
On the covering type of a space

Autor(en): Karoubi, Max / Weibel, Charles

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 62 (2016)

Heft 3-4

Persistenter Link: https://doi.org/10.5169/seals-730888

PDF erstellt am: 13.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-730888


L'Enseignement Mathématique (2) 62 (2016), 457-474 DOI 10.4171/LEM/62-3/4-4

On the covering type of a space

Max Karoubi and Charles Weibel

Abstract. We introduce the notion of the "covering type" of a space, which is more subtle

than the notion of the Lusternik-Schnirelman category. It measures the complexity of a

space which arises from coverings by contractible subspaces whose non-empty intersections

are also contractible.
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From the point of view of Algebraic Topology, the simplest spaces are the

contractible ones. A crude measure of the complexity of a space X is the size

of a finite open covering of X by contractible subspaces; this idea goes back to
the work of Lusternick and Schnirelman in 1934. A more subtle invariant is the

size of good covers, i.e., covers by contractible subspaces such that each of their

non-empty intersections is also contractible. The idea of a good cover appears
in a 1952 paper by André Weil [Wei], but is preceded by Leray's notion of a

convexoid cover [Ler, p. 139] which uses closed covers with acyclic intersections.

We define the covering type of X to be the minimum size of a good cover
of a space homotopy equivalent to X. See Definition 1.2 below for a precise

description using open covers; for finite CW complexes, an equivalent version

using closed covers by subcomplexes is given in Theorem 2.5.

We will see that this is an interesting measure of the complexity of a space.
For connected graphs, the covering type is approximately sflh, where h is the

number of circuits. Thus it is very different from the Lusternick-Schnirelman

category (which is 2 for non-tree graphs), and Färber's topological complexity
[Far] (which is at most 3 for graphs).

The covering type of a surface is related to its chromatic number. The chromatic
number of a surface is the smallest number n such that every map on the surface

is n -colorable (see Definition 6.1); it was first described in 1890 by Flaewood
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[Hae], Finding the chromatic number of a surface was long known as the map
coloring problem. The chromatic number of the 2-sphere is 4; this is the "four
color theorem," settled in 1976. The other cases of the map coloring problem
were settled in 1968; see [Rin2]. For the 2-sphere, torus and projective plane, the

covering type equals the chromatic number: 4, 7 and 6, respectively.

Special solutions to the map coloring problem give an upper bound for the

covering type of a surface; it is at most one more than the chromatic number.

Combinatorial and topological considerations of any space, such as its Betti
numbers, yield general lower bounds for its covering type. This approach shows

that the covering type of a surface is alway more than half the chromatic number.

Although our upper and lower bounds for the covering type of a surface diflfer

as functions of its genus g, both are linear in ^fg (see Section 5).

Open problem. Except for the sphere, torus and projective plane, determining
the covering type of a surface is an open problem. For example, we do not know

if the covering type of the Klein bottle is 7 or 8. For the 2-holed torus (oriented
surface of genus 2), we only know that the covering type is between 6 and 10.

Motivation. Leray's motivation for introducing his convexoid covers was to easily

compute homology; see [Ler, pp. 153-159].

Weil's motivation for introducing special open coverings was to prove de

Rham's theorem for a manifold [Wei]. Here is a formalization of his idea in the

language of cohomology theories. Let h* and k* be two cohomology theories
and let T : h* -» k* be a natural transformation such that the kernel and cokernel

of the homomorphism Tx : h*(X) —k*(X) are of order at most m when X is

a point. Using Mayer-Vietoris sequences and induction on n, we see that for a

space X of covering type n, the kernel and cokernel of Tx have order at most
m2" This general principle was applied by Weil in the case where h* is singular
cohomology, k* is de Rham cohomology and m 0 (Poincaré's lemma). We

used the same idea with m 2' in a preliminary version of our paper [KSW],
comparing the algebraic Witt group of a real algebraic variety with a purely

topological invariant; this was in fact our initial motivation for investigating the

notion of covering type.
Here are our definitions of a good cover and the covering type:

Definition 1.1. Let X be a topological space. A family of contractible open
subspaces Uj forms a good (open) cover if every nonempty intersection t/,-, fl

n Uin is contractible.
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Definition 1.2. The strict covering type of X is the minimum number of elements

in a good cover of X. The covering type of X, ct(X), is the minimum of the

strict covering types of spaces X' homotopy equivalent to X.

Thus ct(X) 1 exactly when X is contractible, and ct(X) 2 exactly
when X is the disjoint union of two contractible spaces. It is easy to see that

a circle has covering type 3, and only slightly harder to see that the 2-sphere
and the figure eight have covering type 4 (small neighborhoods of the faces of a

tetrahedron give a good cover of the 2-sphere).
The difference between the strict covering type and the covering type is

illustrated by bouquets of circles.

Example 1.3. The strict covering type of a bouquet of h circles is h + 2, since

3 subcomplexes are needed for each circle. For h — 2 and 3, S1 V S1 and
Sl v S1 v Sl both have covering type at most 4, since Figure 1 indicates good
covers of homotopy equivalent spaces. (The Ui are small neighborhoods of the

three outer edges, X\, X2, X3 and the inside curve X4). We will see in Proposition
4.1 that the covering type is exactly 4 in both cases.

If X is a CW complex, we may replace 'open subspace' by 'closed

subcomplex' in Definition 1.1 to obtain the analogous notion of a good closed

cover of X, and the concomitant notion of a closed covering type. We will show

in Theorem 2.5 that the closed and open covering types of a finite CW complex

agree. This simplifies our illustrations.
We have structured this article as follows. In Section 2, we show that we may

also define the covering type of a finite CW complex using covers by contractible

subcomplexes. In Section 3, we establish useful lower bounds on covering type
using homology, and use these bounds in Section 4 to determine the covering

type of any graph in Proposition 4.1.

In Sections 5 and 6 we determine the covering type of some classical surfaces,
and use graphs on an arbitrary surface to give upper bounds for its covering type.
For oriented surfaces of genus g > 2, the covering type lies between 2^fg and

3.5^/g; see Proposition 6.2. Similar bounds hold for non-oriented surfaces; see

Proposition 6.4.

Figure 1

ct(X) 4 for bouquets of 2 or 3 circles
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We conclude in Section 7 with some upper bounds for the covering type in

higher dimensions, showing for instance that ct(EPm) is between m+ 2 and

2m + 3.

2. Open vs. closed covers

Any cover of a manifold by geodesically convex open subsets is a good cover;
by convexity, every nonempty intersection of them is contractible. Thus compact
manifolds have finite strict covering type. (An elementary proof is given in [KL,
VI.3].)

Finite simplicial complexes also have finite strict covering type, because the

open stars of the vertices form a good cover. Finite polyhedra also have finite strict

covering type, as they can be triangulated. Any finite CW complex is homotopy
equivalent to a finite polyhedron by [Whi, Thrn. 13], so its covering type is also

finite.

Proposition 2.1. Ifa paracompact space has finite covering type n, it is homotopy

equivalent to a finite CW complex whose strict covering type is n.

Proof. Suppose that X is a paracompact space with a finite open cover U {t/;}
and let N be its geometric nerve; N is a simplicial complex whose vertices are

the indices i, and a set J of vertices spans a simplex of N if Hie/ Ui ^0.
The Alexandrojf map X -> N is a continuous function, given by the following
standard construction; see [AH, IX.3.4] or [Dug, VIII.5.4]. Choose a partition of
unity {i>(} associated to the open cover. Any point x e X determines a set Jx

of indices (the i such that je e Ui and the Alexandroff map sends a point x to
the point with barycentric coordinates u, (x) in the simplex spanned by Jx.

If {Ui} is a good cover, the Alexandrotf map X -» N is a homotopy

equivalence, by the "Nerve Lemma" (see [Hat, 4G.3]). If U has n elements

then N has n vertices, and the open stars of these vertices form a good cover
of A. If ct(X) n then N has no smaller good cover, and hence N has strict

covering type n.

Example 2.2. If ct(X) — 3, X is either the disjoint union of 3 contractible
sets or is homotopy equivalent to the circle, by the Alexandroff map. To see this,

suppose that {U\,U2,U?,} is a good cover of a connected X. By a case by case

inspection, we see that Hl(X) — 0 and ct(X) < 3 unless Ui C\ Uj 0 for all

i,j and U\ fl U2 H U3 0. In this case, the Alexandroff map X —> S1 is a

homotopy equivalence and dim 771 (A) 1.
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Figure 2

Hawaiian earring

Similarly, a case by case inspection shows that {up to homotopy) the only
connected spaces with covering type 4 are the 2-sphere and the bouquets of 2 or
3 circles illustrated in Figure 1.

Remark 2.3. The "Hawaiian earring" [Hat, 1.25] is the union of the circles

(x — 1 /n)2 + y2 l/n2 in the plane; see Figure 2. It is a compact space which
has no good open cover; its strict covering type is undefined. It follows from
Proposition 2.1 and compactness that its covering type is also undefined.

Definition 2.4. If X is a finite CW complex, a good closed cover is a family of
contractible subcomplexes {Xi} such that every intersection of the Xi is either

empty or contractible.

For example, the maximal simplices of any simplicial complex form a good
closed cover. We will see more examples in Sections 4 and 5.

For our next result, we need the classifying space BP of a finite poset P.
It is a simplicial complex whose vertices are the elements of P, and whose

simplices are the totally ordered subsets of P.

Theorem 2.5. If X is a finite CW complex, the covering type of X is the

minimum number of elements in a good closed cover of some complex homotopy

equivalent to X.

Proof. Suppose that ct(X) — n. By Proposition 2.1, we may suppose that X is a

simplicial complex with n vertices. We need to show that X has a good closed

cover with n elements. Let Xi denote the closed subcomplex of X consisting
of points whose ith barycentric coordinate is > l/n. Then {A/} is a closed

cover of X, because at least one barycentric coordinate must be > l/n. To

see that it is a good closed cover, choose a subset J of {l,...,n} for which

*/ rw Xj =4 0. Then Xj is contractible because, if p is the point whose
ith barycentric coordinate is 1/|/| for i e J and 0 otherwise, the formula

ht{x) tx + (1 — t)p defines a deformation retraction from Xj to the point p.
(To see that ht{x) is in Xj for all t with 0 < t < 1, note that for each j e J,
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the jth coordinate of ht{x) is at least l/n.) Thus {A,}"=1 is a good closed

cover of X, as required.

Conversely, given a good closed cover {Xi }"=1, the nerve N of this cover
has n vertices, and has a good open cover of size n. We will construct a poset
P and homotopy equivalences X <- BP —> N, showing that ct(X) < n. For

this, we may assume X is connected.

Let S be the family of subsets J of {1, ...,n} with Xj Hies Xi 0;
it is a poset (/< / if J Q I) and its realization BS is the geometric nerve
of the cover, N. There is a functor from S to contractible spaces, sending J
to Xj : if I ç / then Xj ç Xj. Following Segal [Seg, 4.1], the disjoint union
of all nonempty intersections Xj is a topological poset P, and the obvious
functor P -> S yields a continuous function from the geometric realization BP
to N BS. By the Lemma on p. 98 of [Qui] (the key ingredient in the proof
of Quillen's Theorems A and B), BP -> BS is a homotopy equivalence, liiere

P
is a canonical proper function BP—>X obtained from the functor from P to
the trivia] topological category with X its space of objects. It is an isomorphism
on homology, because the inverse image of a point x e X is a simplex, whose

vertices correspond to the i with x e Xi.
Consider the universal covering space X —» X ; the inverse image of each

Xi is a disjoint union of spaces Xi,a, each homeomorphic to Xi, and the {Xi,a}
form a good cover of X (For each i, there is a non-canonical bijection between

{(/,«)} and 7ii A.) If P denotes the topological poset of intersections of the

{Xi,a} then, as above, p : B P —»• X is an isomorphism on homology. Since

both spaces are simply connected, the Whitehead Theorem implies that that p
is a homotopy equivalence. By inspection, B P is the universal covering space
of BP, so jti(BP) ^ iti(A). This implies that p is a homotopy equivalence,
since for n > 1 we have nnBP s jrnB P ^ jt„ X nnX.

3, Lower bounds for the covering type

In general, the covering type of X is not so easy to compute. A simple
lower bound is provided by the proposition below, derived via a Mayer-Vietoris

argument for the homology of X. We omit the proof, since it will follow from
the more general Theorem 3.3 below.

Proposition 3.1. Fix a field k and let hd{X) denote the homological dimension

of X, i.e., the maximum number such that Hm(X,k) is nonzero. Then, unless X
is empty or contractible,

ct(X) > hd(X) + 2.
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Example 3.2. The sphere Sm has ct(Sm) m+2. This is clear for S° and S1,

and the general case follows from the upper bound in Proposition 3.1, combined

with the observation that Sm is homeomorphic to the boundary of the (m + 1)-
simplex, which has m + 2 maximal faces.

Alternatively, we could get the upper bound from the suspension formula
ct(SX) < 1 + ct(X). This formula is a simple exercise which will be generalized
later on (Theorem 7.1).

A stronger lower bound for ct(X) uses the Poincaré polynomial

Px(t) — ho + hit + + hmtm

where hi is the rank of the homology Hi(X) or cohomology Hl(X) (with
coefficients in a field). We partially order the set of polynomials in Z[t] by

declaring that P < Q if and only if all the coefficients of P are smaller or equal

to the respective coefficients of Q. We now have the following theorem:

Theorem 3.3. Let Px{t) be the Poincaré polynomial of X and let n be its

covering type. If X is not empty then:

(1 + t\n-1
Px(t) < ;

That is, ho <n, h\ < ("2 2 5 1 and hi — 0 for i > « — 1.

Proof. We proceed by induction on n ct(X). If n is 1 or 2 then Px(t) is 1

or 2, respectively, and the inequality is trivial.
If X ULi Xk, set Y X/c and note that ct(Y), ct{Y n Ai) are at

most n — 1. From the Mayer-Vietoris sequence for X X\ U Y,

Hk(X0 © Hk(Y) -> Hk(X) -> Hk^{Xx n Y),

and the inductive hypothesis, we see that h0(X) < n and for k > 0

hk(X) < hk(Y) + hk-\ (Ai nf) <

Remark 3.4. The lower bounds in Theorem 3.3 are not optimal for non-connected

spaces, such as discrete sets, because the covering type of a non-connected space
is the sum of the covering types of its components. For this reason, we shall

concentrate on the covering type of connected spaces. In particular, we will see

that that the bound in Theorem 3.3 is optimal when X is 1-dimensional and

connected.
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4. Graphs

Every 1-dimensional CW complex is a graph, and every connected graph is

homotopy equivalent to a bouquet of h 1 + E — V circles, where V and E are

the number of vertices and edges, respectively. Since n ct(X) is an integer, the

bound in Theorem 3.3, that ("j1) > h, is equivalent to the inequality n > M,
where x 3+N/21+8/i and the ceiling fx] of x denotes the smallest integer > x.

Proposition 4.1. When is a bouquet of h circles then

*( v \
^

ct{Xh)

That is, ct(Xh) is the unique integer n such that

< h <
<n -21
i 2 i

n — 1

Proof. By explicitly solving the displayed quadratic inequalities, we see that the

unique integer n satisfying the displayed inequalities is f 3+v/21+8/']. Theorem 3.3

implies that ct{Xf) > n. When h — 1 (a circle), we saw that the lower bound

ct — 3 is achieved. For h 2,3 the lower bound is 4, and we saw in Example
1.3 that it is also an upper bound, so ct(Xh) 4 in these cases.

When A is 6 or 10 we show that ct(Xh) is 5 or 6, respectively, by generalizing
the pattern of Example 1.3 to introduce more L-shaped lines into the interior of
a triangle, as shown in Figure 3. For a bouquet Xf, of h — ('circles, the

same construction (using n — 3 internal L-shaped lines) shows that ct(Xh) — n.
If h and n satisfy the strict inequality of the proposition, we can construct a

complex X' like Figure 3 for C^1) circles and erase portions of the interior
lines to obtain a complex X homotopic to a bouquet of h circles, as illustrated

by Figure 4. This shows that ct(Xf) < n, as required.

Figure 3

ct(Xh) 5,6 for bouquets of 6 and 10 circles
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Figure 4

ct(X/,) 6 for bouquets of 7-9 circles

5. Classical surfaces

The literature contains some pretty upper bounds for the covering type of an

oriented surface of genus g (a torus with g holes). We have already seen in
Example 3.2 that the 2-sphere has covering type 4; this is the case g 0.

Torus. For the torus T (the case g 1 an upper bound ct(T) < 7 comes

from the 7-country map in Figure 5, first described by Haewood in 1890 [Hae]
in connection with the map coloring problem. The map is dual to an embedding
of the complete graph on 7 vertices in the torus, so each of the 7 countries is a

hexagon, each pair meets in a face, and any three countries meet in a point. We

shall see in Theorem 5.3 below that the covering type of the torus is indeed 7.

Figure 5

Torus with 7 regions

Genus 2. An upper bound for 52 (the oriented surface of genus 2) is 10.

This comes from the example of a 10-region good covering of S2 given by

Jungerman and Ringel in [JR, p. 125], and reproduced in Figure 6. To construct

it, we start with a 10-region map on the 2-sphere (countries labelled 0-9), cut
out the opposing shaded circles and identify their edges. We do not know the
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Figure 6

Surface of genus 2, covered by 10 regions

precise value of ct(S2). We will see in Proposition 5.2 below that ct(S2) > 6,

so 6 < ct(S2) < 10.

Before giving more precise lower bounds for ct(X), we record a simple result,
which shows that ct(X) > 4 for every closed surface X except the 2-sphere. We

shall write Hn(X) for the cohomology of X with coefficients in a fixed field.

Lemma 5.1. Suppose that X — A U B and that H1(A) — H1(B) — 0. Then the

cohomology cup product Hl(X) x H1(X) -> H2(X) is zero.

Proof. Fix x,y e H1 {X). Since x vanishes in it lifts to an element x'
in Hx(X,A). Similarly, y lifts to an element y' in Hl(X.B). Then x U y is

the image of (x', y') under the composition

H\X, A) x H1(X, B)^H\X.A U B)—>H1(X),

where U is the relative cup product; see [Hat, p. 209] Since X A U B,
H\X,AUB) 0, so xUy 0.

Proposition 5.2. If the cohomology cup product is nonzero on Hl(X), then

ct(X) > 6.

Proof. The assumption implies that H2(X) 0, so ct(X) > 4 by Theorem 3.3.

If the covering type were 4, let A be the union of the first two and B the union

of the last two subspaces. Since A and B are homotopic to either one or two

points, Lemma 5.1 implies that the cup product is zero in H*(X), contrary to
fact. This shows that ct(X) 7^ 4.
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Now suppose that {X;}f=1 is a good cover of X. If Xi D Xj fl Xk 0 for
all i,j,k then the Cech complex associated to the cover would have zero in
degree 2. Since the cohomology of this complex is H*(X), that would contradict
the assumption that HZ(X) ^ 0. By Example 2.2, there exists i,j,k so that

A Xi U Xj U Xk has HX(A) — 0. Let B be the union of the other two Xm ;

we also have Hl(B) 0. By Lemma 5.1, the cohomology product is zero. This

contradiction shows that ct(X) ^ 5.

Theorem 5.3. The covering type of the torus T is exactly 7.

Proof. By Figure 5 and Proposition 5.2, the covering type of T is either 6

or 7. Suppose the covering type were 6, i.e., that T had a good cover by 6

subcomplexes Xi, i 1,..., 6. As in the proof of Proposition 5.2, the fact that

H2(T) 0 implies that there exist i,j,k such that Xt n Xj D Xk 7^ 0. By
Example 2.2, H1 {Xi U Xj U Xk) 0. Therefore, after reordering the indices

of the cover, we may assume that Hl{B) 0, with B X4 U X5 U X6. Set

A X\ U X2 U X3, and note that, since dim 77'(.4) < 1 and dim Hl(X) 2,
there is an x in the kernel of H1 (X) H1 (A). Lifting it to an element x' in

Hl(X,A), and lifting an independent element y of H1 (X) to Hl{X,B), the

proof of Lemma 5.1 shows that x U y — 0 in HZ(X), which is not the case.

If X is a non-orientable surface, its genus q is the dimension of Hx{X, Z/2).
Up to homeomorphism, there is a unique non-orientable surface Nq of genus q

for each integer q > 1, with N\ the projective plane and N2 the Klein bottle.

Projective plane. Here is a pretty construction of a good covering of the

projective plane MP2 by 6 regions. The antipode on the 2-sphere sends the

regular dodecahedron to itself (preserving the 20 vertices, 30 edges edges and

12 faces); the quotient by this action defines a good polyhedral covering of the

projective plane PP2 by 6 faces (with 10 vertices and 15 edges).
This construction yields 6-colorable map on PP2 whose regions are pentagons;

this is illustrated in Figure 7. We remark that the boundary of this polyhedral
cover is the Petersen graph (see [GT, Ex. 4.2.6(5)]).

Theorem 5.4. The covering type of PP2 is 6.

Proof The good cover associated to the embedding of the Petersen graph (giving
the 6-coloring in Figure 7) shows that 6 is an upper bound for the covering

type. Since the cup product on //1(PP2;Z/2) is nonzero, ct(PP2) > 6 by

Proposition 5.2.
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Figure 7

The projective plane, covered by 6 regions

Exterior region 0

Figure 8

A good covering of the Klein bottle, 8 regions

Klein bottle. A good covering of the Klein bottle by 8 regions is illustrated
in Figure 8. To get it, we start with a cover of the 2-sphere by the five regions
0-4, add three regions in a circle along the intersection of regions 0, 1 and 2

(labelled 5-7), and another three regions in a circle at the intersection of regions
0, 3 and 4 (also labelled 5-7). Then cut out the two dark circles and identify
their boundaries as indicated. Note that region 7 does not meet regions 2 and 4,
and regions 3 and 6 do not meet either.

We will see in Corollary 5.6 that the covering type of the Klein bottle is

either 7 or 8.

Theorem 5.5. If q > 2, then ct(Nq) > 7.

Proof. When q > 2, it is well known that the cup product is nontrivial on

Hl(Nq, Z/2). For example, H1(N2,Z/2) is 2-dimensional, and has a basis

{x,y} such that y2 — 0, x2 — x U y ^ 0. By Proposition 5.2, the covering type
is at least 6.
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Suppose that X Nq had a good cover with 6 regions X,-. As in the proof
of Proposition 5.2, the fact that H2(X) 7^ 0 implies that there exist i,j,k such

that Xj fl Xj HXk f 0. Set B — Xi U Xj U Xk, and note that HX{B) — 0 by

Example 2.2. Let A be the union of the other three subcomplexes in the cover.

As in the proof of Theorem 5.3, dim HX(A) < 1 so there is an element u in
the kernel of Hl(X) —> Hl(A). By inspection, there is an element v ^ u in
Hx(X) so that u Uu ^ 0. Lifting u to u' e Hl(X, A) and v to v' e Hx(X, B),
the proof of Lemma 5.1 shows that u U v 0, which is a contradiction.

Corollary 5.6. The Klein bottle AT has covering type 7 or 8.

Proof. Combine Theorem 5.5 with the upper bound ct(Nf) S 8 coming from

Figure 8, which shows that.

6. Bounds via genus

We may regard the covering type and the chromatic number of a surface S as

functions of the genus of S. We will now show that the functions are asymptotic;
for both orientable and non-orientable surfaces, their ratio lies between 1 and ^1/3
as the genus goes to oo.

Definition 6.1. The chromatic number chr(S) of a surface S is defined to be

the smallest number n such that every map on S is colorable with n colors.

By a map on S we mean a decomposition of S into closed polyhedral regions,
called countries, such that the boundaries of the regions form a finite graph.

Orientable surfaces. When Sg is an oriented surface of genus g, it is a famous

theorem that

chrW ^!±LE±2M
where [xj denotes the greatest integer at most x. The case g 0 is the Four-color
Theorem; see [Rin2] or [GT, Chap. 5] when g > 0.

This integer is sometimes called the Heawood number of Sg, after Percy
Heawood who first studied chr(Sg) in the 1890 paper [Hae], We now show that

ct(Sg) < 1 + chr(Sg).

Proposition 6.2. The covering type ct{Sg) of an oriented surface Sg of genus

g f 2 satisfies

'3 +VI+ 16g'
< ct(Sg) < 7+V1 +48g

If g 2, we have 6 < ct(Sf) < 10.
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Proof. Set n ct{X). For g 0,1 we have seen that n 4,7, respectively.
For g 2, we saw that n < 10 (Figure 6), and we saw in Proposition 5.2 that

n > 6. Thus we may assume that g >2.
The lower bound n > (3 + VI + 16g)/2 is just the solution of the quadratic

inequality for h\ 2g in Proposition 3.3:

4g < 2(n~l) n2 - 3n + 2.

When g > 2, Jungermann and Ringel showed in [JR, Thm. 1.2] that there is a

triangulation of Sg with n [~Z±VT±dM "| vertices, 8 2n + 4 (g — 1) triangles
and (2) — t edges, where t '3) — 6g. The open stars of the n vertices form

a good open covering of Sg.

Example 6.3. (g 3) Proposition 6.2 yields 6 < ct(S3) < 10. A 10-vertex

triangulation of S3 is implicitly given by the orientation data on [Rin2, p. 23];
the triangulation has 42 edges and 28 triangles.

Remark. Any triangulation of Sg determines a graph T on The dual graph
of F is formed by taking a vertex in the center of each of the 8 triangles, and

connecting vertices of adjacent triangles along an arc through the edge where the

triangles meet. Each country Xv in the dual map is a polygonal region, containing
exactly one vertex v from the original triangulation, and the number of sides in
the polygon Xv is the valence of v in the T.

The n countries in the dual map form a good closed covering of Sg because

the intersection of Xv and Xw is either a face (when v and w are connected) or
the empty set, and three polygons meet in a vertex exactly when the corresponding
vertices form a triangle in the original triangulation.

Non-orientable surfaces. Similar results hold for non-orientable surfaces. For

example, consider the two non-orientable surfaces of genus q <2. The projective
plane has chromatic number 6; see Figure 7. It is also well known that the Klein
bottle has chromatic number 6; this fact was discovered by Frankin in 1934 [Fra].
However, the 6-country map on the Klein bottle is not a good covering, because

some regions intersect in two disjoint edges; see [Rin2, Fig. 1.9]. Theorem 5.5

shows that there are no good covers of the Klein bottle by 6 regions. In this

case, ct{X) is strictly bigger that the chromatic number of X.
For q 7^ 1,2, a famous theorem (see [Rin2, Thm. 4.10]) states that the

chromatic number of a non-orientable surface of genus q is

chr (N„)L7 + V' + 24']-
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We now show that the covering type of a non-orientable surface Nq grows (as

a function of q at the same rate as the chromatic number of Nq. In particular,
ct{Nq) < 1 + chr(lV9).

Proposition 6.4. The covering type ct(Nq) of a non-oriented, surface Nq of genus

q > 4 satisfies

5 <
3 + -fl + 8 q < Ct(Nq) <

7 + *J\ + 24q

Proof. The lower bound is immediate from the solution of the quadratic inequality
C"1) > q of Theorem 3.3.

The upper bounds were investigated by Ringel in 1955 [Rinl]; he considered

polyhedral covers of Nq by A countries, any two meeting in at most an arc and

any three meeting in at most a point, and showed that A > [~7+v^+24-], with
the lower bound being achieved for all q 2,3.

Remark 6.5. The upper bounds for q < 4 found by Ringel in [Rinl, p. 320]
were: ct(N2) < 8 if q — 2 (the Klein bottle), and ct(N?,) <9 if q 3. We saw

in Corollary 5.6 that ct(Nf) is 7 or 8; Ringel's upper bound for the Klein bottle

corresponds to Figure 8.

Combining Theorem 5.5 with Proposition 6.4 and Ringel's bound for q 3,
we see that ct(N3) and ct{Nf) are either 7, 8 or 9 and that 7 < ct(Ns) < 10.

7. Higher dimensions

We do not know much about the covering type of higher-dimensional spaces.
In this section, we give a few general theorems for upper bounds on the covering
type-

Suspensions. The covering type of the suspension of a finite CW complex X is

at most one more than the covering type of X.
To see this, recall that the cone CX is the quotient of X x[0,1] by the relation

(x, 1) ~ (x', 1) for all x,x' e X, while the suspension SX is the quotient of
X x [—1,1] by the two relations (x, 1) ~ (x', 1) and (x,—1) ~ (x', —1). If we

start with a good closed cover of X by subcomplexes Xi, the cones CXi of
these form a good cover of the cone CX. Viewing the suspension SX as the

union of an upper cone and a lower cone, the lower cones CXi together with
the upper cone form a good (closed) cover of SX. (This argument works for a

good open cover of any topological space, provided we use open cones of the

form X x (—e, l]/(x, 1) ~ (x', 1); we leave the details as an easy exercise.)
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The operation of coning off a subspace generalizes the suspension. To give
a bound for the covering type in this case, we need a compatible pair of good

covers.

Theorem 7.1. Let X be a subcomplex of a finite CW complex Y. Suppose that

Y has a good closed cover Y\,... ,Yn such that {X IT Yj} is a good closed cover

of X. Then the covering type of the cone Y U y CX of the inclusion X C Y

satisfies:

ct(Y U* CX) <n + 1.

In particular, the suspension SX has ct(SX) < ct(X) + 1.

Proof The cone CX together with {E}f=1 forms a good closed cover of
Y Ux CX, whence the first assertion. Since the suspension SX is the cone

of the inclusion of X into the upper cone Y of the suspension, the second

assertion follows from the observation that, given a good cover {Xj} of X, the

cones Yi of the Xt satisfy the hypothesis of the theorem.

Covering spaces. Another simple comparison involves the covering type of a

covering space. If X is an n -sheeted covering space of Y, the covering type of
X is at most n ct(Y), because the inverse image of a contractible subcomplex
of Y is the disjoint union of n contractible subcomplexes of X.

Recall that the mapping cylinder, cyl(/), of a function / : X Y is the

quotient of X x [0,1] U Y by the equivalence relation (x,0) ~ f{x)\ cyl(/) -> Y

is a homotopy equivalence. We may define the cone of /, cone/, to be the

cone of the inclusion of T Tx{l} into cyl(/).

Theorem 7.2. If f : X —* Y is an n -sheeted covering space, the cone cone /
has covering type at most n ct(Y) + 1,

Proof. If {Yk} is a good cover of Y, then the inverse image of each Y^ is a disjoint
union of n contractible subspaces we shall call X^, and each fk : Xjk
is a homeomorphism. Then the mapping cylinders cyl (fa) form a good cover of

cyl(/). Since the X^ x {1} A n cyl(fuf) form a good cover of A — X x {1},
the conditions of Theorem 7.1 are met. Since cone / is homotopy equivalent to
CA LU cyl(/), the result follows.

Example 7.3. Pre bound in Theorem 7.2 is rarely sharp, although the cone of
the projection from S° to a point is S1 and indeed ct(Sl) — 3. On the other

hand, if X is n discrete points and f is the projection from X to a point, the

cone of f is a bouquet of n — 1 circles, whose covering type is given by Theorem

4.1; ct(cone/) is smaller than n + 1 when n > 4.
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Another example is given by RPm, which is the cone of the degree 2 function

f : Sm~1 —> Sm~x ; Theorem 7.2 yields the upper bound ci(RPm) < 2m + 2. This

is not sharp for m — 2 since we know that ct(RP2) 6, but (with Proposition
3.1) it does give the linear growth rate

m + 2 < ct(MPm) < 2m + 3.

Remark 7.4. We do not know a good upper bound for the covering type of
a product, beyond the obvious bound ct(X x 7) < ct(X) ct(Y). The torus
T — Sl xS1 shows that this bound is not sharp, since ct(T) 7 and ct(5'1) 3.
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