
Branched coverings and equivariant
smoothings of 4-manifolds

Autor(en): Kwasik, Sawomir / Schultz, Reinhard

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 63 (2017)

Heft 1-2

Persistenter Link: https://doi.org/10.5169/seals-760289

PDF erstellt am: 12.07.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-760289


L'Enseignement Mathématique (2) 63 (2017), 201-232 DOI 10.4171/LEM/63-1/2-7

Branched coverings and equivariant smoothings
of 4-manifolds

Siawomir Kwasik and Reinhard Schultz

Abstract. This paper describes some new families of finite group actions on 4-manifolds,

including infinite families of smoothly inequivalent actions which are topologically equivalent

and locally linear actions which are not smoothable. The constructions involve a variety of
results on 4-manifolds and branched coverings. One common feature is that these families

are counterexamples to the Lashof-Rothenberg homotopy classification results for equivariant

smoothings which hold for actions with no 4-dimensional strata. Related examples with

4-dimensional fixed point sets are also described.
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Let M be an unbounded topological «-manifold, where n ^ 4. By [KiS],
suitably defined equivalence classes of smooth structures on M are classified by
bundle data; more precisely, one can define a topological tangent bundle rm l M
whose fibers are homeomorphic to R", and classes of smooth structures are in 1-1

correspondence with vector bundle structures on xm • In [LR1 R. Lashof and M.

Rothenberg proved a similar result for manifolds with suitably restricted actions

of a finite group G. Specifically, they consider actions which are locally linear

(or locally smooth [Bre]); for such actions one has an equivariant bundle structure

tm,g on the topological tangent bundle; and classes of equivariant smoothings of
a locally linear G -manifold M correspond to G -vector bundle structures on the

equivariant bundle rm,g if one avoids 4-dimensional problems. More precisely,
for each subgroup H c G one must assume that no component of the fixed point
set Mh is 4-dimensional.

Advances in 4-manifold theory since the appearance of [LR] have yielded

many examples which show that the conclusions of [KiS] do not extend to 4-
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manifolds (e.g., see [FQ], [Goml], [Donl], [Don2]), and these results indicate that

counterexamples should also exist for the equivariant smoothing theory of [LR]
if some fixed set MH has a 4-dimensional component.

Tlie main purpose of this paper is to describe relatively simple 4-dimensional

examples by combining several advances in 4-manifold theory with the theory of
cyclic branched coverings (cf. Fox [Fox], Reddy [Red] and [Sch]). We shall also

discuss a few other examples and closely related results. One approach to this

problem would be to study free G-actions by considering candidates for orbit

spaces. We shall mention a few examples of this type, but our main interest will
concern actions which are not free. One reason for doing so is that questions
about smoothings free actions quickly reduce to similar questions about their orbit

spaces, and numerous examples have been constructed (e.g., see the results of I.

Hambleton and M. Kreck in [HK] or [Kre] and of M. Ue in [Uel] or [Ue2]; see

also [Tor]). An equally important reason is that the underlying manifolds are often

very familiar objects, and a third reason is to construct examples with nontrivial
fixed point data.

For the sake of conciseness, we have only described limited families of
examples in this paper, with emphasis on methods developed during the nineteen

eighties and nineties. Other advances in 4-manifold theory - particularly from the

past two decades - clearly yield many other examples like those considered here.

Here is a brief outline of the paper. The first section discusses some preliminary
results: One is a smoothability result for certain noncompact locally linear 4-

dimensional G -manifolds, which parallels the smoothing theorem for noncompact
4-manifolds due to Freedman and Quinn [FQ] and (independently) Lashof and

Taylor [LT]. Another is a variation of the results about smooth structures for certain

orbit spaces in [Sch]. In the second section we shall use branched covering to

construct locally linear 4-dimensional G-manifolds of the following two types:

(1) The equivariant tangent bundle reduces to a G -vector bundle, but the manifold
is not equivariantly smoothable.

(2) There are nondiffeomorphic equivariant smoothings which correspond to the

same G-vector bundle structure on the equivariant tangent bundle.

The third section constructs uncountable families of nondiffeomorphic smoothings

for linear actions on R4; since linear actions on R4 are equivariantly con-

tractible, there is a unique isotopy class of G-vector bundle structures on their

equivariant tangent bundles, so these actions are noncompact counterexamples to a

4-dimensional analog of [LR], The existence of equivariant smoothings on certain
exotic 4-spaces has been known for some time (cf. [Goml], [FT], [Gom4]), but

most of the uncountable families in this paper have not previously appeared in
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the literature. Our examples include some families which can be realized as G-
invariant open subsets of the corresponding linear action on R4, and others which
are not (nonequivariantly) diffeomorphic to open subsets of R4 with the usual

smooth structure. Finally, Section 4 considers some related questions involving
higher dimensional G-manifolds, in particular we construct higher dimensional

counterexamples to the conclusions of [LR] for locally linear G -manifolds whose

fixed point sets have 4-dimensional components.
There is a limited amount of overlap between the results of this paper and

the theorems and problems in A. Edmonds' excellent survey of group actions

on 4-manifolds [Edm2], This may reflect the present state of 4-manifold theory,
in which we are still only beginning to understand the wide-ranging aspects of
this subject. A more systematic understanding of smooth simply connected 4-

manifolds might provide a framework for organizing the sorts of examples which

are currently known to exist.

1. Preliminaries

This section considers two unrelated questions. One is the equivariant smootha-

bility of certain noncompact 4-dimensional G-manifolds and the other involves

some extensions of standard results about smooth structures on certain orbit spaces

(see [Sch], Section 1).

1.1. Noncompact locally linear 4-manifolds. By [FQ] and [LT], every connected

noncompact 4-manifold is smoothable, and we shall prove an analog for locally
linear group actions on such manifolds. To simplify the discussion we shall restrict
attention to certain group actions which are semifree (the only isotropy subgroups

are G and {1}).

Theorem 1.1. Let G be a finite group, and let M be a connected, noncompact,

unbounded locally linear 4 -dimensional G -manifold. Assume that G acts

semifreely on M and each component of MG is even-dimensional. Then M is

equivariantly smoothable.

Remark 1. The condition on M° is always satisfied if G has odd order.

Remark 2. A more detailed analysis shows that the theorem and its proof extend

to locally linear actions satisfying the following condition: For each subgroup
H c G, every component of MH is even dimensional.
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Remark 3. Results of [KwL] and [KwS] imply that every locally linear G-
manifold of dimension < 3 has a unique equivalence class of equivariant
smoothings, so it follows that every noncompact, connected, semifree locally
linear G-manifold of dimension < 4 is equivariantly smoothable if G has odd
order. The analogous statement is false in all higher dimensions. Specifically,
let M 4 be the closed simply connected manifold whose intersection form on

//2(AT; Z) is given by the E8 matrix, and consider the locally linear 7LP actions

on M4 in [Edml], where p > 5 is prime. Since the Kirby-Siebenmann smoothing
obstruction for M4 is non-trivial (cf. [FQ]), the product manifolds M4xRk(k > 1)

are not even smoothable as manifolds in the non-equivariant sense.

Proof of Theorem 1.1. The hypotheses imply that G acts freely on M — MG and

Mg is a union of pairwise disjoint components which are isolated points and

surfaces.

Claim. There is a G-invariant closed neighborhood N of MG such that N is

an equivariantly smoothable G-manifold with boundary.

If the claim is true, then the theorem follows immediately from [FQ] and

[LT]; by the claim and the Equivariant Collar Neighborhood Theorem, there is an

equivariant smoothing of an open neighborhood for N in M, and the results of
[FQ] and [LT] imply that the induced smoothing of dN/G extends to a smoothing
of (M — Int TV)/G because the latter is noncompact. If we pull this smoothing
back to the covering space M - Int TV and attach it to the given equivariant
smoothing on a neighborhood of IV, we obtain an equivariant smoothing of M.

We shall now prove the claim. It suffices to prove this for each component
of Mg separately. If a component of MG consists of a single isolated point,
then the conclusion follows immediately by local linearity, for we can take N
to be a small orthogonal disk centered at the point. If a component C of MG

is a surface, then there is an invariant open neighborhood U of C such that

U/G is a 4-manifold and C cU/G is a locally flat surface (see [Bre], Lemma
IV.4.2 for the assertion that U/G is a manifold; local flatness follows because

the action is locally equivalent to l2xf, where G acts trivially on M and V
is a 2-dimensional G-representation with VG — {0}). We can now use [FQ] to

conclude that C has a closed vector bundle neighborhood D* in U/G, and it
follows that the inverse image D cU of D* c U/G is the unit disk bundle of
a G -vector bundle; furthermore, since G acts semifreely on M, this G -vector
bundle must come from a complex line bundle. Since surfaces are smoothable

and G-vector bundles over smooth manifolds are smoothable, it follows that D
is equivariantly smoothable, and this completes the proof.
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1.2. Remarks on branched coverings. Let G be a finite cyclic group, and let

M be a locally linear semifree G-manifold such that MG is a codimension 2

submanifold. As noted in the preceding discussion, the orbit space M* M/G
is a topological manifold such that M/G is a locally flat submanifold and the

orbit space projection M -» M* is a regular branched covering whose branch

set is Mg (compare [Fox], [Red]). Furthermore, if G acts smoothly on M, then

there is a canonical smooth structure on M* such that M —> M* is a smooth

branched covering map (see [Sch], Section 1). In the remainder of this section

we shall collect a few simple results that will be needed later.

Proposition 1.2. Let G be a finite cyclic group, and let Mn and Nn be smooth

semifree G -manifolds whose fixed point sets are in — 2) -dimensional, and take

the smooth structure on Mn/G and Nn/G given in [Sch]. If f : Mn —> Nn
is a G -equivariant dijfeomorphism, then the induced map of orbit spaces

f/G : Mn/G —»• Nn/G is topologically isotopic to a dijfeomorphism.

Proof. This result is a straightforward elementary exercise if M° — NG — 0 -
in which case f/G itself is a diffeomorphism - but otherwise one must look

more closely at the construction of the smooth structures on the orbit spaces in
Section 1 of [Sch].

Suppose now that / : M —> N is an equivariant diffeomorphism, and

let A and B be smooth structures on M/G and N/G which satisfy the

conditions of [Sch]. The smooth structures involve choices of good G-invariant
Riemannian metrics f*B on M, then one can check directly that the induced

homeomorphism f/G : Mn/G -* Nn/G defines a diffeomorphism from

(M/G, f *13) to (N/G.B). By our previous comments the identity map from

(M/G, A) to (M/G, f*B) is topologically isotopic to a homeomorphism, and

therefore it follows that f/G : (M/G, A) -* (N/G.B) is topologically isotopic
to a diffeomorphism.

We shall also use the following result on connected sums.

Proposition 1.3. Let G be a finite group, and let Mn be a locally linear semifree

G-manifold such that every component of MG is (n — 2) -dimensional. Assume

further that M is oriented (hence G acts orientation-preservingly). Let Nn be

a compact oriented n -manifold, and let #G N denote the connected sum of \G\

copies of N. Then the following hold:

(i) There is a locally linear action of G on Mn# (#G N) such that the fixed
point set is MG and the orbit space is homomorphic to M/G#N.
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(ii) If the group action on M is smooth, and N is smooth, then there is a
smooth action of G on M" # (#G N) such that the fixed point set is M°
and the orbit space is dijfeomorphic to M/ G # N.

Proof Take an equivariant connected sum of M and #G N by choosing an

orientation preserving equivariant embedding of G x D" in M — G and an

orientation preserving embedding of Dn in N, removing the interiors of the

embedded disks from M — M° and G x N respectively, and identifying the

common boundaries by a suitable equivariant homeomorphism of G x S"-1. If
everything is smooth, choose embeddings which are smooth and identify the

copies of G x S"-1 by an equivariant diffeomorphism. This yields an action on

M" # (#G N) whose hxed point set and orbit space have the desired properties,
and the construction yields a smooth G-manifold whose fixed point set is

diffeomorphic to MG if the G-manifold M and the manifold N are smooth.

2. Compact examples

In contrast to all other dimensions, a compact 4-manifold might not be

smoothable even if its topological tangent bundle comes from a vector bundle.

For example, if M4 is the closed simply connected manifold whose intersection
form on H2(M; Z) is the Es matrix, then the tangent bundle of the connected

sum M#M is isomorphic to a vector bundle by [KiS], [FQ] and [LT], but by

[Donl] this manifold is not smoothable. Here are some corresponding examples
of locally linear G-manifolds.

Proposition 2.1. Let k > 1 be an integer; let V be a nontrivial irreducible
1 -dimensional unitary representation of Zjt, and consider the Z^ -action on the

2k-fold connected sum #2k M which is an equivariant connected sum of the

linear action on the 4-dimensional unit sphere S(M3 © V) and Z^ x (M#M) as

in Proposition 1.3. Then the equivariant tangent bundle of this action reduces to

a Zj; -vector bundle, but the group action is not equivariantly smoothable.

Proof The result of [Donl] imply that #2k M is not smoothable, so the group
action certainly cannot be equivariantly smoothable. Therefore the proof reduces to

showing that the -tangent bundle of the group action comes from a Z& -vector
bundle.

Let D c 5"(K3 © V) be a disk which is disjoint from the fixed point set and is

so small that gi D ng2-D 0 if gi f g2 in Z^ (hence Zjxfl is embedded in
the complement of the fixed point set). Since Z^ acts smoothly on S(R3©L), the

restriction of the equivariant tangent bundle to S(]R3 © V)—Z^ xlntD comes from
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a Zfc -vector bundle. The construction in Proposition 1.3 expresses the group action

on #2k M as the union of S(1R3©F) —Z^xIntD with Z^x M # M -IntE, where

E e M # M is a closed disk and one identifies the boundaries Z^xdD Z^xdE
by a homeomorphism dE 3D This homeomorphism determines a vector bundle

structure on the restriction of the tangent bundle zm#m to 3E, and it follows
that the Z^ -tangent bundle to the group action comes from a vector bundle if and

only if the vector bundle structure over 3E extends to a vector bundle structure

over M # M — Int£.
In fact, there is a vector bundle structure on 3E which extends to a vector

bundle structure over M#M — Int ZT because the tangent bundle zm#m is

isomorphic to a vector bundle. Furthermore, the two structure on 3E are equivalent
if the homeomorphism 3D —^ 3E is topologically isotopic to a diffeomorphism.
Since every homeomorphism of 3-manifolds is isotopic to a diffeomorphism, this

condition is fulfilled and hence the first vector bundle structure on 3E extends

to M#M — Int£. Therefore the Z^ -topologial tangent bundle to the Z^ -action

on #2k M comes from a -vector bundle.

There are also examples of nonsmoothable locally linear actions which satisfy
the tangent bundle condition and act on smoothable closed simply connected

4-manifolds. Our discussion will use the following generalization of a formula
due to F.Hirzebruch [Hir] (specifically, formula [15]) for smooth actions:

Proposition 2.2. Let d > 2, and let M4 be a closed oriented 4-manifold
with a locally linear Zj -action. Assume all components of F MZd are 2-
dimensional. Then M* M/Zd is a closed oriented 4-manifold such that the

image F* of F is a locally flat submanifold and the signature of M and M*
satisfy the following identity:

d2 — 1

sgn(M) d sgn(AT) — (F* F*)

where F* F* denotes the self-intersection number of F* in M*.

Proof. The generalization of Hirzebruch's result for smooth actions is essentially
a special case of Theorem 14B.2 in Wall's book [Wal2] because the argument
proving Theorem 1.1 in this paper shows that the components of F in M
all have equivariant tubular neighborhoods given by G-vector bundles. Both
sides of Hirzebruch's branched covering formula are oriented equivariant bordism

invariants, so one can apply Lemma 14.3 in [Wal2] to conclude that the result

remains true in the topological setting. It is worth noting that the special argument
in the 4-dimensional case of Wall's proof can be avoided because subsequent
results in [FQ] imply a topological transversality theorem for 4-manifolds.
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The preceding results yield some relatively simple examples of nonsmoothable
actions on smoothable simply connected 4-manifolds.

Theorem 2.3. Let d > 6 satisfy d 2 mod 4. Then there is a locally linear

Id -action on a simply connected 4 -manifold with the following properties:

(i) The equivariant tangent bundle of the action comes from a Id -vector bundle,
but the action is not smoothable.

(ii) For all but at most finitely many choices of d, the manifold M£ is

nonequivariantly smoothable.

Proof. The idea behind the construction is fairly direct and very similar to the

approach of Fintushel, Stern and Sunukjian in [FSS] for constructing topologically
equivalent smooth actions. Results of R. Lee and D. Wilczyriski [LW] imply
that d times the generator of H2(CP2) Z can be represented by a simply
topologically embedded surface £g of genus g — \d2 — 1. If co denotes the

pullback of the canonical complex line bundle EIS2 to £g by a map of
degree 1, then the normal bundle of the embedded surface is E(®d~co), where
(8>m at is the m -fold tensor product of a complex line bundle with itself. The

construction in [LW] yields an embedding such that 7Ti(CP2 —£g) is isomorphic
to Zrf (by [LW] the fundamental group is abelian, and direct computation shows

that H3(CP2. £g) //[(CP2-Eg) Zd)- Therefore we can construct a locally
linear action on some closed 4-manifold Mfi such that the orbit space projection
M£ —> M%/Id is a regular d -fold cyclic branched covering whose branch set is

s*.
We shall first prove that the Z^-tangent bundle of this action comes from

a Id -vector bundle. It will be useful to begin by considering the more general

question of analyzing the equivariant tangent bundle associated to a cyclic branched

covering M -» M * of an closed oriented 4-manifold along an connected oriented
surface F c M ; let F* denote the image of F in M*. Let T c M be a closed

tubular neighborhood of F in M, and let T* be its image in M* (hence T*
is a closed tubular neighborhood of F*). Then the vector bundle structures on

T* and the unique smooth structure on F* define an equivariant smoothing of a

neighborhood of T* and we can pull this back as in [Sch] to obtain an equivariant
smoothing of an invariant neighborhood of T. Also, if M* is a smooth manifold
there is an induced smoothing of M* — F*, and since M — F —^ M* — F* is

a regular covering there is an induced equivariant smoothing of M — F. On the

overlap set Int(T) — F one has two smoothings from these constructions; if F*
is smoothly embedded these two smoothings coincide, and this yields the standard

smoothing of the branched covering.
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Suppose now that F* c M* is not smoothable, and consider the problem of
putting a linear structure on the equivariant tangent bundle rm The preceding
methods now yield two linear structures on the equivariant tangent bundle
restricted to Int(F) — F ; these are pullbacks of two linear structures on

Int(F*) — F* under the (unbranched) covering space map Int(F) — F -»
Int (T*) — F*, and the equivariant tangent bundle to M will have a linear

structure if and only if the two smoothings of Int (T*) — F* determine the same

linearization of the latter's nonequivariant tangent bundle.

We can reformulate this problem homotopically as follows: Let S* C Int(F*)
be a closed tubular subneighborhood given by a disk bundle of sufficiently small

radius, and let W* be the cylinder T* — Int(S*), so that 3W* 3T* U 35*.
Then the obstructions to linearization lie in the cohomology groups

H'(W*, dW*; jTj (Top4/04))

where 0 < i <4. Results of [LT] and [Qui] imply that 7ri(Top4/04) tt,(Top/O)
Tïi{K(Jj2, 3))) in this range, and therefore the only possible nonzero obstruction

lies in H4(W*, dW*\Z2) Z2. Since the composite

H4(W*,dW*\l2) S H4(M*,S* UM* - Int (F*); Z2) -*
-Int(F*);Z2)

is an isomorphism, it follows that this obstruction is equal to the obstruction for

extending the linear structure on the tangent bundle to M* — Int(F*), which is

given by the smoothability of M*, to a linear structure on the tangent bundle

to M*. Since the original smooth structure on M* extends the smooth structure

on M* — Int(5*), this obstruction vanishes. This completes the proof that the

equivariant tangent bundle of M comes from a Zj -vector bundle.

The nonsmoothability of the group action may be seen as follows: If there

were an equivariant smoothing of M, then we could use [Sch] to find a smooth

structure on CP2 (possibly not the usual one) such that T.g is smoothly embedded.

However, by results of D. Kotschick and G. Matic ([KM], Theorem 3.1 and

Corollary 1.2) no such smooth structure exists.

For the remainder of the proof, we return to the special case where

M* CP2, M Md, and F ^ F* is a closed simply embedded surface

of genus \d2 - 1 representing d times the generator of //2(CP2;Z). The only
statement left to prove is the smoothability of Mj. The results of [FQ] imply
that the closed simply connected manifold M({ is smoothable if the rank è2(Mj)
of H2{Md\Z) is at least ^ times the absolute value |a(M^)| of the signature:
If the intersection form on //2(M^;Z) is odd, then we have shown that the

Kirby-Siebenmann invariant vanishes (since XMd comes from a vector bundle),
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and b2{Md) > 11 |er(A/j)[/8 implies that the form is indefinite, so by [FQ] the

manifold Md is homeomorphic to a connected sum of ± CP2 's. On the other

hand, if the form is even, then we may proceed as follows: Since the surface

F* c CP2 has degree d, it follows that its self-intersection number is d2. If we
substitute this into Hirzebruch's formula for the signature of a branched covering,
then the latter reduces to

and since d 2 mod 4 it follows that the right hand side is divisible by
16. Therefore H2(Md\Z) is isomorphic to a direct sum of an even number of
copies of fig and also some copies of the intersection form for S2 x 52. If
t>2(Ma) > ^|cr(Mj)| then by [FQ] the branched covering Md is homeomorphic
to a connected sum of copies of S2 x S2 with copies of K3 surfaces and hence

Md is smoothable.

We shall prove that the inequality holds for all but at most finitely
many choices of d. Predictably, this requires information about b2{Md)
x(Md)—2, and this follows from elementary considerations and the genus equation

g \d2~ 1:

X(Md) Z(Sg) + X(Md, £g) (2 - 2g) + d(2g + 1)

(d — l)2g + d + 2 {d. — l)(2g + 1) -F 2 (d — 1) T——
1-

2J + 3

d3
h lower terms.

2

It follows that
b2(Md) 3 11

lim -— - > —
d—^oo \o(Md)\ 2

and by the preceding discussion we have shown that Md is nonequivariantly
smoothable.

2.1. Other examples. There are numerous results which yield other examples
of nonsmoothable locally linear actions on closed 4-manifolds (e.g., see [Kiy],
[Nak] and the references listed in [LN]). In particular, the results of [Kiy] produce
infinite families of such actions on connected sums of two or more copies of
S2 x S2, where the group is a cyclic group of order p > 19 and the singular set

consists of isolated points (in contrast, for most of our examples the fixed point
sets are 2-dimensional).

Claim. Tie equivariant (topological) tangent bundles for the Kiyono examples
in [Kiy] come from equivariant vector bundles.
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Proof. Given a locally linear action of an odd order group G on a connected

sum of two or more copies of S2 x S2 with an isolated singular set S, let M
be the connected sum. By local linearity the action is smooth near the singular
set, and the obstruction to extending the linear structure from a neighborhood of
the singular set to all of M lies in

H4(M/G, S/G;:r3(Top4/04)) Z2.

Since G has odd order, the image of this obstruction in H4(M.s) H4(M) is

zero if and only if the obstruction itself is zero. However, by construction the

image of the obstruction in H4(M) is just the Kirby-Siebenmann obstruction to

linearizing the nonequivariant tangent bundle of M. Since M is a connected

sum of copies of S2 x S2, we know that M is smoothable and hence the

Kirby-Siebenmann obstruction is trivial. Therefore the obstruction to linearizing
the equivariant tangent bundle is also trivial.

2.2. Smoothly inequivalent group actions with equivalent (equivariant)
tangent bundle linearizations. We have already noted that the proof of the preceding
result is in some respect similar to that of [FSS], which yields infinite families
of smoothly inequivalent, but topologically equivalent, actions of finite cyclic

groups on simply connected 4-manifolds. Their methods also involve sophisticated

applications of gauge theory methods and delicate surgery constructions. It
is natural to ask whether branched covering methods yield further examples of
smooth finite group actions which are topologically but not smoothly equivalent,
and the remainder of this section is devoted to describing such families of group
actions.

We shall describe examples constructed from simply connected Dolgachev
surfaces (see [FMI], [FM2], [FM3] and [OV]); there is an infinite family of
such 4-manifolds indexed by the nonnegative integers, such that they are

all homeomorphic to CP2 #9 CP2 (the bar denotes the opposite orientation) but

no two are diffeomorphic. Since these closed manifolds are simply connected,

it follows that //3(Wt;Z2) — 0 and hence all of these smoothings correspond
to the standard linearization of the topological tangent bundle over the smooth

manifold Xo
As in [Uel] and [Ue2], one method of constructing exotic actions is to form

suitably chosen equivariant connected sums, and this will be the basis for all our
examples. In many cases the key point is to recognize that such connected sums
of 4-manifolds have alternate descriptions (unlike the situation for 3-manifolds).
Our first examples use a result of R. Gompf [Gom3]; namely, if we generically
let M denote M with the opposite orientation, then for each k the manifold

Xk#Xk is orientation presevingly diffeomorphic to #10 (CP2#CP2).
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Proposition 2.4. There are infinitely many smoothly inequivalent smooth involutions

on #10(CP2#CP2) which are topologically equivalent and define equivalent
linearizations of the equivariant tangent bundles.

Proof. Start with the orientation-reversing involution on S4 given by hyperplane
reflection, and take equivariant connected sums with X^lIXk for each nonnegative

integer k. By Gompf's result, one obtains a family of smooth involutions on

#10(CP2 #CP2). These actions are topologically equivalent because the manifolds

Xk are homeomorphic to each other. If two actions were smoothly equivalent,
then an equivariant diffeomorphism would preserve the components of the fixed

point sets' complements, and likewise for their closures. Since the latter are the

punctured manifolds Xk — Int (D4), it would follow that the latter would be

diffeomorphic for two choices m f n of k. Therefore Xn would be obtainable

from Xm by cutting out an open disk and attaching a closed disk along the

boundary by some dilfeomorphism of S3. Since every diffeomorphism of S3

extends to D4 by a fundamental theorem of J. Cerf [Cer], it follows that Xm

and Xn would be diffeomorphic. Therefore the smooth involutions 4>m and

T>„ are smoothly inequivalent if m f n. Since H3(Xo:Z2) 0 all of the

smoothings Xk X0 determine the same linearization of the tangent bundle,
and the reasoning in the proof of Proposition 2.1 now shows that the linearizations
for the equivariant tangent bundles of the actions <5^ are equivariant.

Similar considerations easily yield other infinite families of smoothly inequivalent,

but topologically equivalent, actions that are orientation-preserving, but in
these cases we cannot determine whether any of these manifolds with group
actions are nonequivariantly diffeomorphic.

Proposition 2.5. Let n > 2 be an integer, let V be a 1 -dimensional unitary
representation of Z„, and for each k > 0 consider the smooth Z„ action

on the n-fold connected sum #" Xk which is an equivariant connected

sum of the linear action on S(M3 © V) with 7Ln x Xk as in Proposition 1.3.

Then the actions are topologically equivalent, but no two are smoothly

equivalent. However, these smooth actions determine equivalent linearizations for
the topological equivariant tangent bundles associated to Oo-

As noted above, it would be enlightening to know if for some n > 2 there is

an infinite family of actions as above on the same smooth manifold:

Question. For some n > 2 is there an infinite family of smooth manifolds

{#" Xk(m)} that are pairwise (orientation preservingly) diffeomorphic?
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We shall conclude this section with another example in which the smoothly
inequivalent actions all operate on the same smooth manifold. To simplify the

notation, if p and q are positive integers we shall let pCV2#qCf'2 denote the

(oriented) connected sum of p copies of CP2 and q copies of CP2.

Theorem 2.6. There is an infinite family of inequivalent smooth involutions <!>£

on 3 CP2 #18 CP2 such that the involutions are topologically equivalent and

determine equivalent linearizations of the equivariant topological tangent bundle.

Proof. The construction starts with the conjugation involution on CP2, which
takes a point with homogeneous coordinates (a,b,c) to the point with homogeneous

coordinates (ä,b,c). The fixed point set of this action is MP2 (viewed
as the subset of points representable by real homogeneous coordinates), and it
is well known that the orbit space CP2/Z2 is difFeomorphic to S4 (e.g., see

Atiyah-Berndt [AB], Kuiper [Kui] or Massey [Mas]). Since the normal bundle

of MP2 in CP2 is not orientable, this example does not quite fit into the setting
of Section 1 in [Sch], so comments are in order regarding the smooth structure

on the orbit space discussed in [AB] and [Kui]. In the situations of interest,
there are compatible orientations on the manifold with involution M and its orbit

space M/Z2 such that the orbit space projection has positive degree (equal to

2). Therefore, in the construction of the smooth structure it is enough to consider

smooth coordinate charts that preserve orientations. One key result is Theorem 1.2

in [Sch], which implies that two special atlases satisfying condition (l.la)-(l.lf)
in [Sch] define the same smooth structure on the orbit space, and in our situation

we need a similar result for oriented special atlases. One crucial step involves a

commutative diagram

R-^ x R2 — R-^ x R2

1xq 1X®1

R-^ x R2 ——> R-^ x R2

where q(x,y) (x2 — yz,2xy) is the map given by squaring a complex number

and t— (u, 9(u)v) where

9 : R7 -> 02

is smooth. In the setting of this result, the maps tp and are orientation

preserving, and therefore we can lift 9 to a map 9' : R-^ -+ U\ S02.
This yields a refined version of Lemma 1.4 in [Sch], where a : U\ —» 02 is

the composite of the squaring homomorphism U\ —> U\ with the embedding
U\ S02 C 02. This means <p satisfies the identity

cp(u,q(v)) — (u. a°9'(u)v)
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and hence q> is a diffeomorphism. As in [Sch], this means that if A and B

are oriented special atlases for M/Z2, then the identity from (M/Z2,A) to

(M/Z2,B) is a diffeomorphism. One can then proceed as in [Sch] and Section 1

of this paper to show that an orientation preserving equivariant diffeomorphism
M -> N yields an orientation preserving diffeomorphism from M/Z2 to N/Z2.

If we now take an equivariant connected sum of the conjugation action on
CP2 with two copies of a Dolgachev surface Xk, then the orbit space of the

resulting action is CP2/Z2# Xk ^ S4#X/C Xk, so there is no orientation

preserving equivariant diffeomorphism relating the actions defined using Xk and

Xj if k ^ j. Furthermore, there cannot be an orientation reversing equivariant
diffeomorphism either, for such a map would define an orientation reversing

homeomorphism from CP2#Xk#Xk to itself. Since the signature of the latter

is nonzero, this manifold is not orientation reversingly homeomorphic to itself.
Therefore the actions defined using Xk and Xj are smoothly inequivalent if
1 / j On the other hand, one can now use the same arguments as before

to show these actions are topologically equivalent and the associated eqivariant
linearizations of the equivariant topological tangent bundle are also equivalent.

To conclude the proof, we need to show that CP2 #3^#^ splits smoothly
into a connected sum of copies of CP2 and CP2. This follows from two

applications of Corollary 9 in [Gom3] (the result is due to R. Mandelbaum

[Manl] and B. Moishezon [Moi]; see also the survey article [Man2]). This result

implies that CP2#Xk splits as a connected sum 2CP2#9CP2, and another

application yields the desired splitting:

cr2#xk#xk ^ 2CP2#9CP2#Xfc ^ 3CP2# 18CP2

2.3. Minimal examples. One fundamental question about exotic smoothings of
simply connected 4-manifolds is to find examples for which H2(M\ Z) is as

small as possible. Much work has been done on this problem since [Don2] and

[FM1]-[FM4] (e.g., see Fintushel and Stern [FS]), and one can combine these

advances with the methods of this section to construct exotic smooth actions on

nCP2#nCP2 and 3CP2#mCP2 where n < 10 and m < 18. We have focused

on Dolgachev surfaces to simplify the discussion and to leave space for further
advances in an active research area; new results on minimality questions will
surely figure in determining the least possible values of m and n for which such

exotic families exist.

Linear actions on S4 are another fundamentally important class of minimal
examples. It is well known that two linear actions of finite groups on S4 are

topologically equivalent if and only if they are linearly equivalent (compare [dRh]),
and it would be particularly illuminating to know if there are smooth actions of
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finite groups on S4 which are topologically but not smoothly linear. In higher
dimensions there are are many such examples and extensive literature beginning
with [CMY] and [Son] (see [RS] for a definitive account of the latter).

3. Actions on exotic 4-spaces

Theorem 1.1 implies that all locally linear actions of odd order groups on

noncompact connected 4-manifolds are smoothable, and the same conclusion is

valid for a large class of even order group actions. In view of this, henceforth

we shall limit the discussion of the noncompact case to constructing examples of
nondiffeomorphic smoothings of a locally linear action which define equivalent
linearizations of the equivariant topological tangent bundle. In fact, we shall

specialize even further to locally linear actions on R4 which are equivariantly
contractible; note that the latter property implies there is a unique equivalence
class of linearizations for the equivariant topological tangent bundle (cf. torn
Dieck [tDie] or Lashof [Las]). Orthogonal actions of finite groups on R4 clearly
satisfy this condition, and additional examples are given by deleting a fixed point
from a smooth semifree cyclic group action on S4 for which the fixed point
set is a knotted 2-sphere (see Giffen [Gif], Gordon [Gor] or Sumners [Sum] for

examples and additional background information).
Shortly after the discovery of exotic smooth structures on R4, it became clear

that there were examples which supported smooth actions which are topologically
equivalent to the previously mentioned types of equivariantly contractible smooth

actions on the standard R4. In particular, if ST4 denotes the "universal" smoothing
structure on R4 constructed by M. Freedman and L. Taylor [FT], the following
result was well known when that paper appeared in print:

Proposition 3.1. Let G be a finite group, and let 4> be a smooth effective

orientation preserving action of G on R4 (with the standard smooth structure)
such that is equivariantly contractible. Then there is a smooth action of
G on f24 which is topologically equivalent to <t>.

These examples can be viewed as special cases of a more general construction
which we shall use. If 72 is the set of oriented diffeomorphism classes of smooth

manifolds homeomorphic to R4, then the Gompf end connected sum construction

(U, V) —» U t] V of [Goml] and [GS] (see Definition 9.4.6 and the accompanying
discussion on pp. 368-369) makes 72 into a commutative monoid with involution

(given by reversing the orientation); the identity is the class of the standard

smooth structure on R4, and the class of the Freedman-Taylor manifold £24 is a

null element by the results of [FT] (i.e., for every oriented representative V4 of a
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class in TZ we have V4 tjQ4 f?4 as oriented smooth manifolds). Furthermore,
TZ has an infinite end sum operation £/; associated to a countably infinite

sequence {£/;} of representatives for classes in 7Z, and this infinite operation has

good commutativity and associativity properties. As noted in [GS], this implies
that U \\V ^ R4 (smoothly) if and only if U and V are diffeomorphic to
R4 and that for every exotic oriented smoothing V of R4 the iterated sums

\]m V (m >1) are never diffeomorphic to R4. In particular, the commutative
monoid TZ has no invertible elements aside from the identity.

As in Section 2, if W is a connected oriented manifold, then W will denote

W with the opposite orientation.
We can now place Proposition 3.1 into the desired general context:

Proposition 3.2. Let G be a finite group and let be an effective smooth action

of G on R4, and let V be a smooth oriented manifold which is homeomorphic
to R4.

(i) If G acts orientation preservingly then there is a smooth action <£> v of G

on U'G' V (where \G\ is the order of G) such that 4>y A topologically
equivalent to <ï>.

(ii) If G Z2 and the action reverses the orientation then there is a smooth

action Oy of G I2 on V\V such that Oy is topologically equivalent
to O.

Derivation of Proposition 3.1 from Proposition 3.2. The first result follows
immediately from the second if we take V ST24, for in this case the absorption

property implies that t|'G' f?4 £24 and D.4'\\D.4 ^ £24.

Comments on the proof of Proposition 3.2. The first part of the result is stated

informally on page 202 of Gompf's exotic menagerie paper [Gom4], and the

idea of the proof is fairly simple. In particular, if x R" has a trivial isotropy
subgroup (such points form an open dense subset), we can construct the end sum
[||G| V by means of a smooth proper equivariant embedding y : G x [0, 00) — R4

such that y (1,0) x and an extension of y to a smooth invariant tubular

neighborhood. In the orientation reversing case there is a similar construction but

the ambient manifold for <t>y is given by V t| V.

Section 4 of [Gom4] describes some considerably more complicated examples
of finite group actions involving exotic 4-spaces. We shall proceed in a more

elementary direction and consider the following basic question:

Question 1. Let G be a finite group which acts smoothly and semifreely on R4.
Is there an uncountable family of pairwise nondiffeomorphic smooth actions Wj
which are topologically equivalent to the given action?
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We shall be particularly interested in constructing examples with the following
additional properties:

Question 2. Let G be as above, and let V be an exotic smoothing of an action

on K4 obtained by deleting a fixed point from a smooth action on S4. Is there

an uncountable family of invariant open subsets HQ C V such that the induced

smooth actions on HQ are pairwise nondiffeomorphic but the actions Wd are all

topologically equivalent to the original action?

If G — TL2 and the action reverses orientation, then a positive answer to the

first question is implicit in the results of [Gom2] and [Gom4]:

Proposition 3.3. Suppose that T,2 acts effectively, smoothly and orientation
reversingly on ffi4, and denote the action by <E>. Then there is an uncountable

family V(t) of exotic 4-spaces such that the associated action <f>v(t) tire pairwise
smoothly inequivalent.

Comment on the proof. This follows immediately from the construction of [Gom2]
and [Gom4] which gives a family of 2K° mutually inequivalent exotic 4-spaces

Vt such that no two of the end sums Vt t) Vt are diffeomorphic.

Examples of continuous families of orientation preserving actions on K4 are

not so apparent in the existing literature, so we shall explain some ways of
constructing such families. If we knew there was continuum of exotic 4-spaces

Vt such that no two end sums t|m Vt were orientation preservingly diffeomorphic
for some m > 2, then the first part of Proposition 3.2 would yield the desired

families of actions for all groups G of order m, but results of this type do not

seem to be in the literature.

We shall answer Question 2 positively in many important cases. The idea is to

construct continua of actions starting with the initial examples of exotic 4-spaces

arising in the work of Donaldson and Freedman (cf. Gompf's description in

[Gornl]). Strictly speaking, we shall need modified versions of those examples,
and it will be convenient to work in an axiomatic setting modeled on results

in [Goml],
Our construction will use the following standard observation involving the local

equivalence of coordinate charts in a topological manifold; in the 4-dimensional

case it is a consequence of the Annulus Theorem in [Qui] and the Topological
Isotopy Extension Theorem.
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Lemma 3.4. Let A be an oriented smooth A-manifold, let h : 53x(— 1,1) A be

a homeomorphism, and let U C S3 be an open 3-disk whose closure U is a locally
flat closed 3-disk in 53. Then there is an isotopy of h (through homeomorphisms)
to a homeomorphism h' and a concentric subdisk Uq C Uq C U such that h' is

a smooth embedding on an open neighborhood of Uq x {0} in S3 x (—1,1).

We shall be working with iterated connected sums #'nK of the Kummer
K3 surface K. As noted in [FQ], this smooth (in fact, complex) manifold is

topologically a connected sum #m (N#P), where F is a connected sum of 3

copies of S2 x S2 and N is a simply connected 4-manifold whose intersection
form is two copies of the Eg matrix [MH], For each positive integer m, it follows
that #'nK contains a region A which is homeomorphic (but not diffeomorphic)
to S3 x (— 1.1) and has the following additional properties:

(1) If B c A corresponds to 53 x {0}, then #mK — B has two components
V~ and V+ whose closures F~ and F+ are homeomorphic to (#'nN)°
and (#'" P)°, where X° is the compact manifold with boundary formed by

deleting the interior of a suitably embedded closed disk.

(2) If A~ and A+ are the subsets of A corresponding to S3 x (—1,0] and
S3 x [0,1), then F~ fl A A" and F+ n A A+.

Specific choices of objects in the preceding discussion will be called
Donaldson-Freedman splitting data for #m K.

Definition. A Donaldson-Freedman system for #'" K will consist of the following
data:

(1) A set of Donaldson-Freedman splitting data such that the homeomorphism
h : S3 x (—1,1) —A satisfies the partial smoothness condition in the

conclusion of Lemma 3.4

(2) A pair of spaces (W, C) such that IF is a smooth manifold homeomorphic to
R4 and C c W is compact, together with a diffeomorphism k : W — C —» A.

If we are given a Donaldson-Freedman system as above, then we set W~
equal to W — h~1[A+\. It follows that W~ is homeomorphic to R4, but it is

not diffeomorphic to R4. Although W~ is not quite the same as a Donaldson-
Freedman exotic 4-space in [Goml], it has similar properties.

Proposition 3.5. In the setting above, the smooth manifold W is not diffeomorphic
to R4. Furthermore, if <p : W~ —> R4 is a homeomorphism, and Ut C R4 is

the open disk of radius t centered at the origin, then there is some X > 0 such

that s,t > X implies that <p~l[Us] and (p~l[Ut] are not orientation preservingly
diffeomorphic.
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Proof. Tliis is analogous to the proof of the corresponding result for the Donald-
son-Freedman exotic 4-space (see [Goml], [Gom2] and [Tau]). If W" were

diffeomorphic to R4, then one could find a smoothly embedded 3-sphere in
A~ — B, and one could use this to define a smooth structure on #'n N as in

[Goml]; as with the latter, Donaldson's results imply that #m N is not smoothable,

so no smooth embedding can exist. Similarly, if there is a homeomorphism cp such

that (p[Us\ and (p[Ut\ are diffeomorphic for sufficiently large values of s ft, then

as in Gompf [Gom2] and Taubes [Tau] the manifold #mK — (#mP)°, which is

homeomorphic to #mN — {point}, would have a smooth structure with a periodic
end. The results of [Tau] imply that #'" N - {point} has no such smooth structure,
and therefore it follows that no two of the smooth manifolds <p[Ut], (p[Us\ are

orientation preservingly diffeomorphic if s and t are sufficiently large.

A crucial step in our construction is the following relationship between Donald-
son-Freedman systems and connected sums.

Proposition 3.6. Let p and q be positive integers, and suppose that we have

Donaldson-Freedman Systems (WP,CP\ Ap,etc.) and {Wq,Cq\Aq,etc.) for #pK
and #q K respectively. Then one can construct a Donaldson—Freedman system

(Wp+q, Cp+q\ Ap+q,etc.) for #p+qK such that Wf+q s* WftfWf.

Proof. The idea is to construct a smooth connected sum of #p K with IV K
in a manner compatible with all the data in the Donaldson-Freedman systems.
This can be done by choosing smooth coordinate neighborhoods E'p and E'q at

smooth points of the 3-sphere Bp and Bq ; more precisely, we want smooth round

closed disks Ep and Eq in product neighborhoods of the form A x (—e, e) such

that A x {0} corresponds to the points in Bp or Bq, Ax (—e, 0) corresponds
to the points in Wf or Vf, and A x (0, e) corresponds to the points in

Wp or Vq This yields a bicollared topological embedding of Bp#Bq in

(#pK)#(#q K) which is a smooth embedding around some point, The complement
of Bp#Bq splits into two components, and the closure of these components
are homeomorphic to (#p+qN)° and (#p+qP)°. In fact, we can say even

more. Let Ef C Ep and Ef c Eq correspond to the points À_ c D4

whose last coordinates are negative. Then the compact manifold with boundary
A_ is a closed tubular neighborhood of the curve [l,oo) —> IntA_ defined

along the fourth coordinate axis by (0.0,0,w(t)), where w(t) is a smooth

function such that io(l) — w' > 0 everywhere, and lim^oo w(t) 0,
and therefore Ef and Ef are subsets which can be used to construct the end

connected sums Vp\\,Vq and Wp\\Wq. If Vf+q is the connected component of
#p+qk which is homeomorphic to Int(#p+<?Ar)°, then it follows that Vf+q is

orientation preservingly diffeomorphic to Vf t] Vf. Now consider the manifold
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W~ \\ W~ s (kp[Ap — d+] U Cp)#(kq[Aq — A+] U Cq). By construction the ends

of Vp t) V~ and W~ t] W~ have diffeomorphic (deleted) neighborhoods, so it
follows that this end sum is a good candidate for the manifold Wp+q in suitably
defined Donaldson-Freedman data for #p+q K. If we now choose Ap+q to be

a small open bicollar neighborhood of Bp#Bq which is contained in Ap#Aq,
then the remaining data for a Donaldson-Freedman system on #p+q K can be

constructed in a straightforward manner, and therefore we have a choice of
data for #p+q K such that W~ is orientation preservingly diffeomorphic to

Corollary 3.7. Let m > 2 be an integer and suppose that we have a Donaldson-
Freedman system {W\,C\ \ A\,etc.) for K. Then there is a Donaldson-Freedman

system {Wm,Cm\Am,etc.) for #mK such that W~ ^\\m W\.

Remark. The existence of a Donaldson-Freedman system for K follows directly
from [Goml] and Lemma 3.4, so Corollary 3.7 implies the existence of Donaldson-
Freedman systems for each connected sum #'" K.

3.1. Construction of exotic smooth actions. We are almost ready to state and

prove the main result of this section for smooth orientation preserving actions of
finite groups on M4. Our proof will use the following elementary consequence
of local linearity at fixed points of smooth actions.

Lemma 3.8. Let G be a finite group, let 4* be an effective, smooth and orientation

preserving action on Sn, and let 4> be the smooth action on M" obtained by

deleting one fixed point po For each t > 0, let Ut Cl" denote the open disk

with radius t which is centered at the origin. Then $ is smoothly equivalent to

an action 4>' of M" with the following property:
There is a positive constant Ao such that Ux0 is <$' -invariant and the restriction

of this action to M" — U\0 S"-1 x [A0, oo) is the product of an orthogonal action

on S"~l with the trivial action on [A0,co).

In particular, it follows that if t > Ao then Ut is 4>' -invariant and c&'lt/, is

smoothly equivalent to 'L'.

WffWWq.

Proof. This follows by repeated application of Proposition 3.6.

Lemma 3.8 allows us to simplify the formulation of the main result.
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Theorem 3.9. Let G be a finite group, and let <t>' be a smooth action on R4

satisfying the conditions in Lemma 3.8. Given an exotic 4-space W, let <$w be

the topologically equivalent smooth action on t|'G' W constructed in Proposition
3.2, and let Ut and Xq be as in Lemma 3.8, and let 6 be an equivariant
homeomorphism from W, <&w) to (R4,<h). Then for at least one choice

of W the restricted actions on the G-invariant open sets 9~l\Ut\,t > Xq are

all topologically equivalent to (R4,T>), but there is some X\ > A0 such that if
t,s > X\ and t s then 9~l[Ut] and 9~{[US\ are not even nonequivariantly
orientation preservingly diffeomo?~phic.

Since the hypotheses (hence also the conclusions) of Lemma 3.8 hold for
orientation preserving orthogonal actions of a finite group G on S4 with fixed

points and their associated actions on R4, it follows that every such action is

topologically equivalent to an action on an exotic 4-space which contains an

uncountable family of symmetric exotic 4-spaces as invariant open subsets where

each restricted action is topologically equivalent to an orthogonal action and no

two of the open subsets are orientation preservingly diffeomorphic to each other.

One can also state a version of Theorem 3.9 which does not require the

conditions in Lemma 3.8.

Corollary 3.10. If the finite group G acts smoothly and orientation preservingly
on S4 with (at least) one fixed point po, then there is a continuum of smooth

G-actions (T'a;} on exotic 4-spaces {Va} such that each action is topologically
equivalent to the given action on S4 — {po} but the underlying exotic 4-spaces

Va and Vß are not orientation preservingly dijfeomorphic if a f ß.

Proof of Corollary 3.10. This follows immediately from Lemma 3.8 and Theorem

3.9.

Remark. In the preceding two results we have constructed families of 2X°

smoothly inequivalent actions which are topologically equivalent to a given
example. More generally, if we are given a smooth hnite group action on a

second countable manifold, then by the Mostow-Palais equivariant embedding
theorem (see Mostow [Mos] and Palais [Pal]) there are at most 2X° smoothly
inequivalent actions which are topologically equivalent to the given one because

there are only 2X° locally closed subsets in the spaces R", where n runs through
all positive integers.

Proof of Theorem 3.9. Let (W\, C\, A\, etc.) be a Donaldson-Freedman system
for K, and let (fL|G| t]'G' Hf, C|G|; .<4|g|, etc) be the system for #'G' K described

in Corollary 3.7. By Proposition 3.2 there is an equivariant homeomorphism
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9 : (H|G| W~,<î>w) -* (M4,4>)

and if t is sufficiently large then 0~l[Ut\ is a smooth G-manifold which is

topologically equivalent to Ut and hence is also topologically equivalent to the

original action on R4. On the other hand, by Proposition 3.5 if s and t are

sufficiently large and s fi t, then the underlying smooth manifolds 9{Ut] and

9[US} are not even nonequivariantly diffeomorphic as oriented manifolds.

It is not difficult to state many further questions about group actions on
exotic 4-spaces, but often it is unclear whether these questions can be studied

successfully. We shall conclude this section with one easily stated example which
is motivated by the results of DiMichelis and Freedman [dMF] on exotic 4-spaces
that are open subsets of R4 :

Question. Let G act orthogonally on R4. Is there a continuum of invariant

open subsets Ua C M4 such that the restricted smooth actions are all
topologically equivalent to the given action but the sets Ua and Uß are not even

nonequivariantly diffeomorphic if a fi ß

Here is a statement (without proof) of a partial result:

Theorem 3.11. Suppose that G acts orthogonally and semifreely on R4 with a

2-dimensional fixed point set. Then there is a continuum of invariant open subsets

Ua C M4 such that the restricted smooth actions are all topologically linear
but the restricted actions on Ua and Uß are not equivariantly diffeomorphic if
afiß.

For the family of examples in this result, the canonical smooth structures on
the orbit spaces Ua/G and Uß/G are not diffeomorphic if a fi ß.

4. Higher dimensions

If G is a finite group, then the results of [LR1 on G-smoothings assume

that, for each subgroup H c G, the fixed point set MH has no 4-dimensional
connected components. It is not difficult to construct counterexamples to the

conclusions of [LR] if this condition is not met. For example, suppose that V" is

an positive dimensional orthogonal representation of G such that G acts freely
on V" — {0} (i.e., a free linear representation). Then for each smooth manifold
W4 that is homeomorphic but not diffeomorphic to M4 the G-action product
manifold W4 x V" is topologically equivalent to the linear action of G on
R4 ® V" and the manifold W4 x V" is nonequivariantly diffeomorphic to R4+"
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(since homeomorphic to R? implies diffeomorphic to R? if q f A), but W4x V
is not equivariantly diffeomorphic to R4 © V" because the fixed point sets are

not diffeomorphic. Furthermore, since R4 © V" is equivariantly contractable it
follows that the linearization of the equivariant tangent bundle for the smoothing
W4 x Vn is equivalent to the linearization for the orthogonal action on R4 © V"
Our main objective in this section is to describe compact counterexamples to the

conclusions of [LR] for locally linear group actions with ©dimensional fixed point
sets. As before, there are examples of two types; the first involves nonexistence

of equivariant smoothings, and the second concerns nonuniqueness of equivariant
smoothings which determine the same linearization of the equivariant topological
tangent bundle.

Theorem 4.1. Let G be a finite group, and let V be an orientation preserving
free orthogonal representation of G such that n dim F > 2. Vieil there is

an infinite family of locally linear orientation preserving, semifree G -actions on

connected oriented (n + 4) -manifolds Mj (where j is a positive integer) with
the following properties:

(1) The fixed point sets Fj of the G-manifolds are closed, simply connected

A-manifolds whose signatures satisfy |sgnF,(!)| f |sgnF}(2)| if j( 1) f j{2).
(2) The equivariant tangent bundles of the G-manifolds Mj come from G-vector

bundles.

(3) The actions are not equivalently smoothable; in fact, their fixed point sets

are not smoothable.

Theorem 4.2. Let G and V be as in the preceding theorem. Then there is an

infinite family of smooth, orientation preserving, semifree G -actions connected

manifolds Mjh {where j runs through all sufficiently large positive integers and
11 runs through all positive integers) with the following properties:

(1) The fixed point sets of the actions are closed, simply connected, oriented

A-manifolds Fjj, such that |sgnF}(1)^(1)| |sgnT}(2)i/,(2)| if and only if
7(1) y(2).

(2) For each j, the smooth G-manifolds Mjj,^ and Mj^) are orientably
topologically equivalent, and the equivariant linearizations of their equivariant

tangent bundles are also equivalent.

(3) For each j, the smooth G-manifolds Mj^(\) and Mjj^2) are n°t equiv¬

ariantly diffeomorphic if h{ 1) h(2). However, the manifolds i) and

Mj,h(2) are nonequivariantly orientation preservingly diffeomorphic for all
h{ 1) and h{2), and — Fj,h(i) is orientation preservingly equivariantly
diffeomorphic to M,^(2) — Fjmd far all h{ 1) and h{2).
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The final conclusions in part (3) of the second theorem are analogs of the

replacement theorems for fixed point sets due to S. Cappell, S. Weinberger and

M. Yan (see [CW] and [CWY]). A more general statement of the replacement

principle for 4-dimensional fixed point sets is given in Proposition 4.3 below.

Proof of Theorem 4.1. We begin with an alternate description of the smooth

oriented bordism homology theory £2*°(Y) considered by P. E. Conner and

E. E. Floyd (see [Con], Section 1.4, and [Sto], Example 6, p. 43). Chapter II
of [Sto] discusses bordism theories for smooth manifolds with an extra (B,f
structure arising from a suitable map / : B —> BO. The structures may be viewed

as suitably defined equivalence classes of liftings for the diagram

B

M ^ B0

where Nm is the classifying map for the stable normal bundle of M, where

M is embedded in some large R?. There is an analogous theory for topological
manifolds because (i) embeddings of a topological manifold M in some large

have topological tubular neighborhoods (see [KiS]), (ii) there are topological
transversality theorems analogous to the usual smooth transversality results (see

[KiS] for dimensions f 4 and [FQ] for the 4-dimensional case). It follows that
the oriented bordism homology groups 0®°(Y) are isomorphic to the topological
bordism groups 0P(.S./), where / : B —> ZITop is the composite

X x BSO ^ BSO 5Top
proj

and Bi is the map of classifying spaces corresponding to the standard homeomor-

phism i : SO —> Top. Since a smooth structure or a manifold M defines a unique

equivalence class of vector bundle structures on the topological tangent bundle,

it follows that each smooth representative of a class in 0^°(Y) in the sense

of [Con] determines a unique class in the topologically defined bordism group
OjOP(5,/), and in dimensions^ 4 the resulting bijection of bordism groups
reflects the fact that equivalence classes of smoothings correspond to equivalence
classes of stable tangent bundle linearizations in such cases (see [KiS]).

Our reason for interest in this alternate description of 0^°(Y) is that it allows

one to view classes in 0*°(Y) as representable by data (M4,X,h : M4 -> X),
where A is an oriented vector bundle structure on the tangent bundle for a

topological 4-manifold and / \ M4 -> X is a continuous map as in the Conner-

Floyd definition. If X is a point, then Z is detected by the signature, so

the latter determines the class of (M4, A) where M4 and A are given as above.
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With the preceding observations, the proof of Theorem 4.1 becomes fairly
straightforward. Let F(F) denote the unit sphere in V with its associated free

orthogonal action of G, let L(V) S(V)/G, and let h : L(V) —* BG be the

classifying map for the principal G-bundle S(K) —>• L(V). Consider the class in

&f,-i(BG) represented by (L(V).h). Since G acts orientation preservingly, n

must be even and therefore the results of [Con] imply that the class [L(V),h] has

a finite order that we shall denote by m. For each j > 0 let F"4 be the oriented,

simply connected 4-manifold which is a connected sum of 2mj copies of the

simply connected F8 manifold (hence the tangent bundle of F4 can be linearized).

It follows that F4 x [L(V),h\ represents the trivial class in Q^n(BG). A null
bordism of the class corresponds to a map k : W* —> BG such that k\dW* is the

composite of h and the coordinate projection F4xL(V) s L(V). Since FxL(V)
is connected, we might as well assume the same for W*. Take W —> W* to be

the principal G-bundle classified by k, and form the G-manifold

Mj+n (Ff x D{Vj) U9 W4+"

where D(V) C V is the unit disk. It follows that M4+n is a closed, connected,

semifree and locally linear G-manifold with a linearization of its equivariant

topological tangent bundle. However, the action is not smoothable; if it were,
then F4 would be smoothable, and by [Donl] we know this is not the case.

Before beginning the proof of Theorem 4.2, we shall formulate a generalization
of one step in the argument.

Proposition 4.3. (Replacement Principle for fixed point sets) Suppose that the

finite group G acts smoothly and semifreely on a closed manifold M, let F
be a connected component of the fixed point set M°, and let (N;F,F') be a

smooth s-cobordism which is topologically trivial. Assume that dim M > 5 and

dim F > 4. Then there is a smooth semifree G-action on M x [0, 1] with the

following properties:

(1) The restriction to M x {0} is smoothly equivalent to the original action.

(2) The action on M x [0,1] is topologically equivalent to the product of the

original action with the trivial action on [0,1].

(3) If M' — M x {1}, then the fixed point set of M' is diffeomorphic to

(Mg - F) U F'.

(4) The restrictions of the group actions to M — F and M' —F' are equivariantly
diffeomorphic.
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(5) The equivariant smoothing of M' given by the associated G -homeomorphism
M' —» M determines a linearization of the equivariant tangent bundle of M
which is equivalent to the usual one given by the smooth structure on the

G -manifold M.

More concisely, we can form a topologically equivalent smooth action in which
the fixed point component F is replaced by F'.

Proof of Proposition 4.3. The ideas are fairly standard, so we shall only sketch

the argument. Start with a closed collar neighborhood F x [0, e] of F x {0} F
in the 5 -cobordism N. Let v be the equivariant normal bundle of F in M,
let p : N -* F be a homotopy inverse to the inclusion F c dN c N, and let

D(p*v) denote the disk bundle for the pullback of v. Then the restriction of
p*v to the closed collar neighborhood fx[0,e]ciV is a product D{v) x [0, e].
Form a smooth G-manifold from

W M x [0,e] UD(p) x[o,£] D(p*v)

by rounding the corners at S(v) x {e} and S(v) x {1} equivariantly. It follows
that W is equivariantly homeomorphic to M x [0, 1], and the fixed point set

of the induced action on the upper component M' of W is diffeomorphic to

(Mg — F) II F'. The smoothness of the action on W and the homeomorphism
W s: M x [0,1] imply that the equivariant linearization of the tangent bundle

to M' given by the G-homeomorphism M' —» M corresponds to the usual

linearization coming from the equivariant smooth structure on M.
Since W Mx[0,l] topologically, it follows that [W, MxjO}) is (nonequiv-

ariantly) an s -cobordism, and since dim M > 5 the smooth 5- cobordism Theorem

implies that W is nonequivariantly diffeomorphic to M x [0,1]. Therefore M'
must be nonequivariantly diffeomorphic to M. Finally, we need to show that

M — F and M' — F' are equivariantly diffeomorphic. Let v' be the pullback of
v with respect to the composite

F'cJV^f
where the second map is the homotopy inverse to F c dN C N. Then M — F
is equivariantly diffeomorphic to (M - IntD(v)) US(U) (£>(v) — F) and M' — F'
is equivariantly diffeomorphic to {M — IntD(v)) Us(v) S(p*v) U3 D(v') — F' and

since D(v') — F' is an open collar neighborhood of S,(v/) in D(u') it follows
that M' — F' is equivariantly diffeomorphic to

(M — IntD(u')) LI S(p*v) U open collar

and M — F is equivariantly diffeomorphic to
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(M - IntD(v)) U 5(v) x [0,1) s M - D{v)

Note that S{p*v)—open collar is just S(p*v) — S(v'). By construction S(p*v)/G
is an s-cobordism, and therefore the Half Open /z-cobordism Theorem implies
that S(p*v)/G — S(v')/G is diffeomorphic to S(v)/Gx[0.1) (see Hudson [Hud],
Theorem 7.11, p. 171, for the piecewise linear case, and extend it to the smooth

case using the methods and results of [HM]). Therefore it follows that M' — F'
is also equivariantly diffeomorphic to M — D{v) M — IntD(v) U open collar,
which means that M — F and M' — F' are equivariantly diffeomorphic.

Proof of Theorem 4.2. Let V be given as in the statement and proof of Theorem

4.1, and as in the proof of that result, let m denote the order of the oriented

bordism class [L(V),h] e

As noted in Theorem 3.6 in Subsection 7.3.2 of [FM4], if q is sufficiently
large then the manifold

B(q) CP2#<?CP2

has infinitely many smooth structures, and for a fixed value of q the signatures
of these manifolds are all equal to 1 —q. Let q* be the least positive integer such

that q* is sufficiently large and q* — 1 0 mod m, and let Fjto — B(q* + j in),
where j runs through the positive integers. Then for each j the cited theorem

in [FM4] yields an infinite family of pairwise nondiffeomorphic manifolds Fj±
which are homeomorphic to Fj_o- By construction |sgnI |sgn F)(2),a(2)|

if and only if j(\) j(2), and these signatures are all nonzero multiples of in.
We can now construct smooth actions of G on smooth manifolds Mj with

fixed point sets Fjto as in the proof of Theorem 4.1; in the present setting, the

actions are smoothabie because we are given smooth structures on the manifold

Fj q For each k, there is smooth s-cobordism from Fjt0 to Fj^ by [Wall]
(recall that /z-cobordism and 5-cobordism are equivalent in the simply connected

case). Therefore, if we fix j, then Proposition 4.3 yields an infinite family
of nondiffeomorphic smooth G-manifolds Mj^ such that the fixed point sets

are given by the nondiffeomorphic 4-manifolds Fj ^, the manifolds Mj^ are

nonequivariantly diffeomorphic to each other, and the remaining conditions in the

conclusion of the theorem are satisfied.
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