß}ße$ and {x'ß )ße<v be two coordinate systems for A
such that xai — x'a. for all i e [1 ,n\. Then {xß}ß$ and {x'ß}ße$ are equivalent.

Proof. By [Hum, §10.2, Cor. to Lemma A] and induction, there exists a map
ß Sß from <h+ to {1,-1} such that x'ß(t) Xß(eßt) for all ß e 4>+ and

all t e E. By 4.3, it follows that x'_ß(t) x-ß{sßt) for all ß e 4>+ and all

t e E.

Theorem 4.7. Let {xß}ß£$ be a coordinate system for A, let Ai,...,A„ be

non-zero elements of E and let a e Aut(L). Then the following hold:
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(i) There exists a unique automorphism

S ,(T

of A that fixes the chamber c and stabilizes the apartment £ such that

xai (t)8 xai(\ita)

for all i 6 [1 ,n\ and all t e E.

(ü) If
n

ß Y2CiCli e
i 1

then

Xß(t)g Xß(Xß ta),

where

Xß f\\?.
i=1

Proof The existence assertion in (i) holds by [Ste, Lemma 58 on p. 158] and the

existence of field automorphisms; uniqueness holds by [Weil, 9.7]. By 4.3, we
have x-Q,.(t)8 {Xjlta) for all t e E and each i e [1,«]. By 4.2(i), [Hum,
§10.2, Cor. to Lemma A] and induction, it follows that (ii) holds.

Remark 4.8. Let k: E -»• E be given by /c(t) —t for all t e E. Suppose that
the set {cti,... ,an) is ordered so that for each j e [2,«], there is at most one
i e [l,y — 1] such that a,- + aq e $. Let {xß}ß<E§ be a coordinate system for

A. Replacing xai by k xai for suitable i, we can find an equivalent coordinate

system {x'ß}ß<=$ whose sign function r' satisfies t'(ai,aj) 1 for all i,j e [1 ,n]
such that i < j

In the following display, Xß denotes the map t i-> Xß (t) followed by the inner

automorphism of the root group Uß induced by the automorphism cp of A.

Proposition 4.9. Let {xß}ße$ and {x'ß}ß^<p be two coordinate systems for A.
Then there exists a unique automorphism (p of A acting trivially on £ such that

WW
is a coordinate system for A which is equivalent to {x'ß}ß$ for all ß e <î>.
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Proof. Let r and r' be the sign functions of {xß}ße$ and {x'ß}ßeSince the

Coxeter diagram of A has no circuits, it follows from 4.8 that after replacing
{x'ß}ße<i> by an equivalent coordinate system, we can assume that

(4.10) r (on, ctj) t' (a,, otj

for all i, j e [1, n\.
Let M be the set of pairs i,j e [1 ,n] such that a* + ctj e <f>. For each

{/, j} e M, let Rij be the unique {«,. a,}-residue containing c. By (4.10)
and [TW, 7.5], there exists for each {i, j} e M a unique automorphism ipij
of Rij acting trivially on Sfl Rq such that

JPij _ /
xak — xak

for k — i and j By 4.7(i) applied to each Ifj and then to A, it follows that
there exists a unique automorphism cp of A acting trivially on S such that

xv — x'
ak ak

for all k e [1 ,n\. By 4.6, we conclude that is a coordinate system

equivalent to {x'ß}</,<=$.

In the following result, we are identifying Uß with the root group ößr\R of
the residue R for each ß e <P \ via the isomorphism which sends each element

of Uß to its restriction to R, and hence for each ß e «Li, Xß is simultaneously
an isomorphism from E to Uß and an isomorphism from E to Ußr]R

Proposition 4.11. Let M C [1 ,n\, let X {a,- | i e M}, let J — {j„(. | i e M}
and let R be the unique J -residue of A containing c. Suppose that R is

irreducible and of rank at least 2, let 4>i denote the root system (IJDO and
let {x'ß}ß<=$x be a coordinate system for R with respect to the apartment SflÄ.
Then there exists a coordinate system {xß}ß^ for A such that Xß x'ß for all

ße$i.

Proof Let {Xß}ß$ be an arbitrary coordinate system for A. Since R is

irreducible and of rank at least 2, it is Moufang (by [Weil, 11.8]). By 4.9,

therefore, there exists an automorphism (pa of R acting trivially on Efl/i such

that {XßR}ß<E$1 is a coordinate system for R equivalent to the coordinate system

{x'ß}ß&q,l. Thus there exists a coordinate system {x'ß}ßSq> equivalent to {xß}ß<t,
such that (x'ß)VR x'ß for all ß e <E>i. By 4.7(i), cpR can be extended to an

automorphism <p of A acting trivially on S. Hence {{x'ß)'f'}ße^ is a coordinate

system for A extending {x'ß}ß<=$>l.
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Theorem 4.12. Let {xß}ß$ be a coordinate system for A and let y e Aut(<3>).

Then there exists a unique automorphism y of A that stabilizes the apartment
E such that

Xoti^fY — xy(ai)(t)

for all t e E. Furthermore, there exists a mapping pY : —> {1,-1} such that

Xß(ty Xy(ß)(py(ß)t) for all ß e and all t e E.

Proof. This holds by [Ste, Ihm. 29 on p. 154],

Notation 4.13. Let {xß}ße$> be a coordinate system for A. We set

gy,xi,(j s,it y

for all y e Aut(4>), all X\,...,Xn e E* and all a e Aut(£), where gx1,...,x„,c
is as in 4.7(i) and y is as in 4.12.

Proposition 4.14. Let {xß}ße$ be a coordinate system for A. If g G Aut(A)
stabilizes S, then there exist y e Aut(4>), Xi,...,Xn e E* and o e Aut(-E) such

that

g gy, A i ,<j •

Proof It suffices to assume that g is an element of Aut(A) acting trivially on

E. Thus g stabilizes every irreducible rank 2 residue containing the chamber c.
By [TW, 37.13], we can assume that g acts trivially on each of the n panels

containing c. The claim holds, therefore, by [Weil, 9.7].

Definition 4.15. Let {xß}ß<E<s> be a coordinate system for A. A Galois involution

of A is an element of order 2 in the coset gy,x1,...,xn,<jG^ for some y, Ai,..., Xn, cr

such that a / 1, where G ' is as in 3.1. This is a special case of the notion of a

Galois involution of an arbitrary Moufang building given in [MPW, 31.1]. By 4.9,

in particular, it is independent of the choice of the coordinate system {Xß}ß$.
By [MPW, 29.24], it is, in fact, independent also of the choice of S and the

identification of the set of roots of E with 4> in 4.1.

Proposition 4.16. Let {xß}ß$ be a coordinate system for A, let g be an element

of Aut(A) acting trivially on S and let y, X\,..., Xn, o be as in 4.14. If {x'ß}ße§
is another coordinate system for A, then there exists a map i £; from [1 ,n\
to {1,-1} such that Si 1 if w(a.i) — and

8 ~~ 8y,X'l,...,X'n,a'

where A- £;A; for all i e [l,n] and g' is as defined in 4.13 with
y?A j ,0*

{xß}ß<v replaced by {x'ß}ße^.

Proof This holds by 4.9.
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5. The exceptional Moufang quadrangles

A Moufang quadrangle is a building of type B2 satisfying the Moufang
condition. The exceptional Moufang quadrangles are the Moufang quadrangles
defined in [TW, 16.6-16.7]. These are the Moufang quadrangles denoted by Bf (A)
and Bî[(A) in [Wei2, 30.15], where A is a quadratic space of type E6, £7 or
Eg in the first case and A is a quadratic space of type F4 in the second.

Definition 5.1. A quadratic space (K, V, q) is of type for k 6, 7 or 8

if it is anisotropic and for some e K, where d 2 + 2fe~6, and

some separable quadratic extension E/K with norm N, the quadratic form q is

equivalent to the quadratic form Q on Ed given by

(5.2) Q(ui,...,ud) qiN(ui)-\ \-t]dN(ud)

for all (ui,... ,ud) e Ed with the additional conditions that

(5.3) rjiri2V3V4 $ N(E)

if k 7 and

(5.4) -riiT)2---ti6 N{E)

if k — 8.

Remark 5.5. Let (K, V, q) be a quadratic space of type Ek for k 6, 7 or
8. If E is as in 5.1, then N E is hyperbolic and hence qs := q E
is also hyperbolic. By [dMed, Lemma 4.2] and [MPW, 8.5], if E/K is an

arbitrary separable quadratic extension such that qs is hyperbolic, then there

exist rji,..., rjd e K satisfying (5.3) if k 7 and (5.4) if k — 8 such that q is

equivalent to the quadratic form Q : Ed -> K given by (5.2).

Remark 5.6. In [dMed, Ihm. 5.3], it is shown that for each I e {6,7,8}, an

anisotropic quadratic form is of type Ei if and only if its even Clifford algebra has

a certain structure. In the paragraphs entitled "Type (2)", "Type (3)" and "Type
(4)" in [TW, 42.6], it is shown (given [dMed, Thm. 5.3]) that a quadratic form
of type E6, Ej respectively, Es is precisely the ingredient needed to construct
a form of type zEl\, Ej\, respectively, (in the notation of [Titl]). See

also [Tit3, §5],

The following notion was introduced in [TW, 14.1],
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Definition 5.7. A quadratic space (K. V, q) is of type F4 if it is anisotropic,
char (AT) 2 and for some separable quadratic extension E/K with norm N,
some extension F/K (of arbitrary dimension, possibly infinite) such that F2 c K
and some 771,772 e K such that

V1V2 e F2,

the quadratic form q is similar to the quadratic form Q on E © E ® F given by

(5.8) Q(ui,u2,t) t]\N(u\) + ï]2N{u2) + t2

for all (ui,u2,t) e E © E ® F. (Here F2 denotes {t2 \ t e F}, not F © F.)

Remark 5.9. Let (K, V.q) be a quadratic space of type F4, let F be as in 5.7

and let D denote the radical of the bilinear form dq. Then F2 q(D)/q(v) for

every non-zero v e D. Thus the extension F/K is an invariant of the similarity
class of q.

Remark 5.10. If A Bf(A) for some quadratic space A of type E6, Ej or

Es, then by [TW, 35.11], A is an invariant of A up to similarity. If A (A)
for some quadratic space A (K,V,q) of type F4 and F is as in 5.9, then

by [TW, 35.12], the similarity class of A determines a second similarity class

of quadratic spaces over F of type F4 and this pair of similarity classes is an

invariant of A.

Definition 5.11. We call a quadratic space (K. V, q) pseudo-split if it is the

orthogonal sum of a finite dimensional hyperbolic space and an anisotropic totally
singular space (of arbitrary dimension). See [MPW, 2.31-2.33].

Remark 5.12. Let (K, V, q) be a quadratic space of type F4, let / dq and

let E/K be as in 5.7. Since N (E)k E is hyperbolic, the quadratic form qs
is pseudo-split as defined in 5.11. Suppose that E/K is an arbitrary separable

quadratic extension such that qs is pseudo-split. Let v,v' be two elements of V
such that v 0 1 and v' <g> 1 span a hyperbolic pair in V <g>k E and f(v,v') 1.

The restriction of q to {v,v') is similar to N. Let r]\ — q(v). By [MPW, 9.7],
there exists q2 e K such that 771772 6 F2 and q is similar to the quadratic form

Q:E®E®F^-K given by (5.8).

Remark 5.13. In [CP, D.2.7], forms of relative rank 2 of a pseudo-split group of
type F4 are classified in terms of quadratic forms of type F4. The quadratic forms
which appear in this context are those where at least one of the two extensions

K/F or F/K2 in 5.9 is finite.
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Proposition 5.14. Let A (K, V, q) be an anisotropic quadratic space. Suppose
that either A is a quadratic space of type E$, E7 or E% or that the bilinear
form dq is degenerate but not identically zero. Then q is not similar to the norm

of a composition algebra.

Proof. Let Q be the norm of a composition algebra (as defined in [Wei2, 30.17]).

Then the bilinear form 3Q is either non-degenerate or identically zero. If 3Q is

non-degenerate, then dim(ß) divides 8 and if dim(Q) 8, its Hasse invariant
is trivial. If A is of type E6, E7 or E%, then 3q is non-degenerate, but its

dimension divides 8 only if A is of type E7 and in this case the Hasse invariant
is non-trivial (by [MPW, 8.3]).

In the following, Ai(D) and Bp(A) are as defined in [MPW, 3.8]. Thus Ai(D)
is the Moufang set (as defined in [MPW, 1.5]) associated with the projective line
D U {oo} and Bp(A) is the Moufang set associated with an anisotropic quadratic

space A (K, V, <p) on the "projective line" V U {oo}.

Proposition 5.15. Let A be as in 5.14. Then there is no field or skew field D
such that Bp (A) Ai(D).

Proof. Let D be a field or skew field and let F be its center. By [Wei3, 31.21],

Bp (A, V, q) AI D for some anisotropic quadratic space (K, V. q) if and only if
(D, F) is a composition algebra, F K and q is similar to the norm of (D. F).
The claim holds, therefore, by 5.14.

We will use the following result, which depends on the classification of
Moufang polygons, to identify the fixed point buildings that we construct.

Alternatively, we could have used [MPW, 24.32] to identify these buildings
by calculating their commutator relations. This is what is done, for instance,
in [MM1],

Proposition 5.16. Let A be a Moufang quadrangle, let G Aut(A), let c be a

chamber, let R\ and P7 be the two panels containing c and for i 1 and 2,

let M,- be the Moufang set induced by the stabilizer Gr! on Ri. Suppose that

Mi Bp(A) for some quadratic space A (K, V, q) of type Ee, E7, E% or
F4 and that either

(a) M2 has non-abelian root groups or

(b) M2 Bp(0) for some anisotropic quadratic space © (F, L.Q) such

that 3 Q is degenerate but not identically zero.

Then A is of type E7,, E7 or E& and A B|(A) if (a) holds and A is of type
F4 and A B^(A) if (b) holds.
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Proof. By [TW, 38.9], A is in one of the six cases described in [MPW, 4.2],
where the quadrangles are described in terms of root group sequences as defined

in [TW, 8.7]. The root groups of Mi are abelian and if (b) holds, then by [MPW,
4.8(iii)], the tori of M2 (as defined in [MPW, 1.6]) are non-abelian. If A were

as in [MPW, 4.2(iii)], then the root groups and (by [MPW, 4.8(iv)]) the tori
of M,- for both i 1 and 2 would have to be abelian. Hence A is not as

in [MPW, 4.2(iii)]. If A were as [MPW, 4.2(i), (ii) or (iv)], then there would
exist a field or a skew field D such that Mi f\\ (D) for i 1 or 2. This

is impossible by 5.15. Only the cases (v) and (vi) of [MPW, 4.8] remain. Thus

A Bf(A') for some quadratic space A' of type E(>, E7 or E8 if (a) holds
and A s Bf (A') for some quadratic space A' of type F4 if (b) holds. Suppose
that (a) holds. Then Mi Bp(A') and hence by [MPW, 6.10], A' is similar
to A. Thus A ^ Bf(A) (by [TW, 35.11]). Suppose that (b) holds and let A"
denote the dual of A' as defined in [MPW, 9.5], By [TW, 28.45], there is a non-

type-preserving isomorphism from B^(A') to Bf(A"). Thus Mi is isomorphic
to Bp(A') to Bp(A"). By [MPW, 6.10] again, A is similar to A' or A". Hence

A ^ Bf (A) (by [TW, 35.12]).

6. Descent

In this section we assemble the results in [MPW] on descent in buildings that

we will require.

Definition 6.1. Let A be a building and let T be a subgroup of Aut(A). A
T -residue is a residue of A stabilized by T. A F -chamber is a T -residue which
is minimal with respect to inclusion. A T -panel is a T -residue P such that for
some T -chamber C, P is minimal in the set of all F -residues containing C

properly.

Definition 6.2. Let A and F be as in 6.1. The group T is anisotropic if A itself
is the unique F -chamber and isotropic if this is not the case. Thus T is isotropic
if and only if there exist F-panels (equivalently, if there exist F -residues other

than A itself).

Notation 6.3. Let A be a building and let T be an isotropic subgroup of Aut(A).
We denote by Ar the graph with vertex set the set of all F -chambers, where

two F -chambers are joined by an edge of Ar if and only if there is a V -panel

containing them both.

Definition 6.4. Let A be a building. A descent group of A is an isotropic
subgroup F of Aut(A) such that each F -panel contains at least three F -chambers.
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Theorem 6.5. Let A be a simply laced spherical building which is Moufang and

split. If S2 is an isotropic Galois involution of A as defined in 4.15 and 6.2, then

T := {Q) is a descent group of A.

Proof. By [MPW, 28.16], A satisfies [MPW, 30.1(i)]. The claim holds, therefore,

Proposition 6.6. Suppose that R is a residue of a Moufang building A. Let S
be an apartment containing chambers of R and let Ur denote the subgroup
generated by the root groups Ua for all roots a of E containing fiflE. Then

Ur is independent of the choice of S.

Definition 6.7. The group Ur in 6.6 is called the unipotent radical of the

residue R.

Definition 6.8. A Tits index is a triple (IT, 0, A) where II is a Coxeter diagram,
© is a subgroup of Aut(II) and A is a ©-invariant subset of the vertex set S

of n such that for each s e S\A, the subset A U ©(,?) of S is spherical (i.e.,
the subgroup (iU0(i)) of W is finite) and A is stabilized by the opposite map

°P/1u0(.ï) defined in 2.3. Here 0(,v) denotes the ©-orbit containing s.

Definition 6.9. Let T — (n,©,A) be a Tits index. For each s e S\A,
let s u>aWa\j@(s), where wj for J A and J A U @(5) is as in 2.3.

Thus there is one element s for each ©-orbit in S\A. Let S be the set of all
these elements s. By [MPW, 20.32], (W, S) is a Coxeter system. Let n be

the corresponding Coxeter diagram. We call n the absolute Coxeter diagram.

of T and fl the relative Coxeter diagram of T. An algorithm for calculating
the relative Coxeter diagram of a Tits index is described in [TW, 42.3.5(c)].

Conventions 6.10. Our notion of a Tits index generalizes the usual notion of a

Tits index as defined, for example, in [TW, 42.3.4], where it is called a Witt
index. We use Tits' conventions for indicating a Tits index (0,4, 0), drawing
the Coxeter diagram IT with a circle around each ©-orbit disjoint from A and

with vertices in the same ©-orbit brought near to one another. See [MPW, 34.2]
for a more precise description of these conventions.

by [MPW, 32.27],

Proof. This holds by [MPW, 24.17],

Examples 6.11. There are Tits indices (drawn using the conventions in 6.10) in
all of our main results. Using [TW, 42.3.5(c)], we can check that the relative

type of the indices in 11.21, 13.12, 14.11 and 17.14 is B2, the relative type of the
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index in 12.11 is A2, the relative type of the first three indices in 15.4 is F4 and

the relative type of the last index in 15.4 is C3. We observe, too, that the Tits
index in 17.14 does not appear in [Titl].

The following is a special case of the main results of [MPW, Part 3].

Theorem 6.12. Let T be a descent group of a spherical building A. Let n be

the Coxeter diagram of A, let S denote the vertex set of TT and let 0 denote

the subgroup of Aut(n) induced by T. Then the following hold:

(i) The graph Ar is a building with respect to a canonical coloring of its edges.

(ii) All T -chambers are residues of A of the same type A C S, the set A is

0-invariant and the rank k of Ar is the number of 0-orbits in S disjoint
from A.

(iii) The triple T IT, 0, A is a Tits index and Ar is a building of type ft,
where ft is the relative Coxeter diagram of T.

(iv) If A is Moufang and k >2, then Ar is also Moufang.

(v) Suppose that A is Moufang and that k 1 and let X denote the set of
all T -chambers. For each R e X, let Ur denote the subgroup of Synt(A)
induced by the centralizer CuR(V) of T in the unipotent radical Ur. Then

(.X, {ÜR I R X})

is a Moufang set.

Proof. Assertions (i) and (ii) hold by [MPW, 22.20(v) and (viii)], assertion (iii)
holds by [MPW, 22.20(iv) and (viii)] and the remaining two assertions hold

by [MPW, 24.31],

Definition 6.13. Let F and A be as in 6.12. We refer to the triple T in 6.12(iii)
as the Tits index of F. (In fact, the Tits index of a descent group F is defined
also when A is not assumed to be spherical; see [MPW, 22.20 and 22.22].)

Definition 6.14. A fixed point building is a building of the form Ar for some

pair A, F as in 6.12. If the rank of Ar is 1 and A is Moufang, we interpret
Ar to mean the Moufang set described in 6.12(v).
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Remark 6.15. Let A, T, 0, A, etc., be as in 6.12 and suppose that A is

Moufang. Let Â Ar and let G Aut(Ä). By 6.9, we can identify the vertex
set of the relative Coxeter diagram Fl with the set of 0 -orbits disjoint from A.
Let I &(s) be one of these orbits, let J A U I, let R be a F-residue
of type J and let F« denote the restriction of T to R. By [MPW, 22.39],
P := RYr is an /-panel of Ä and by [MPW, 24.30], RTr is isomorphic as a

Moufang set (see 6.14) to the Moufang set induced on P by the stabilizer of P

in G.

7. Linear groups

Let V be an (n + 1) -dimensional vector space over a field E (by which we

mean a commutative field) for some n > 1 and let

B (eu...,en+1)

be an ordered basis of V. For each ordered pair (i, j) of distinct integers i,j
in the interval [1 ,n + 1] and each t e E, let Xjj (l) denote element of SL(F)
that maps ej to ej + te; and fixes ek for k ^ j

Let 4> be the root system of type An and let ei,...,e„+i, a\,...,an and

ä be as in [Bou, Plate I]. Thus, in particular, a,- e, — e,+1 for each i e [1 ,n\
and ä s\ — £n+i For each ß e $, we set set Xß Xij if ß e,- — sj Let A
be the building of type An associated with V. Thus the chambers of A are the

maximal flags of subspaces of V, and A An(E) in the notation in [Wei2,
30.15]. The groups Xß(E) act faithfully on A and we will simply identify them

with their images in Aut(A). Let S the apartment of A whose chambers are

maximal flags involving only subspaces spanned by subsets of the basis B, let c
denote the chamber

(7.1) (ex) C (ei,e2) C ••• C {eue2,... ,en)

of S and let be identified with the set of roots of S and Aut(4>) with a

subgroup of Aut(E) as in 4.1. Thus a\,...,an are the roots of S containing c

but not some chamber of S adjacent to c and {xß \ße<t> is a coordinate system
for A. By [Tit2, Prop. 6.6], there is a natural homomorphism from Aut(SL(F))
to Aut(A).

The following observation will be used in §14.

Lemma 7.2. There exists a unique automorphism Q of A stabilizing £ such

that xai{t) Xä-af—t), Xan(t) i—> Xâ-a„(—t) and xai(t) i-> x-aj (—t) for all
i 6 [2,/î — 1], The automorphism fT has order 2.
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Proof. Let T denote the linear automorphism of V that interchanges e\ and en+1

and fixes <?,• for all i e [2. n\, let Q. e Aut(SL(F)) denote the composition of the

automorphism A m- followed by conjugation by T. The automorphism
of A induced by £2 has the desired properties. Uniqueness holds by 4.7(i).

The following observation will be used in the proof of 15.4.

Lemma 7.3. Piere exists a unique automorphism £2 of A stabilizing S such

that xa;(t)ß Xan+l_j(—t) for all i e [1,«] and all t e E. Pre automorphism
U has order 2.

Proof Let T denote the linear automorphism of F that interchanges e(- and

en+2-i for all i e [\,n + 1] and let £2 e Aut(SL(F)) denote the composition of
the automorphism A i-> (A')_1 of SL(F) followed by conjugation by T. The

automorphism of A induced by Q has the desired properties. Uniqueness holds

Remark 7.4. Let £2 be as in 7.3 and let c be the flag in (7.1). Then c is the

unique chamber of the apartment S stabilized by the root group Uaj for all
i e [1 ,n\. Since £2 stabilizes S and interchanges these root groups, it fixes c.

Remark 7.5. The automorphisms £2 of A in 7.2 and 7.3 are not type-preserving.

Notation 8.1. Let E be a field, let F be a vector space over E of dimension

In for some n > 3, let

B {ei,..., e„, fx /„}
be a basis of F, let q : F i->- E be the quadratic form given by

for all x\,..., yn e E and let O (q) denote the corresponding orthogonal group.

Notation 8.2. For distinct i,j e [1 ,n) and all t e E, we denote by x,,-(t) the

element of O(q) fixing and fm for all k f j and all m f i that maps ej
to ej + tet and f to f - tfj.

For i,j such that 1 < i < j < n and all t e E, we denote by y;y(f) the

element of O(q) fixing e^ and fm for all k and all m f {i, j} that maps f
to f - tej and j) to f} + tet.

by 4.7(i).

8. Orthogonal groups

ÏI n
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For i,j such that 1 < i < j < n and all t e E, we denote by z,-7(t) the

element of 0(q) fixing and fm for all k $ {i,j} and all m that maps e;-

to e;- +1fj and ej to ej —tfi.

Notation 8.3. Let A D„ E denote the building of type Dn associated with q.
The chambers of A are the maximal elements of the set T(q) described in [MPW,
35.9], where q is the quadratic form in 8.1. We will call these maximal elements

oriflammes. Thus an oriflamme is a set of n subspaces Z\,... ,Zn of V each

of which is totally isotropic with respect to q such that dim/,- Z; i for all
i e [1,« — 2], dim£ Z„_i dim^ Zn n, dim£(Z„_i n Zn) n — 1 and

Zi c Zj for all i e [l,n — 2] and all j e [I, n] whenever i < j. Let c denote

the oriflamme consisting of the subspaces

(<?i) C (ei,e2) C C {e1,e2,...,en-2)

together with {ex, e2,..., e„-i, e„) and (et, e2,..., e„_i, /„).

Notation 8.4. Let 4> be the root system of type Dn and let e%, ...,£„, oq,..., a„
and à be as in [Bou, Plate IV]. Thus a,- £, — e;+i for i e [l,n — 1],

an e„_i + sn and & — si + e2. For each ß e $, we set Xß — Xij if ß si —Ej

we set Xß ytj if ß £; + Sj and we set Xß Zij if ß — —£, — Sj. The

groups Xß (E) for ß e act faithfully on A and we will simply identify them

with their images in Aut(A). Let S denote the set of reflections {iai,...,ia„}
and let W — (S) c Aut(d>) be the Weyl group of T. Let S be the apartment
of A whose chambers are the oriflammes containing only subspaces spanned by

a subset of B and let <I> be identified with the set of roots of S and Aut(T) (and

hence, in particular, W) with a subgroup of Aut(E) as in 4.1. Thus oq an

are the roots of S containing c but not some chamber of S adjacent to c. For
each ß e <3>, the group Xß E is the root group of A corresponding to the root
ß of S, and there exists a map r such {xß\ße^ is a coordinate system for A
as defined in 4.4.

Notation 8.5. The symbol Q(q) denotes the subgroup of O(q) generated by all
its root groups. The group £2(q) is the kernel of the spinor norm from O(q)
to E*/(E*)2. In particular, the quotient 0(q)/Q(q) is an elementary abelian

2-group; see, for example, [Die, II, §6.4 and §10.4],

We will apply 8.6-8.13 in §13.

Notation 8.6. Let n be even and at least 6 and let dq (a3,...,u„) D <I>. Thus

<Fi is a root system of type £)„_2. Let J be the set of reflections {sai \ i e [3. /?]},
let wi be the longest element in the Coxeter group Wj (J) with respect to the
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set of generators J and let w0 sai w\. The roots oq and ä are perpendicular
to d>i and hence fixed by w\, and w! (tq —a;- for all i e [3,n] by 2.10. Since

(8.7) ä=ui+2a2-\ b2a„_2+«„_!+a„,

it follows that a\ + a2 + wi (a2) à. Thus

(8.8) W!(a2) s2 + s3,

so Wi(a2) is the highest root of the root system {a2, ,an) n $ of type £)„_i
(by 8.4). It also follows from (8.8) that

(8.9) w0(a2) E\ + £3 ä — a2.

Finally, we have

(8.10) w0 (a,) -at

for all i e [l,n] other than 2.

Lemma 8.11. Let n be even and at least 6 and let wo be as in 8.6. There

exists a unique automorphism Li of A mapping the basis B to itself such that

Xa, (f) xWo(ax)(t), xa2(t) Xwo(j0l2)(t) and xai (t) xWo(ai)(-t) for each

i e [3,/î]. The automorphism £2 has order 2 and interchanges the residues of A

corresponding to (e\) and (e2).

Proof. It follows from 8.2, (8.9) and (8.10) that conjugation by the automorphism
of V that interchanges e\ with e2, fi with f2 and e,- with f for each i e [3,77]

induces an automorphism of A with the desired properties. Uniqueness holds

by 4.7(i).

Remark 8.12. Let V\ be a totally isotropic subspace of V of dimension k < n — 3

contained in an oriflamme c\, let R\ be the residue of A containing all oriflammes
that agree with c \ in all dimensions at least k, let R2 be the residue of A

containing all oriflammes that agree with c \ in all dimensions at most k and

let 71i — projÄ(. for i 1 and 2 (as defined in [Weil, 8.23]). Let d be an

arbitrary oriflamme containing Tj Then n\(d) is the oriflamme that agrees with

c\ in all dimensions at least k and with d in all dimensions at most k, and

n2(d) is the oriflamme that agrees with c\ in all dimensions at most k and with

c\ in all dimensions at least k.
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Remark 8.13. Let Q be the automorphism of À in 8.11, let c\ be an oriflamme
(i.e. a chamber of A) containing {e{) and {e\,e2) and contained in the apartment
E, let d be the oriflamme containing (e2) that agrees with ci in all dimensions

greater than 1 and let P be the panel of A containing ci and d. Thus d is the

other chamber in P DE. By 8.12, the composition Q • proj P (that is, U followed

by projp) interchanges ci and d and maps the image of d under xa] (t) to the

image of d under xax(t~l) for all t e E*.

The following will be applied in §12.

Lemma 8.14. There exists a unique automorphism G. of A stabilizing E such that

xai (0 ^ Xâ(t) and xaj{t) x-aj(—t) for each i e [2 ,n]. The automorphism £2

has order 2.

Proof The automorphism of A induced by the element of 0(g) that fixes e\
and fi and interchanges e,- and f for each i e [2, n] has the desired properties.
Uniqueness holds by 4.7(i).

Notation 8.15. Let a be an involution in Aut(£) and let K Fix^ (a). We will
usually write x in place of x" for elements x e E. Let N be the norm of the

quadratic extension E/K.

The last two results of this section will be applied in the proof of 15.4. For
the definition of the quaternion algebra (E/K,k) that appears in the next result,

see, for example, [TW, 9.3],

Lemma 8.16. Suppose that n is even and that k is an element of K not in

N(E). Let R be the residue of A whose chambers are the oriflammes containing
the subspaces (e\, e2, ek) for all even k e [1, n] and let R\ denote the residue

whose chambers are the oriflammes containing the subspace {e\, e2, en). Tlien

there exists a type-preserving Galois involution Q on A that stabilizes E, R

and Ri such that O does not stabilize any proper residues of R and

Rf1^ Am(D),

where 1 denotes the restriction of Q, to R \, m (n/2) — 1 and D denotes

the quaternion division algebra (E/K,k).

Proof Let T denote the unique a-linear automorphism of V that extends the

maps tet Tet+i and tfl i-> tct f+1 for all odd i e [l,n] and te, /cte,-_i and

tfi i-> tf-i for all even i e [1 ,n\. Then q{T(v)) kl q{v) for all v e V and

T stabilizes the subspaces (ej,..., efl) for all even k e [!,«]• Let !T2 denote the
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automorphism of A induced by T. Then I22 — 1 and £2 stabilizes both R and

Ri. Let T (fi) and let Pi denote the restriction of T to R \.
Every subspace of V := (ei,...,en) of dimension n — I is contained in

exactly two totally isotropic subspaces of V of dimension n. It follows that the

residue R i is isomorphic to the building of type An-\ whose chambers are the

maximal flags of subspaces of V (e\,... ,en).
We have

D {x + uy I x, y e E},

where uy uz — Kfz, uy z — u(yz) and y uz — u(yz) for all y,z e E.
The vector space V has a unique structure as a right vector space over D of
dimension n/2 such that

(set + tei + i)(x + uy) (xs1 + Kyt)ei + (xt + ys)ei + i

for all odd i e [1 ,n\ and all s,t,x,y e E. We have T(v) v-u for all v e V.
It follows that the T -invariant subspaces of V as a vector space over E are

precisely the subspaces of V as a right vector space over D. Thus is a

T-chamber and R^1 ^ Am{D).

Lemma 8.17. If n — 3, then there exists a unique automorphism 12 of A

stabilizing E such that xai(t)n — xai(—t) and xa2(t)Q xa3(—1) for all
t e E. The automorphism 12 is a non-type-preserving Galois involution and

AM ë QQ(K,E,N).

Proof. Let T be the unique o -linear automorphism of V that fixes e\ and

fi, maps Ê2 to —e2 and f2 to —f2 and interchanges e3 with /3. Then

T2 1 and q(T(v)) q(y) for all v e V and by 8.2, xai(t)T xai(—t)
and Xa2(t)T xa3(—t) for all t e E. Let 12 denote the Galois involution of A
induced by T. Then 12 is non-type-preserving and stabilizes S. By 4.7(i), 12 is

unique. Since c is the unique chamber of E contained in a, for all i e [1,3],
12 fixes c. Thus, in particular, G is isotropic.

Let r be a non-zero element of trace 0 in E, let co be an element of E not
in K and let V0 Fix^(T), let V\ denote the subspace over K (rather than

E spanned by the set

Bi := {ei, fi, re2, r
1

f2, e3 + /3, cue3 + &>/3}.

Then f,cf0, so q(Vf) C K and by [MPW, 2.40(i)], Vi V0. Let Q: Vx -> K
denote the restriction of q to V\. By 6.5, T := (12) is a descent group of A.
By [MPW, 2.40(ii)], Ar is isomorphic to the building B(Q) defined in 3.3. The

restriction of Q to (ej, f\, xe2, r~1f2) is hyperbolic and the map
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*(«3 + h) + t(ue3 + cof3) \-+ s + tco

is an isometry from the restriction of Q to the subspace (e3 + /3, nie3 + <w/3)

of IT to the norm N viewed as a quadratic form over K. Thus N is the

anisotropic part of Q. By 3.4, we conclude that B(Q) s B®(Ä", E, N).

9. An anisotropic Galois involution of Dn(q)

We continue with all the notation and assumptions from the previous section.

In particular, A is the building D„ (E) whose chambers are the oriflammes of V

with respect to the quadratic form q as defined in 8.3.

Notation 9.1. Let a, K, ih-x and N be as in 8.15, let oj be an element of E
not in K and let

x2 — ax + b — (x — co)(x — a)

be the minimal polynomial of oj over K. Thus

(9.2) N(x + yco) x2 + axy + by2

for all x,y 6 K.

Lemma 9.3. Let co, a, b, xnx and N be as in 9.1. Let i e [1,"], 1st e

let f — fi, let q e E and let (p be the quadratic form on {e, f) given by

<p{xe + yf) xy

for all x, y e E. Let b\ rje + / and let b2 qcoe +cöf. Then the following
hold:

(i) e co)~1(a>bi — b2) and f — (aJ— co)~1(cobi — b2).

(ii) <p(xbi + yb2) q(x2 + axy + by2) for all x, y e E.

(iii) ip ^ N <B)k E.

Proof It can be verified with a few calculations that (i) and (ii) hold; (iii) follows
from (ii) and (9.2).

Notation 9.4. Let r]\,...,r)n be non-zero elements of K and let Q: E" K
denote the quadratic from over K given by

n

ôOi-••.J«)
f l

for all (yi,...,yn) En.
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Proposition 9.5. Let q: V —» E be as in 8.1, let x h> x and K be as in

9.1, let r]i,...,rjn and Q be as in 9.4 and let £2 £2^,be the a-linear
automorphism of V given by

n n

(9.6) £2(^](x,e; + yifi)) {yia + q^xifi)
i — 1 i=1

for all x\,... ,yn e E. Then the following hold:

(i) g(£2(u)) q{v) for all v e V and £22 1.

(ii) q Q E.

(iii) If the quadratic form Q is anisotropic, then there are no non-zero £2-

invariant subspaces of V that are totally isotropic with respect to q.

Proof. Assertion (i) is clear and assertion (ii) follows from 9.3(iii). Suppose that

Vo is a non-zero totally isotropic £2 -invariant subspace of V. Thus q(v) 0 for
all v e Vo - Let u be a non-zero element of V0. The sum v := u + Q(u) is fixed

by £2. Replacing u by tu for some t e E\K if necessary, we can assume that

v is non-zero. Hence
n

V ^(xtet + yifi)
i l

for some x\,yn £ E not all zero. Since v is fixed by £2, we have x,- ruff
for each i £ [I, n\. Therefore the elements yi,...,yn are not all zero and

n

Ô (ft » • • • ' yn) Yh^yiyï v(v) °-
i l

Thus (iii) holds.

Proposition 9.7. Let ai,...,an and Xß for ß £ <$> be as in 8.4 and let £1 be

as in (9.6). Then

xai(t)Q x-ai{-qflr]i+it)

for all i £ [1 ,n — 1] and all t £ E and

xan{t)a x-an(~%-i%lt)

for all t £ E.

Proof. This holds by 8.2, (9.6) and some computation.
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Notation 9.8. Let W be the Weyl group of $, let uq be the longest element in
W with respect to the set of generators {sai \ i e [1,«]} and let := £2i,...,i
be the involution obtained by setting • — qn 1 in 9.5. We use the

same letters fil and t0 denote the automorphisms of A induced

by these two involutions of V ; this convention should not cause any confusion.
Since pi,..., e K, we have

(9-9) Q, gXi,...,A„,id ' Swi,—X\ —A„.a

if n is even by 2.10, 8.15 and 9.7, where A,- rj^rji+i for all i e [\,n — 1] and

An rj-^r)-1, gxu...,x„,id is as in 4.7(i) and gWu-xu...,-x„,o is as in 4.13.

Notation 9.10. Let i be the automorphism of V given by

n n

l(j2(X'ei + ytfi)) '' + yîfiï
i 1 i 1

for all x\,... ,yn e E. Then i{q{v)) — q(v) for all v e V, i commutes with the

element L21 in 9.8, the composition i is contained in O(q) and

Xß(t)1 — Xß(t)

for all ß e and all t e E.

Proposition 9.11. Let n be even and let and i be as in 9.8 and 9.10. Then

the product i LI \ induces an automorphism of A contained in the group G^

defined in 3.1.

Proof. Since n is even, there is a unique element of O(q) that maps to ei + 1

and fi to fi+1 for all odd i e [1. n] and et to fi-\ and f to e,_i for all

even [l,n], and the square of this element equals i STi. By 8.5, it follows that

i-L21 e L2(q). The claim holds, therefore, by 8.5.

10. An extension from D„(E) to D„+i (E)

Let V, E, Q, q, B, <T, etc., be as in the previous two sections.

Notation 10.1. Let To be a vector space over E containing V as a subspace of
co-dimension 2, let

Bo ie0 » ë„, fo, fn}
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be an extension of the basis B to a basis of V0, let q0 : V0 -> E be the quadratic
form given by

and let a0,ai,...,an be an extension of the basis ai,...,an of to a basis

of a root system <J>0 of type Dn+\ containing <t>. We extend 12 to a a-linear
automorphism G0 of V0 by setting

for all xo,yo e E and all tEf, Since G is an involution, so is G0.

Notation 10.3. Let A0 denote the building of type Dn+\ whose chambers are

the oriflammes with respect to qo- We identify the building A Dn(E) in §9

with the residue of A0 consisting of all oriflammes containing the subspace (eo)

and we denote the automorphism of A0 induced by G0 also by G0. Thus A is

a (G0)-residue and G0 is a Galois involution of A0 extending G.

Proposition 10.4. Suppose that the quadratic form Q in 9.4 is anisotropic. Then

A is a (Go) -chamber and the fixed point building Aq^°* is isomorphic to

Bf(K, En,Q),

where B f(K,En, Q) is as defined in [Wei2, 30.15].

Proof. It follows from 9.5(iii) that A is a (G0) -chamber. Let

ß0: K®K@En -» K

be the quadratic form over K given by

ôo(*o<2o + yofo + v) x0y0 + Q(v)

for all x0,yo e K and all v e En. Thus Q is the anisotropic part of Q0.
Let V Fixi/0(Q0)- By [MPW, 2.40(i)], there is a canonical isomorphism from
V (8)k E to V0 mapping v ® t to tv for all v e V and all t e E. By [MPW,
2.40(h)], the map W W(T V is an inclusion- and dimension-preserving bijection
from the set of G0 -invariant subspaces of V0 to the set of all subspaces of V.
For each i e [l,n], the elements b\ and b2 defined in 9.3 are fixed by G0- The

set of these elements together with e0 and /0 is thus a basis for V over K.
By 9.3(h), it follows that Q0 is the restriction of t/0 to V. Thus by 9.5(h), an

Go-invariant subspace W of L0 is totally isotropic with respect to q0 if and

only if W n V is totally isotropic with respect to Q0. By 3.4, we conclude that

n n

(10.2) Go(*oeo + yofo + v) — xoeo + yofo + G(i>)

A^°) ~ bf(K,En,Q).
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Notation 10.5. For all ß e <t>0 and all t e E, let Xß(t) be the elements of O(q0)
defined by applying 8.2 and 8.4 with the interval [1 ,n\ replaced by the interval
[0, n]. Thus, in particular, the restriction of Xß (t) to V is as it was in the previous
section for all ß e and all t e E, xao(t) is the unique element of O(V/0) that

fixes the elements ek and fm of Bo for all k f 1 and all m f 0 and maps ex

to e\ + teo and f0 to /0 — tf\ for all t e E and x„(t) is the unique element

of O(q0) that fixes the elements and fm of B0 for all k e [0, n] and all

m e [2,«] and maps /0 to f0 — te\ and fx to fx +te0 for all t e E, where à

is the highest root of <3?o with respect to the basis a0,...,an.

Proposition 10.6. Let k>o be as in 10.2 and let â be the highest root of the root
system <E> (aq,..., an) fl d>o of type Dn. Then

Xa0(t)n° Xâ(qiT)

and

Xai(t)n° X-ai (—Ijß1 T}i + \t)

for all t e E and all i e [\,n — 1] as well as

Xa„(t)n° x-an{-rj-l_xr]-lt)

for all t e E.

Proof. The first identity holds by (10.2), 10.5 and some computation, and the

remaining identities hold by 9.7.

11. The quadrangles of type E$

Our goal in this section is to prove 11.21. Let $ be a root system of type E7

and let ai,...,oc7 and ä be as in [Bou, Plate VI], Let W be the Weyl group
of <F, let S be the set of reflections sai for i e [1,7], let <3>i be the root system
(oj2, • • •, otj) n $ of type D6, let Si 5'\{5q:i} and let W\ (Sf.

The pair (ILbSi) is a Coxeter system of type D6. Let up denote the longest
element in W\ with respect to the set of generators .S) Since à is orthogonal
to of/ for all i e [2,7], we have

(11.1) W\(à) à.

By 2.10, uq(cq) —cq for all i e [2,7], Applying uq to the equation

(11.2) à — 2a i + 2a2 + 3a3 + 4«4 + 3c/5 + 2a$ + a-j,

we conclude that
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(11.3) <5 uq(a;i) + oq.

Thus

(11.4) Wi(«i) «1 + 2a2 + 3cü3 + 4a4 + 3a5 + 2a6 + a7.

Notation 11.5. We denote by A the building E7(£). Let S be an apartment
of A, let c be a chamber of S and let Ai be the unique residue of A of type
D6 containing c. Thus Ai D6(it) and Si := Ai fl S is an apartment of Ai.
We identify the root system 4> with the set of roots of S and Aut(O) with a

subgroup of Aut(S) as in 4.1. This gives an identification of 4>j with the roots

of S

Notation 11.6. Let Ä, S, c, âq,..., <56 and {xß}ßz<i?1 be the building, the

apartment, the chamber, the set of roots and the coordinate system called A,
S, c, oq,...,ae and {xß}ß<s> in 8.3 and 8.4 with n 6. There exists an

isomorphism v from Ä to A i mapping S to S i, c to c and the root <5,-

to an(i) for all i e [1.6], where n is the map sending the sequence 1,2,..., 6 to
the sequence 7,6,5,4, 2,3. Let Xß v~l -xp -v for all ß e 4>i. Then {xß}ß&^l
is a coordinate system for A i. By 4.11, we can extend this coordinate system to

a coordinate system {xß}ß^ for A.

The root ä is orthogonal to the root a* for all i e [2, 7]. Thus [U±ai, U&] 1

for all i e [2,7] by 4.2(ii). By 3.2 and 9.11, there exists an element in

(Up I ß e $0 C Aut(A)

stabilizing Ai and Si and centralizing U„ such that

for all i e [2,7].
Let R be the unique residue such that R IT S and Si are opposite residues

of S. For each root ß in 4q, there exist chambers of Si not in ß. Thus each

root of 4>i contains chambers of R (by [Weil, 5.2]) and hence the corresponding
root group stabilizes R. Therefore the element £2, stabilizes R. Since it also

stabilizes Si, it stabilizes projÄ(Si). By [Weil, 5.14(i)], projÄ(Si) fins.
Hence £2i stabilizes the convex closure of Si and finS. By [Weil, 8.9 and

9.2], this convex closure is S. We conclude that L21 stabilizes S. Since uq and

£2i have the same restriction to Si, the restriction of £21 to S is uj, By 4.14,

therefore, there exist e E* such that

(11.7) xa' X-ai (~0

^1 —
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Thus, in particular, we have

(11.8) xai (t) "1
xWl (ai)(xt)

for k K\ and for all t e E. By (11.7), /e,- — 1 for all i e [2,7]. By 4.7(ii),
there exists p e E* such that

(11.9) xW] (a|)(t)
~1

=xai(pf)

for all t e E. By 4.2(i) and (11.3), there exists 8 e {1,-1} such that

(11.10) [^(ä),*«,!^,)^)] =xä(Sst)

for all s,t e E. Applying £2] to this identity, we find that

[*u;1(«l)('",)>*<*i(P0] Xä(Sst)

for all s.te E. Thus

[xai(pt),xWl(ai)(Ks)\ =xä(-8st)

for all s, t e E. Applying (11.10) to the left-hand side of this identity, we conclude

that

(11.11) Kp -1.

Notation 11.12. Let a, and K be as in 8.15, let Aj, r)\,... rj^ e K* and

let Q be as in 9.4 with n 6. We set

12 ,A2".,A7,o" * 12 I

where X2 rj^r/e, A3 A4 rj^rjs, A5 r]^1r]4, X6

X7 qflq2 and gx{ x7,a is as in 4.7(i). Thus

(11.13) X22X33XtX35X26X7 =r]-l...r]-\

Notation 11.14. Let v: Ä -> Ax be as in 11.6 and let £2 be the automorphism
of A in (9.6) with n — 6 and qi,...,q6 be as in 11.12. We denote by
12 the automorphism u_1 • £2 v of Ai. The automorphism £2 satisfies the

identities in 9.7 with n 6 and with the roots ai,...,a6 replaced by the roots

a7, a6, a5,a4,Q!2, a3 of 4>i (in that order).

Proposition 11.15. The automorphism £2 stabilizes Ax, the restriction of Û to Ai
is the automorphism £2 defined in 11.14 and £2 is an involution.

Proof. Since £2j and gxu...,x7,o both stabilize Ai, so does £2. The second claim
holds by (9.9) and the third claim by 9.5(i).
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Proposition 11.16. The automorphism Ù is an involution if and only if

(11.17) N(Xi) —t]i

where N is as in 9.1.

Proof The automorphism Ù, is an extension of Q and Q2 1. Thus Q2

centralizes Uai for all i e [2,7]. By the uniqueness assertion in 4.7(i), therefore,
Û is an involution if and only if £2 2 centralizes Uai We have

xai(t)^2 Xw^a^iickit)^ by (11.8)

*Wl(«1)(Ai-»/r1-'/61-^001 by 4.7(h), (11.4) and (11.13)

xai (pic N{X\)rf[x r]f,lt) by (11.9)

x0ll(-N(X1)rlf1---r1^t) by (11.11).

Thus Û is an involution if and only if (11.17) holds.

Corollary 11.18. Suppose the quadratic form Q in 11.12 is anisotropic and that

(11.17) holds. Then £2 is a Galois involution and Ai is a (£2) -chamber.

Proof. The first claim holds by 11.16 and the second claim holds by 9.5(iii)
and 11.15.

Proposition 11.19. Suppose the quadratic form Q in 11.12 is anisotropic and that

(11.17) holds. Then A<Q> is a Moufang set with non-abelian root groups.

Proof. By 11.18, Û is an involution and by 4.7(h), (11.2) and (11.13), we have

(11.20) Xâ(t)^ — Xà(—AiAi Xà(—AiÂi lJ)

for all t g E. Let T be the trace of the extension E/K and let

X {(t,u)eE2 I T(X[u) + ic8N(Xit) 0}.

It follows from (11.8), (11.10) and (11.20) that for all (t,u) e X, the element

gt,u '= Xai (t)xWl(jXp)(KX\t)Xfr{ll)

is centralized by Ù.
The roots of S cutting Ai (as defined in 3.5) are the roots in Ox. All the

other positive roots of O contain Ai fl S. In particular, a\, wq(a\) and ä all

contain Ax flS. By 6.12(v), the root group of A<Q) fixing the (Ù.)-chamber Ai
is isomorphic to the centralizer of Û in the group generated by all the roots
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of <ï> containing Ai DE. Thus (gu>t | (:u,t) G X) is contained in this root group.
For each t e E, we can choose ut e E such that (,t,ut) g X. Applying (11.10)
and the identities [TW, 2.2], we find that

[gs,us,gt,ut] XäiÖKX^St -st))
for all s,t E. Thus not all of the elements gt,Ut commute with each other.

Theorem 11.21. Let A (K, V, Q) be a quadratic space of type £g. Then there

exists a separable quadratic extension E/K such that Qe is hyperbolic and for
each such extension E/K, there exists a Galois involution £2 of the building
A Eg(f?) such that the Tits index of the group T := (£2) is

®—•—• •—I—•—®

and the fixed point building Ar is isomorphic to Bf(A).

Proof. By 5.5, we can choose a separable quadratic extension E/K such that Qe
is hyperbolic and we can assume that V — E6 and there exists rp,... ,r]f, e K
such that

Ô(mi,...,m6) r\iN(ui) H h ï]6N{u6)

for all (ui,... ,u6) e V, where N is the norm of the extension E/K, and

(11.22) -mm-fie e N{E).

Let A E8(£), let S be an apartment of A and let c be a chamber of E. Let O

be the root system of type £g and let ai,...,ag be as in [Bou, Plate VII]. We

identify T> with the set of roots of X and Aut(<3>) with a subgroup of Aut(E)
as in 4.1 and choose a coordinate system {xß}ße$ for A. Let A be the unique
subset of S spanning a subdiagram of Ft of type D6. let uq denote the longest
element in the Coxeter group Wa with respect to the set of generators A, let R

denote the unique A-residue of A containing c, let Ri be the unique residue of
type D 7 containing R and let R2 be the unique residue of type E-, containing
R.

By (11.22), we can choose \\ so that (11.17) holds. Let k be as in (11.8) and

let A2,.. •, A7 be as in 11.12. We then set K\ kX\ /q —A, for all i G [2, 7],
Ks T)\ and

^ gw\,K\,...,K%,a

where a is the non-trivial element in Ga\{E/K) and gWl,Kl,...,Ks,a is as in 4.13.

Let T (£2). Since uq stabilizes ftflX, it also stabilizes R\ HE and R2C\T.
Hence R, R\ and R2 are T-residues.
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By 4.11 with R\ in place of R and 11.6, we can assume that the coordinate

system {xß}ß<j> was chosen so that there are two isomorphisms, one from R\

to the building A0 in 10.3 with n 6 carrying the automorphism Q0 defined

in 10.2 to the restriction of to R\ and the other from R2 to the building A
in 11.5 carrying the automorphism G defined in (11.12) to the restriction of Q

to R2. By 10.6 applied to the restriction of Q to R \, Q.2 centralizes Uaj for all

i e [2, 8] and S is a F -chamber. By 11.18 applied to the restriction of Q. to R2,
G 2 also centralizes Uai. Thus G is a Galois involution. By 6.5, therefore, T is a

descent group of A. By 6.11 and 6.12(iii), Ar is a building of type B2, and thus

by 6.12(iv), Ar is a Moufang quadrangle. Let Mi and M2 be as in 5.16 applied
to Ar. By 6.15, 10.4 and 11.19, one of these two Moufang sets is isomorphic
to Bp(A, E6, Q) and the other has non-abelian root groups. By 5.16(a), it follows
that Ar Bf (A).

12. The exceptional buildings of type A 2

Our goal in this section is to prove 12.11.

Notation 12.1. Let A 05(A) and let S, c, <£, ai,...,a5, à, (W, S), the

identification of <E> with the set of roots of £ and the identification of Aut(4>)
with a subgroup of Aut(£) be as in 4.1. Let Si S\{^a!l}, let W\ — {Si),
let 4>i be the root system (a2,..., a5) fi 4> of type D4 and let Ai be the unique
residue of type D4 containing c.

Notation 12.2. Let Â, £, c, ä\,...,ä4 and {xß}ß<E$,x be the building, the

apartment, the chamber, the set of roots and the coordinate system called A,
£, c, ai,...,a4 and {xß}ß$,x in 8.3 and 8.4 with n — 4. There exists an

isomorphism v from Ä to A[ mapping £ to £1, c to c and the root à,-

to for all i e [1,4], where jz is the map sending the sequence 1,2,3,4 to
the sequence 5,3,4,2. Let Xß v-1 -Xß-v for all ß e 4>i. Then {xß}ß&^x is

a coordinate system for Ai. By 4.11, we can extend this coordinate system to a

coordinate system for A.

The pair {W, S) is a Coxeter system of type D5 and the pair (W\, .S) is

a Coxeter system of type D4. Let uq denote the longest element in W\ with

respect to the set of generators Si and let 4>0 be the root system of type D6
obtained by applying 10.1 to 4>. By 8.6 applied to 4>0, we have

(12.3) ICI(Û:I) ä u\ + 2o!2 + 2a3 + a4 + as.

We also know that
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(12.4) wi(ai) -ai
for all i e [2,5]. By 4.16 and 8.14, there exists S e {1,-1} such that

(12.5) £2i := giv] ,5,-1,-1,—1,-1,id

is an involution, where gWlts,-1,-1,-1,-1,id is as in 4.13.

Notation 12.6. Let /yi,...,^4 and Q be as in 9.4 with n — 4, let a, K, etc.,
be as in 8.15, let v and A be as in 12.2 and let £2 be the automorphism of À

in (9.6) with n 4. We denote by £2 the automorphism v~l £2 v of Ai. The

automorphism £2 satisfies the identities in 9.7 with n 4 and with the roots

ai, a2, «3, a4 replaced by the roots a5, a3, a4, a2 of (in that order).

Notation 12.7. Suppose that there exists Ai e E such that ATAf) 17273»? 4

and let

5,<7
' ^21 êwi ,SX 1,—A2,—^.3A4)—^5,a '

where A2 A3 A4 A5 »ff172, £2i and S are as

in (12.5) and gxl,...,a5,ct is as in 4.7(i). We have

(12.8) AiA^A4A5 =X7_1.

Theorem 12.9. Suppose that r]\ 727374 N(E) and that the quadratic form Q in
12.6 is anisotropic. Let £2 be as in 12.7 and let A ] be the unique residue of type
D4 containing the chamber c. Then £2 is a Galois involution of A stabilizing
Ai but not any proper residue of A\.

Proof. By (12.3) and (12.4), we have

*ai(0 Xâ(SXit)

for all lef and

xat (0 x~«i (-2*6)

for all t e E and all i e [2,5], Since £2i is an involution, we have

(12.10) xa(001 =xaim
for all t e E. Therefore

*u;i(ai)(0^ JCfi(AiA|A|A4A5T)^1 by 4.7(ii) and (12.3)

Xä(X\ 1J)^1 by (12.8)

xai(8T1~1t) by (12.10)
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^ ~ a.

for all t e E. Hence Q centralizes Uai. Thus G is an involution (and hence a

Galois involution). Since uq stabilizes EFlAi, G stabilizes Aq The restriction
of G to Ài coincides with the automorphism G defined in 12.6. By 9.5(iii), it
follows that Û stabilizes no proper residue of À i.

Theorem 12.11. Let D be an octonion division algebra over a field K and
let E/K be a separable quadratic extension such that De is split. Then there

exists a Galois involution G of the building A E6(E) such that the Tits index

of the group T (£1) is

®—•—1
•—0

and the fixed point building Ar is isomorphic to h2{D).

Proof Let A E6 (E), let E be an apartment of A and let c be a chamber

of E. Let and cq,... ,a6 be as in [Bou, Plate V]. We identify with the set

of roots of E as in 4.1 and choose a coordinate system {xß}ße$ for A. Let A

be the unique set of vertices of the Coxeter diagram n spanning a subdiagram of
type D4, let up denote the longest element in the Coxeter group with respect
to the generating set A, let R denote the unique A -residue of A containing c
and let R\ and R2 be the two maximal residues containing R.

There exist r]\,..., t]4 e K such that rji q4 e N(E) and the quadratic form
Q defined in 9.4 is similar to the norm of D Let X\, As and 8 be as in 12.7.

We set K\ <5Ai, k2 —A4, k2 —X2, k4 —A3, at5 —A5 and /c6 rji.
Next, we set

where a is the non-trivial element in Ga1(E/K) and gWl,Ki,...,K6,a is as in 4.13.

Finally, we set F (fT0).

By 4.11 with R2 in place of R and 12.6, we can assume that the coordinate

system {xß}ße^ was chosen so that there are two isomorphisms, one from R\
to the building A in 12.1 carrying the automorphism Q in 12.7 to the restriction
of £2 to R\ and the other from R2 to the building A0 in 10.3 with n 5

carrying the automorphism £20 defined in (10.2) to the restriction of Q to R2.
Since uq stabilizes R DE, F stabilizes R. Hence F stabilizes the residues

of A that contain R. By 12.9, therefore, centralizes Uaj for all i e [1,5]
and R is a T-chamber, and by 10.6, Qq centralizes Ua6. It follows that G0

is a Galois involution. By 6.5, therefore, T := (f20) is a descent group of A.
By 6.11 and 6.12(iii), Ar is a building of type A2, and thus by 6.12(iv), Ar
is a Moufang triangle. By [TW, 17.2-17.3], there exists a field, a skew-field or
an octonion division algebra D\ such that Ar k2(D\). Thus the Moufang set
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induced by the stabilizer of a panel of Ar in the automorphism group of Ar is

isomorphic to Ai(Di). By 6d5 and 10.4, it follows that

A!(DO SB?(K,E4,Q).

Hence by [Wei3, 31.21], Di is an octonion division algebra whose norm is similar
to Q. Therefore s D (by [TW, 20.28], for example).

13. The quadrangles of type £7

Our goal in this section is to prove 13.12.

Notation 13.1. Let A D6(£), £, c, 4>, a (W, S), the identification
of the set of roots of E with 4>, the identification of Aut(4>) with a subgroup
of Aut(E), etc., be as in 4.1. Let Si S\{sai,ja2}, let W\ — (Si) and let 4>i

be the root system (a3,..., a6) fl O of type D4. Let Ai be the unique residue

of type D4 containing c.

Notation 13.2. Let À, È, c, äi,...,ä4 and {xß}ß^q>l be the building, the

apartment, the chamber, the set of roots and the coordinate system called A,
S, c, ai,...,a4 and {xß}ße$^ in 8.3 and 8.4 with n — 4. There exists an

isomorphism v from A to A[ mapping S to Si, c to c and the root cq

to an(i) for all i e [1,6], where jt is the map sending the sequence 1,2,3,4
to the sequence 6,4,5,3. Let Xß v~1 Xß - v. Then is a coordinate

system for Ai. By 4.11, we can extend this coordinate system to a coordinate

system {xß}ße<$ for A.

The pair (W, S) is a Coxeter system of type D6 and the pair (W\, ,S'i) is

a Coxeter system of type D4. Let w\ denote the longest element in ILi with

respect to the set of generators Si and let vj0 — sa, vj\. By (8.7), (8.9) and (8.10),

we have

(13.3) wo(a2) oq + «2 + 2a3 + 2a4 + a5 +

and

wo (at) -oti

for all i e [1,6] other than 2. By 4.16 and 8.11 with n — 6, there exists co e {1, —1}

such that

(13.4) Qi := gto0,i,û>,-1,-1,-i,~i,id

is an involution, where gWQ>i,<u,-1,-1,-1,-1,id is as in 4.13.
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Notation 13.5. Let 771,..., 774 and Q be as in 9.4 with n 4, let a, K, etc.,

be as in 8.15, let v and Ä be as in 13.2 and let Û be the automorphism of A

in (9.6) with n 4. We denote by Q the automorphism v-1 • ST • v of Ai. The

automorphism Q, satisfies the identities in 9.7 with n — 4 and with the roots

û!i,û!2,û!3,q!4 replaced by the roots «6,<24,0:5,0:3 of T, (in that order).

Notation 13.6. Let

^ SX' ^1 8wq,—A3,...,—Agjtr>

where Xi 127374, A2 1, A3 77J17741, A4 l^ls, X5 7^74,
X6 r]Y1V2 and Ôj and gx1,...,x6,a are as in 4.7(i). Note that

(13.7) AiA2A^A5A6 1.

Theorem 13.8. Suppose that rp 72I3I4 $ N(E) and that the quadratic form Q

defined in 13.5 is anisotropic and let Ao be the unique residue of type A\ x D4

containing the chamber c. Then ST is a Galois involution of A stabilizing A0

but not any proper residue of Ao-

Proof We have

Xai(t)° X-ai (Alf)

and

Xa2(t)Q XWo(a2)(coT)

for all t e E as well as

(13.9) xai(tf x-at(-XiT)

for all t e E and all i e [3,6], We also have

(13.10) XWQ (a2)(t)Ùl xa2(cot)

for all t e E since Û1 is an involution. Therefore

Xw0G2)(t)Ù xW0(cl2)(X1X2XlXlX5X6t)^1 by 4.7(ii) and (13.3)

xWQ(a2)(ï}^1 by (13.7)

xa2{cot) by (13.10)

^ Ofor all t e E. Hence Q centralizes Ua2. Since Xt e K for all i e [1,6] and

Ûy 1, it follows from 4.7(ii) that

*-ai(0^ X-^iXf1!)^1 Xai(Xflt)
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and

*-<*, (O" =x-ai(\^17)"1 =xcli(-X~1t)

for all t G E and all i G [3,6], Therefore Û2 centralizes UUi for all i e [1,6].
Thus Û is a Galois involution.

The involution Û induces the automorphism w0 on £, and w0 stabilizes

A0 n S. Therefore Û stabilizes A0.
Let P be the 1-panel containing c. let jt/> be the restriction of the projection

map projp to A0, let jt denote the restriction of the projection map projAl to A0

and let £ denote the restriction of Û-u to Aj. By 3.11, 9.7 and (13.9), £ coincides

with the automorphism G defined in 13.5.

Suppose that R is a residue of A0 stabilized by G. By 9.5(iii), £ does

not stabilize any proper residues of Ai. Therefore the image of R under the

projection map it is Aj. By 8.13, the image of A0 under rep is a projective
line over E which can be coordinatized so that Û np is the map t m>- AiF 1.

Since Ai r]i 174 $ N(E), this map has no fixed points. Therefore the image
of R under up is P. Hence R — A0. Thus Û stabilizes no proper residues

of A0.

Proposition 13.11. Suppose the quadratic form Q in 13.5 is anisotropic and that

1Hrl2r]3rl4 Then A*^ is a Moufang set with non-abelian root groups.

Proof. By (13.8), G is an involution. By 4.2(i) and (13.3), there exists S e {1, —1}

such that
\_X0c2 (0> xwo(.oi2) C^)] Xâ(8st)

for all s,t e E. Setting s 8 and conjugating by Û, we have

xa 0 — ((*2) (.tof), X(%2 Çto8^) ]

Xà(-t)

for all t g E. Let T be the trace of the extension E/K and let

X {(t, u) G E2 I T(u) + œSN(t) 0}.

It follows from (11.10) and (11.20) that for all (t,u) e X, the element

St,u xa2(t)xWQ(œ2)(cuîjxâ(n)

is centralized by G.
The roots of S cutting Ai are the roots in <E> IT (<*1, a3,..., a6). All the other

positive roots of $ contain Ai (TS. In particular, a2, ^0(^2) and à all contain

Ai n S. The root group U of a'q,> fixing the (G)-chamber Ai is isomorphic
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to the centralizer of Û in the group generated by all the positive roots of <E>

containing Ai fl S. For each t e E, there exist ut e E such that (/, ut) e X.
Applying the identities [TW, 2.2], we see that

[gs,us,gt,ut] xä(8co(st -st))

for all s,t e E. Thus not all of the elements gt.u, commute with each other.

Therefore the root group U is non-abelian.

Theorem 13.12. Let A (K, V, Q) be a quadratic space of type E7. Then there

exists a separable quadratic extension E/K such that Qe is hyperbolic and for
each such extension E/K, there exists a Galois involution of the building
A E7(E) such that the Tits index of the group F (G) is

.—©—.—I—.—®

and the fixed point building Ar is isomorphic to B|(K,V,Q).

Proof. By 5.5, we can choose a separable quadratic extension E/K such that

Qe is hyperbolic and assume that V — E4 and that there exists r]\,... e K
such that

Q(u 1,... ,m4) rpN(ui) H b r]4N(u4)

for all («!,...,uf) e V, where N is the norm of the extension E/K, and

hiV2ri3h4 f N(E).

Let a be the non-trivial element in Gal(E/K), let A E7(/i), let S be an

apartment of A and let c be a chamber of S. Let <I> be the root system and let

a7 be as in [Bou, Plate VI], We identify <f> with the set of roots of S

as in 4.1 and choose a coordinate system {xß}ß$ for A. Let A be the unique
subset of S spanning a subdiagram of Fl of type A\ x D4, let w0 denote the

longest element in the Coxeter group Wa with respect to the generating set A

and let R denote the unique A-residue of A containing c. Let If and R2 be

the unique residues of type D6 and A t x D5 containing c, let Rj be the unique
residue of R2 of type D5 containing c and let Ç be the restriction of fi proj
to R3.

Let be as in 13.6. We set rji, k2 —X5, k2 —Xs,

k4 — —A4, ks —A3, k6 8X2 and k7 Ai. We then set

gwQ,Kl,...,K-J,a>

where gWQ,Kl,...,Kl,a is as in 4.13. Finally, we set r (G).
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By 4.11 with R3 in place of R and 13.5, we can assume that the coordinate

system {xß }ße$ was chosen so that there are two isomorphisms, one from R\ to

the building A in 13.1 carrying the restriction of ß to Äj to the automorphism
Û in 13.6 and the other from R3 to the building A0 in 10.3 with n 5 carrying
the map £ to the automorphism G0 defined in (10.2).

By 13.8, SI1 centralizes Uaj for all i e [2,7] and R is a T -chamber. By 3.11

and 10.6, Q.2 centralizes Uai. Thus Q? centralizes Uaj for all i e [1,7]. Hence

fi is a Galois involution. By 6.5, therefore, F is a descent group of A. By 6.11

and 6.12(iii), Ar is a building of type B2, and thus by 6.12(iv), Ar is a Moufang
quadrangle. Let Mi and M2 be as in 5.16 applied to Ar. By 6.15, 10.4 and 13.11,

one of these two Moufang sets is isomorphic to Bp (AT, E4, Q) and the other has

non-abelian root groups. By 5.16(a), it follows that Ar B|(A).

14. The quadrangles of type E6

Our goal in this section is to prove 14.11.

Notation 14.1. Let A A5(E), let be the root system of type A5, let oq,..., a5
and <5 be as in [Bou, Plate I], let S be the set of reflections sai for i 6 [1,5],
let W (S), let Si {i„2,sa3,}, let W\ (Si), let <3>i denote the root

system (a2,oc3,a4) (TO of type D3 and let Ai denote the unique residue of type
D3 containing c.

Notation 14.2. Let Â, Ê, c, äi,ä2,ä3 and {xß}ß^x be the building, the

apartment, the chamber, the set of roots and the coordinate system called A,
£, c, ai,o:2,a3 and {xß}ße$x in 8.3 and 8.4 with n — 3. There exists an

isomorphism v from A to A i mapping Ê to S i, c to c and the root <5,

to an(i) for all i e [1,6], where tt is the map sending the sequence 1,2,3 to
the sequence 3,2,4. Let Xß — v_1 Xß •v for all ß e Oi. Then is a

coordinate system for Ai. By 4.11, we can extend this coordinate system to a

coordinate system {xß}ße§ for A.

The pair (W, S) is a Coxeter system of type A5 and the pair (W\, .ST) is

a Coxeter system of type D3. Let w\ denote the longest element of W\ with

respect to the set of generators Si.
We have u>\ (S2S4S3)2, from which it follows that

"h («0 ai + a2 + a3 + a4

and

u;i(as) a2 + a3 + a4 + a5.
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Now let n be as in 2.9 with <t> a root system of type A5 and let w n up.
Then

(14.3) ih(ob) «2 + «3 + «4 + 0:5 & — a i

and

(14.4) »(«s) ai + «2 + «3 + «4 öl — a5

as well as w{cti) —a* for all i e [2,4],
By 4.16 and 7.2, there exist <5i,55 e {1,-1} such that

(14.5) := grii.äiSs,id
is an involution, where güi,«1,-i,-i,-i,Ä5,id Is as in 4.13.

Notation 14.6. Let Ai rji, X2 qflri3, ^3 A4 and

\5 V2, so

(14.7) Â1A2A3Â4A5 1,

and let
12 §X\ ,...,A5 ,£7

" 111 Sw,S\X\A2,—A3,—A4,55X5,(7 '

where Âi, Si and S5 are as in (14.5), a is as in 8.15 and gx1,...,xs,<r is as

in 4.7(i).

Notation 14.8. Let Ä and v be as in 14.2, let Ù be the automorphism of A
defined in (9.6) with n 3 and q 1, q2, q3 as in 14.6 and let f2 v-1 • Ù v.

Theorem 14.9. Suppose that the quadratic form Q defined in 9.4 is anisotropic.
Let Ù be as in 14.6 and let Ai be the unique Si-residue containing the chamber

c. Then £2 is a Galois involution of A stabilizing Ai but not any proper residue

of Ai.

Proof We have

(0 *ûj(û!l)05iAit)

for all t e E. Since Ûi is an involution, we have

^tôCaoCO"1 xai(8it)

for all t e E. By 4.7(ii), therefore,

-*"iû (a 1 (0 Xtyj ^
(A 2 A 3 A 4 A 51)

— xai (S1A2A3A4A5L)
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for all t e E. By (14.7), therefore, Û2 centralizes Uai. Similarly, Û2 centralizes

Ua5.
Since w i stabilizes En Aj, Û stabilizes Aj. By 9.7, the restriction of Ù

to Ai is the automorphism Q defined in 14.8. Since G is an involution, it
follows that Û2 centralizes £/,• for all i g [2,4] (and thus for all i e [1,5] by the

conclusion of the previous paragraph). We conclude that Ù is a Galois involution
and that by 9.5(iii), G does not stabilize any proper residues of Ai.

Proposition 14.10. Suppose the quadratic form Q in 9.4 is anisotropic. Then
A<^> is a Moufang set with non-abelian root groups.

Proof. By (14.3), we have à — w(ai) +a\. Hence there exists œ g {1, —1} such

that

\_Xot\ (0 Wuj(ai)(^)] — XfritOSt)

for all s,t G E. Setting co and conjugating by G, we deduce that

Xä(t)Q [xlî(ai)(5iA1r),xQ.](51A2- • • A5<y)]

xä(-t)
for all t g E. Let T be the trace of the extension E/K and let

X — {(t, m) g £2 I T(u) +û>8iX1N(t) 0}.

For all (t,u) e X, the element

St,u •— Xai (0-^it(ai)(^lAlF)X^(l/)

is centralized by G.
The roots of S cutting Ai are the roots in 4> n {a2,«3.a4). All the other

positive roots of <E> contain A1 n Z. In particular, ai, w(a 1) and à all contain

Ai fi E. The root group U of A^ fixing the (ß0)-chamber A! is isomorphic
to the centralizer of G in the group generated by all the positive roots of 4>

containing Ai (T E. For each t e E, there exists ut e E such that (t,ut) e X.
Applying the identities [TW, 2.2], we see that

Lgs,us,gt,ut\ Xà^SiXiist-st))
for all s, t G E. Thus not all of the elements gt:U[ commute with each other.

Therefore the root group U is non-abelian.

Theorem 14.11. Let (K, V, Q) be a quadratic space of type E(,. Then there

exists a separable quadratic extension E/K such that Qe is hyperbolic and for
each such extension E/K, there exists a Galois involution of the building
A E6(E) such that the Tits index of the group T := (G) is
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and the fixed point building Ar is isomorphic to ßf(Ä", V, Q).
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Proof. By 5.5, we can choose a separable quadratic extension E/K such that

Qe is hyperbolic and assume that V — E3 and that for some rji, r]2, t?3 6 K,

Q(ui,u2,u3) t]\N{u\) + t]2N(u2) + rj3N(u3)

for all (ui,u2,u3) e V, where N is the norm of the extension E/K.
Let À E6 (E), let E be an apartment of A and let c be a chamber of E.

Let <l> be the root system of type E6 and let a\,... .a6 be as in [Bou, Plate V],
We identify <5 with the set of roots of E and Aut(<I>) with a subgroup of Aut(E)
as in 4.1 and choose a coordinate system {xß}ßCp for A. Let A be the unique
subset of S spanning a subdiagram of II of type D3 that is stabilized by

Aut(II), let w\ denote the longest element in the Coxeter group Wa with respect
to the generating set A, let R denote the unique A-residue of A containing c,
let Ri be the unique residue of type A5 containing R and let R2 be the unique
residue of type Z)4 containing R. Let n be as in 2.9 and let w tiw\

Let Ai,..., A5, <5i,<$5 be as in 14.6. We set 5iAx, k2 — rji, k3 —X2,

k4 —A3, k5 — —A4 and Ke S5X5. We then set

where a is the non-trivial element in Gal(£/A') and gw,Kl,...,ic6,<j is as i° 4.13.

Finally, we set r := (f2).
By 4.11 with R2 in place of R and 14.2, we can assume that the coordinate

system {xß}ß$> was chosen so that there are two isomorphisms, one from R\
to the building A in 14.1 carrying the automorphism Û in 14.6 to the restriction
of G to Ri and the other from R2 to the building A0 in 10.3 with n — 3

carrying the automorphism Q0 defined in (10.2) to the restriction of G to R2.

By 10.6, Q2 centralizes Uaj for all i e [2, 5] and R is a F -chamber. By 14.9, Q.2

also centralizes Uai and Ua6. Thus Q is a non-type-preserving Galois involution.

By 6.5, therefore, r is a descent group of A. By 6.11 and 6.12(iii), Ar is a

building of type B2, and thus by 6.12(iv), Ar is a Moufang quadrangle. Let Mi
and M2 be as in 5.16 applied to Ar. By 6.15, 10.4 and 14.10, one of these two

Moufang sets is isomorphic to B f(K,E3, Q) and the other has non-abelian root

groups. By 5.16(a), it follows that Ar Që Bf (A).

15. Non-pseudo-split buildings of type F4

In this section, we construct all buildings of type F4 that are not pseudo-split
(as defined in 15.3) and the exceptional buildings of type C3 (see [Tit2, 9.1-9.3])
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as the fixed point buildings of Galois involutions of buildings of type E6, E1

and E8. Our main result is 15.4.

Theorem 15.1. Let A be a simply laced and split building of type IT, let S be

the vertex set of II, let J S\{i} for some i e S, let Tlj be the subdiagram

of II spanned by J, let A\ be a J -residue, let Oi be a Galois involution

of A\ and let (II,/, ©j, A) be the Tits index of Tj := (Oi). Suppose that i is

adjacent in II to a unique element of J. Then there exist an extension of ©i
to an automorphism 0 of II and an extension of LI \ to a Galois involution G

of A such that the Tits index of F := (LI) is (II, 0. 4).

Proof By [MPW, 24.36], f2i has an extension to an involution 0 of A and

by [MPW, 29.28], Œ is a Galois involution. By 6.5, therefore, F := (LI) is a

descent group of A. Let © denote the image of r in Aut(II). The restriction
of 0 to fly is ©i and by 6.12(ii), a Ti -chamber is also a T-chamber. Thus

(II,©, A) is the Tits index of T.

Buildings of type F4 are all of the form F4(D, K), where (D,K) is a

composition algebra; see [Tit2, Thm. 10.2] and [Wei2, 30.14 and 30.15].

Notation 15.2. Let A (D, K) be a composition algebra. As in [Wei2, 30.17], we

say that A is of type (i) if D/K is an inseparable extension in characteristic 2

such that D2 c K but D2 equals neither K nor K2. We say that A is of
type (ii) if D K is a field. We say that A is of type (iii) if D/K is a

separable quadratic extension fields; its standard involution in this case is the

unique non-trivial element in Gal(D/K). We say that A is of type (iv) if D is a

quaternion division algebra over K and we say that A is of type (v) if D is an

octonion division algebra over K. In cases (iv) and (v), the standard involution

a is as defined in [TW, 9.6 and 9.10]. In case (v), the triple (D,K,o) is an

honorary involutory set as defined in [TW, 38.11] and the Moufang quadrangle

B\(D ,K,o), which appears in 15.4(iii) below, is defined in [TW, 38.13],

Definition 15.3. A building F4(Z>, K) is split, respectively, pseudo-split, if the

composition algebra (D, K) is of type (ii), respectively, of type (i) or (ii), as

defined in 15.2.

Theorem 15.4. Let D/K be composition algebra of type (x) for x iii, iv or v,

let o* be the standard involution of D/K and let E be a subfield of D containing
K such that E/K is a separable quadratic extension. Then the following hold:
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(i) If x — iii, then there exists a Galois involution £2 of the building A E6{E)
such that the Tits index of the group F := (£2} is

and the fixed point building Ar is isomorphic to VfiD/K).
(ii) If x iv, then there exists a Galois involution £2 of the building A E7(£)

such that the Tits index of the group r := (£2) is

•—@—•—d
® ®

and the fixed point building Ar is isomorphic to F4(D/K).

(iii) If x — v, then there exists a Galois involution £2 of the building A Es (is)
such that the Tits index of the group F := (£2) is

® ®
®—•—I—•—®

and the fixed point building Ar is isomorphic to F4(D/K) and there exists

a residue Ai of type E-j of A stabilized by £2 such that the restriction T1

of F to Ai has Tits index

0—01—.—I—.—©

and the fixed point building A J"1 is isomorphic to Cf(A), where A is the

honorary involutory set (D,K,o).

Proof Suppose that x iii, let A E6(E) and let Ax be a residue of type A5.
We identify Ax with the building A in §7 with n 5 and let £2x be the non-

type-preserving Galois involution of Ax obtained by composing the involution
in 7.3 with the involution which maps xa;(t) to xaH(ta) for all i e [1,5] and all
t e E. Next let £2 be a Galois involution of A obtained by applying 15.1 to £2 |

By 7.4, £2x fixes a chamber of A. It follows that the Tits index of F (£2) is

as in (i). By 6.11, therefore, Ar is a building of type F4. Let J be the unique
subset of S spanning a subdiagram of fl of type /13 that is stabilized by the

non-trivial automorphism of fl, let R be a J -residue stabilized by £2 and let Fr
denote the restriction of F to R. By 8.17, we have

RrR ^ bf(K,E,N).

By [MPW, 22.39], Rr" is a residue of Ar. If (EK') is a composition algebra
with norm N' such that
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Bf(K,E,N) Bf(K',E',N'),

then by [TW, 20.28 and 35.7], there is an isomorphism from E to E' mapping
K to K'. Therefore

Ar ^ F4(E,K).

Thus (i) holds.

Now suppose that x iv, let A E7(E) and let Aj be a residue of type
D6. We identify Aj with the building A in 8.3 with n 6 and let <71 be a

Galois involution of Ai obtained by applying 8.16. The Tits index of (Gj) is as

in (ii) with the rightmost vertex deleted. We can thus apply 15.1 to G| to obtain

a Galois involution fi of A such that the Tits index of F := (G) is as in (ii).
Therefore Ar is a building of type F4 (by 6.11). By [MPW, 22.39] and 8.16, Ar
has residues isomorphic to A2(D). It follows from [TW, 35.6] that

Ar =s F*(D,K).

Thus (ii) holds.

Suppose, finally, that x v. Let Gi be the Galois involution of E6(E)
in 12.11. Applying 15.1 once and then a second time, we obtain extensions of ^
to Galois involutions of E7(E) and then of ES{E) generating groups whose Tits
indices and fixed point buildings are as in (iii).

16. Pseudo-split buildings of type F4

The results of this section will be required in §17. They are completely parallel
to the results in §4, but we formulate them separately for the sake of clarity.

Notation 16.1. Let A F4(L,ls), where L/E is a field extension such that

char(is) 2 and L2 c E. We assume that L ^ E (but we do not assume that

L/E is finite dimensional). Let 0 be a root system of type f4, let £ be an

apartment of A and let c be a chamber of £. Let cei,...,a4 be as in [Bou,
Plate VIII], let S be the set of reflections sai for i g [1,4] and let W (S)
be the Weyl group of O. We identify 4> with the set of roots of E and Aut(4>)

with a subgroup of Aut(E) as in 4.1 so that oq, ...,a4 are the four roots of E

containing c but not some chamber of £ adjacent to c.

Theorem 16.2. There exists a collection of isomorphisms Xß\ E JJß, one for
each long root ß of 4>, and a collection of isomorphisms Xß : L —> Uß, one for
each short root, such that for all a, ß e <$> such that a ±ß and for all s G E

if a is long, all s e L if a is short, all t G E if ß is long and all t G L if ß

is short, the following hold:
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(i) [xa{s),Xß(t)} xa+ß(st) if a and ß have the same length and a + ß e O.

(ii) [xa(i),^(t)] xa+ß(st)xa+2ß{st2) if a is long, ß is short and a + ß e <ï>,

in which case also a + 2ß e

(iii) [xa(s),Xß(t)] 1 if a is orthogonal to ß.

(iv) Uf'a(s) Ul«(s~X) if s £ 0.

Proof Assertions (i)-(iii) hold by [Ste, (R2) on p. 30] (or [Car, Thm. 5.2.2])
and [Tit2, 10.3.2]. Assertion (iv) holds by [Ste, (R7) on p. 30 and Lemma 59 on

p. 160].

Remark 16.3. We call a set {xß}ße<s> satisfying the four conditions in 16.2 a

coordinate system for A. The assertions 4.6, 4.9 (with both r and x' identically
equal to 1) and 4.11 all hold with the word "equivalent" replaced by "equal" in

our present setting and with virtually the same proofs (but without concerns over
minus signs since we are now in characteristic 2).

From now on we fix a coordinate system {xß}ß<=$> for A.

Theorem 16.4. Let y e Aul(O), let Ai,A2 be non-zero elements of E, let A3, A4

be non-zero elements of L and let o be an element of Aut(L) stabilizing E.
Then the following hold:

(i) 77rere exists a unique automorphism

S £y,A.i,A2,A3,A4,cr

of A that stabilizes the apartment S such that

Xu., (j )" Xy (q;; (Ajf

for all i e [1,2] and all t e E and

xai{v)8 Xy(ai)(XivC7)

for all i e [3,4] and all v e L.

(h) If
4

ß 6

i=1
then

Xß(t)8 Xy(ß)(Xßta)

for all t e E if ß is long, respectively, for all t e L if ß is short, where

h Uki'
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Proof. The existence assertion in (i) holds by [Ste, Lemma 58 on p. 158] (and

the existence of field automorphisms) applied to F4(L) and restriction of scalars

to E in the long root groups; uniqueness holds by [Weil, 9.7]. Assertion (ii)
follows by induction from 16.2(i)-(ii) and [Hum, §10.2, Cor. to Lemma A] once

it is established that it holds for ß —a; for all i e [1,4]. This can be done

exactly as in the proof of 4.7(ii).

Definition 16.5. A Galois involution of A is an element of order 2 in the coset

gki,...,x.4,<*G*! for some A1,...,A4,a with a 1, where is as in 3.1. This

is a special case of the notion of a Galois involution of an arbitrary Moufang
building given in [MPW, 31.1].

Theorem 16.6. If G is an isotropic Galois involution of A, then F := (G) is a

descent group of A.

Proof This is a special case of [MPW, 32.27].

17. The quadrangles of type F4

In this section we construct the Moufang quadrangles of type F4 as fixed

point buildings of Galois involutions of pseudo-split buildings of type F4 ; see 15.3

and 17.14. Our construction is essentially the same as the construction given
in [MM1] except that we construct the initial anisotropic Galois involution of a

pseudo-split Moufang quadrangle and verify that it is anisotropic in a simpler
fashion.

Notation 17.1. Let L/E be as in 16.1, let M denote the direct sum of six copies
of E and let V M ® L, which we think of as a vector space over E. Let

B — {ei, e2, e3, f\, f2, f3)
be a basis of the subspace {(w, 0) | u e M) of V, let L be identified with its

image under the map m(0,»)eL and let q : V -> E be the quadratic form

given by

q(x xex + y\f\ + x2e2 + y2f2 + x3e3 + y3f3 + v) xiyi + x2y2 + x3y3 + v2

for all x\,..., y3 e E and all v e L.

Notation 17.2. Let A0 denote the building of type B3 whose chambers are the

maximal flags of subspaces of V that are totally isotropic with respect to q and

let q0 denote the restriction of q to L (0, L) C V. Thus q0 is anisotropic and

totally singular and by 3.4,

A0 Bf(E,L,q0).
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Notation 17.3. For each ordered pair (j, j) of distinct integers i,j in the interval

[1,3] and each t e E, let xp(f) denote unique element of O(q) that sends e,-

to ej + tei and f to fi + tfj, fixes all other elements of B and acts trivially
on L. For each unordered pair {i, j} of distinct integers i,j in [1,3] and each

t e E, let ya (t) denote the unique element of O (q) that sends fj to fj + te,-

and j) to fi +tej, fixes all other elements of B and acts trivially on L and

let Zij(t) denote the unique element of O(q) that sends ej to ej +tf and e,-

to ei + tfj, fixes all other elements of B and acts trivially on L. For each

i e [1,3] and each v L, let x,(v) denote the unique element of O(q) that

maps f to f + v2e, + v, fixes all other elements of B and acts trivially on L
and let y,-(u) denote the unique element of 0(2/) that maps e,- to e,- +v2f + v,
fixes all other elements of B and acts trivially on L.

Remark 17.4. Let S0 be the apartment of A0 whose chambers contain only
subspaces spanned by subsets of B. Let <Jq denote a root system of type
and let «1,0:2,0:3 and £1,62,£3 be as in [Bou, Plate II] with n 3, so that

ai — £1 — £2, «2 £2 — £3 and «3 £3. For each ß e $1, we set Uß Xij if
ß Ei —Ej for some i,j 6 [1,3], Uß ytj if ß Ei + ej for some i,j [1,3],
Uß Zij if ß —Si — Ej for some i,j e [1,3], Uß x,- if ß Ei for some

i e [1,3] and Uß yi if ß —£,- for some i e [1,3], where xy, ytj, etc. are

as in 17.3. Then Uß(E) for ß long and Uß(L) for ß short are root groups of A0
and {uß}ß$l is a coordinate system for A0.

Notation 17.5. Let a be an involution in Aut(L) stabilizing E, let F — Fix/, (er)

and let K — Fix# (a). We will usually write x in place of xa for x e L. Let N
be the norm of the extension L/F. Thus F/K is a purely inseparable extension
such that F2 c K and the restriction of N to E is the norm of the extension

E/K.

Notation 17.6. Let rn,rj2 be non-zero elements of K, let T E ® E ® F
considered as a vector space over K, let Q0 : T -> K denote the quadratic form

over K given by

0o(yi,y2,w) yiN(yi) + viNiyf) + u2

for all (yi,y2,u) e T and let Q: K ® K® T —> K denote the quadratic form

over K given by

Q(s,t,z) st + Qo(z)

for all (s, t,z) G T.
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Proposition 17.7. Let V, B, q, etc., be as in 17.1, let Vq denote the subspace

spanned by {e2, e3, f2, /3 i U L, let qo : Vo -> E denote the restriction of q to Vq,

let x h» x and F be as in 17.5, let qi,q2 and Q and Qo be as 17.6 and let
£2 &ni,ri2 be the o-linear automorphism of V given by

3

+ yifi) + v) + JTfi + r]iyie2 + rif1x^f2
1 1

+ 72j3e3 + rf^xïfi + v

for all Xi, x2, x2, X\, y2, y3 e E and all v e L. Then the following hold:

(i) g(£2(x)) q(x) for all x eV and £22 1.

(ii) q ^ Q®kE.
(iii) If the quadratic form Qq is anisotropic, then there are no non-zero £2-

invariant subspaces of Vq that are totally isotropic with respect to qo.

Proof. Assertion (i) is clear and assertion (ii) follows from 9.3. Suppose that U

is a non-zero totally isotropic £2-invariant subspace of Vq. Thus q{v) 0 for
all v e U. Let m be a non-zero element of U. The sum v := u + £2(w) is fixed

by £2. Replacing u by tu for some t e E\F if necessary, we can assume that

v is non-zero. We have

v x2e2 + y2fi + X3C3 + T3/3 + s

for some x2,X2,,y2,y2 e E and some s e L not all zero. Since v is fixed by £2,

we have x, rji-iyî for i e [2,3] and s s. Therefore the elements y2, y3, s

are not all zero, s e F and

Qo(y2, J3,s) qiyfyf + /72T3J3 + s2 q(v) 0.

Thus (iii) holds.

Notation 17.8. Let A, £, c, <ï>, ai,..., 0:4, (W, S), the identification of $>

with the set of roots of S and the identification of Aut(<h) with a subgroup
of Aut(L) be as in 16.1. Let {xß}ß$ be as 16.2, let Ai denote the unique

{sai,sa2,sa3 }-residue of A containing c, let Si denote the apartment En Aj
of Ai and let T1 denote the root system (ai, a2, a3) (T <I> of type S3, which we

think of as the root system T>i in 17.4. There exists an isomorphism v from the

building A0 defined in 17.2 to Ax mapping S0 to Si and sending each root
ß e T>i c <l> of S0 to the root ß n Si of Si. Let {uß}ße<s>] be as in 17.4 and

let Xß v~x Uß v for each ß e d>i. Then {x^}Jge<j>1 is a coordinate system
for Ai and by 16.3, it extends to a coordinate system {xß}ße$ for A. We set

£20 • £2 • v, where £2 £2^1j^2 is as in 17.7.
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Notation 17.9. Let uq be the longest element in the Coxeter group Wj with

respect to the set of generators J := {sa2, sa3}. Thus uq (sa2sa3)2, from which
it follows that

WT(oq) oq + 2a2 + 2a3

and

wi(ct4) a2 + 2a3 + a4,

as well as uq(cq) —cq for both i e {2,3}.

Proposition 17.10. Let {xß}^^ and 120 be as in 17.8. Then

Xa, (0 0 ft)

for i 6 [1,2] and all t e E and

Xa3(v) 0 — XWl(a3)(AjU)

for all v e L, where X\ r]i, X2 Vïlrl2 and A3 rjf1.

Proof. This follows from 17.4, 17.7, 17.9 and some computation.

Notation 17.11. Let A2 be the unique {sa2,h*3}-residue of Ai containing c.

Theorem 17.12. Suppose that rj i r]2 for some A4 e F and that the quadratic
from Qo in 17.6 is anisotropic. Let

^ ,X\,X2 A3,A4,tT

be as in 16.4(i) with o as in 17.5, uq as in 17.9 and Ai,A2,A3 as in 17.10, and

let A2 be as in 17.11. Then 12 is a Galois involution stabilizing A2 but no proper
residue of A2.

Proof. Since w\ stabilizes A2 n S, 12 stabilizes A2. By 16.4(ii) and 17.9, we
have

Xa4(v)^2 XWl{a4)(X4v)Ù

- -Xû:4(A2A3A4i;) Xq.4(U)

for all v e L. By 16.4(i) and 17.10, the restriction of 12 to Ai coincides with 120.

Since 120 is an involution, we conclude that 122 centralizes Uaj for all i e [1,4].
Therefore 12 is a Galois involution and by 17.7(iii), 12 does not stabilize any

proper residues of A2.
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Proposition 17.13. Suppose that the quadratic form Q o in 17.6 is anisotropic-A. /V

and that r}iq2 £ F Let £2 be as in 17.12, let P (£2), let Ai and A2 be as

in 17.8 and 17.11 and let R be the T-panel containing A2 other than Ai. Then

Af Bf(K,E ® E ® F, Qo)

and
Rr ^ BS(f) M Q)

for some anisotropic quadratic space (F. M, Q defined over F whose defect is

non-trivial and has co-dimension 4.

Proof First note that by 17.12, the restrictions of £2 to Ai and to R are both

Galois involutions. Let V, q and G be as in 17.7 and let V Fixj/(£2). It
follows from [MPW, 2.40] (as in the proof of 10.4) that the map W h» W n V is

an inclusion- and dimension-preserving bijection from the set of all G-invariant
subspaces of V to the set of all subspaces of V, and an G -invariant subspace

W of V is totally isotropic with respect to q if and only if W PI V is totally
isotropic with respect to Q. Since Q0 is anisotropic, the first claim holds by 3.4.

Since

R ïë Bf(L,E1/2,x i-> x2),

the second claim holds by [MPW, 35.13].

In the following EF denotes the composite of the fields E and F. Thus

EF/E is an extension such that (EF)2 C E.

Theorem 17.14. Let (K, V, <p) be a quadratic space of type F4 and let F be as

in 5.9. Ilten there exists a separable quadratic extension E/K such that (ps is

pseudo-split and for each such extension E/K, there exists a Gcdois involution
G of the building A F4(EF/E) such that the Tits index of the group T (£2)

is

and the fixed point building Ar is isomorphic to Bf(K,V,(p).

Proof. By 5.12, there exist separable quadratic extensions E/K such that (çe
is pseudo-split and letting E/K be any one of them, we can assume that

V E © E © F and that for some 771,772 e K,

cp(yi,y2,u) ijiN(yi) + q2N(y2) + u2

for all (y\.y2,u) e V, where N is the norm of the extension E/K, and

r]iV2 6 F2.
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Let L EF, let A F4(L, E), let £2 be the Galois involution called Ô in 17.12

and let T (£2). By 16.6, T is a descent group of A. By 17.12, there exist

T-chambers of type B2. By 6.11 and 6.12(iii), it follows that Ar is a building of
type B2, and thus by 6.12(iv), Ar is a Moufang quadrangle. Let Mi and M2
be as in 5.16 applied to Ar. By 6.15 and 17.13, one of these two Moufang sets is

isomorphic to Bp (A) and the other is as in 5.16(b). By 5.16, therefore, we have

Ar^Bf(A).
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