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Ihe Cartan-Hadamard Theorem for metric spaces
with local geodesic bicombings

Benjamin Miesch

Abstract. We prove the Cartan-Hadamard Theorem for spaces which are not necessarily

uniquely geodesic but locally possess a suitable selection of geodesies, a so-called convex

geodesic bicombing.

Furthermore, we deduce a local-to-global theorem for injective (or hyperconvex) metric

spaces, saying that under certain conditions a complete, simply-connected, locally injective

metric space is injective. A related result for absolute 1 -Lipschitz retracts follows.
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1. Introduction

Local-to-global principles are spread all-around in mathematics. Tire classical

Cartan-Hadamard Theorem from Riemannian geometry was generalized by W.

Ballmann [Bal] for metric spaces with non-positive curvature, and by S. Alexander
and R. Bishop [AB] for locally convex metric spaces, i.e., for spaces that locally
satisfy the Busemann property, meaning that do(yl, y2) is convex for all constant

speed geodesies yi, y2 As a normed vector space satisfies the Busemann property
if and only if its norm is strictly convex, this property is not preserved under

limit processes. This motivates to look at an even weaker notion of non-positive
curvature, where we only request convexity for a certain choice of geodesies,

compare [Kle, Section 10].

We use the convention of [ABr, Lan] to call such a collection of paths a

bicombing, a term originally coined by W. Thurston in the context of geometric

group theory. The following definition is for instance satisfied by the linear

segments (1 — t)x + ty in a normed vector space. In a metric space (X,d),
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a geodesic bicombing is a selection of a geodesic between each pair of points.
This is a map a : X x X x [0.1] -»• X such that, for all x,y G X, the path

oxy := o(x,y,-) is a geodesic from x to y, i.e. <Jxy(0) — x, axy( 1) y
and d{oxy{s),oxy{tj) \s — t\d{x,y) for all s,t e [0,1]. Moreover, we assume
that this choice is consistent in the sense that opq(]0,1]) C crxy([0, 1]) for all

p,q e ctXj([0, 1]) with d(x,p) < d(x,q). A geodesic bicombing a is called

convex if the function t i-> d(oxy(t), axy(t)) is convex for all x,y,x,y e X.
Furthermore, we say that o is reversible if ayx([0,1]) axy([0,1]) for all

x, y e X. A metric space admits a local geodesic bicombing, if such a selection

exists in a neighborhood U(x,rx) of each point x e X, see Section 2 for the

exact definition.

Metric spaces with a geodesic bicombing resemble hyperbolic spaces after
U. Kohlenbach [Koh, KL], which specify W-convex metric spaces considered by
W. Takahashi [Tak] and S. Itoh [Ito], Geodesic bicombings were recently studied

by D. Descombes and U. Lang in [Des, DL1. DL2] and also by G. Basso in

[Bas], where they show that several results for CAT(O) and Busemann spaces

carry over to spaces with convex geodesic bicombings. Here we will contribute

to these studies by proving the following Cartan-Hadamard Theorem.

Theorem 1.1. Let X be a complete, simply-connected metric space with a convex
local geodesic bicombing o. Then the induced length metric on X admits a unique

convex geodesic bicombing ö which is consistent with a. As a consequence, X
is contractible. Moreover, if the local geodesic bicombing a is reversible, then

ö is reversible as well.

As we show in a subsequent paper joint with G. Basso [BM], Theorem 1.1

leads to a uniqueness result for convex geodesic bicombings on convex subsets

of certain Banach spaces.

Important examples of spaces with convex geodesic bicombings are given by

injective metric spaces, which include the real line, M-trees and loo(I) for any
index set I. Recall that every metric space X possesses an injective hull, i.e.,

a smallest injective metric space into which X embeds [Isb], Injective metric

spaces play a crucial role in the theory of mapping extensions [AP] and fixed

point theory [Sin, Soa], see also [EK] and the references therein.

A metric space X is injective if for all metric spaces A, B with A C B and

every 1-Lipschitz map / : A -> X, there is a 1-Lipschitz extension /: B —> X,
i.e. /\a /• In fact, D. Descombes and U. Lang show in their work that every

proper, injective metric space of finite combinatorial dimension admits a (unique)

convex geodesic bicombing [DL1, Theorem 1.2]. Such spaces occur, for instance,

as injective hulls of hyperbolic groups [Lan, Theorem 1.4] and therefore, every
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hyperbolic group acts properly and cocompactly by isometries on a space with a

convex geodesic bicombing [DL1, Theorem 1.3].

Recall that injective metric spaces are complete, geodesic and contractible.

Now, knowing that under the above conditions injective metric spaces possess a

convex geodesic bicombing, we deduce the following local-to-global theorem for

injective metric spaces.

Theorem 1.2. Let X be a complete, locally compact, simply-connected, locally
injective length space with locally finite combinatorial dimension. Then X is an

injective metric space.

It is well known that injective metric spaces are the same as absolute
1 -Lipschitz retracts. For Lipschitz retracts, the weaker notion of absolute Lipschitz
uniform neighborhood retracts is common, see Section 4 for more details. Absolute

1-Lipschitz uniform neighborhood retracts are locally injective but the converse
is not true as we will see in Example 4.2. In fact, it turns out that the following
holds.

Theorem 1.3. Let X be a locally compact absolute 1 -Lipschitz uniform neighborhood

retract with locally finite combinatorial dimension. Then X is an absolute
1 -Lipschitz retract.

This paper is organized as follows. We start Section 2 by studying spaces with
local geodesic bicombings, establish an appropriate exponential map and finally

prove Theorem 1.1. In Section 3, we first show that every uniformly locally injective
metric space with a reversible, convex geodesic bicombing is injective. Afterwards,
we describe how to construct a reversible, convex local geodesic bicombing on

locally injective metric spaces, which extends to a convex geodesic bicombing
by Theorem 1.1. Thereby we establish Theorem 1.2. Finally in Section 4, we then

investigate absolute 1 -Lipschitz neighborhood retracts and prove Theorem 1.3.

2. Local geodesic bicombings

Let us first fix some notation. In a metric space X, we denote by

U{x,r) := {y e X : d(x,y) < r}

the open ball of radius r around x e X and by

B(x, r) {y e X : d{x, y) < r}

the closed one.
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Let Z be a metric space and y : [0,1] -» X a continuous curve. The length
of y is given by

n

L(y) := sup | ^ d(y(tk-i), y(tk)) : 0 t0 < < t„ lj.
k=1

Then

d(x,y) := inf {L(y) : y: [0,1] ->• A, y(0) x,y( 1) y}

defines a metric on X, called the induced length metric. If we have d — d, we

say that (A, d) is a length space.
For a metric space X, let Q{X) := {c : [0,1] —» X} be the set of all geodesies

in A, i.e. continuous maps c: [0,1] -> X with d(c(s), c(f)) |i-l|-rf(c(0),c(l))
for all s,t g [0.1], Note that geodesies need not be parametrised by arc-length.
We equip Q(X) with the metric

D(c,c'):= sup d{c{t),c'(?)).
t[0,l]

Let c G G(X) and 0 < a < b < 1, then we denote by C[a^] the reparametrized

geodesic given by c\_a,b\ ' [0-1] ~^ X with c[a,è](0 ;= — t)a + t^)-

Definition 2.1. A local geodesic bicombing on a metric space A is a local
selection of geodesies, i.e., a map <r:f/x[0,l]^Z, (y,z,t) i-> <Jyz(t), with
U C X x X open and the following properties:

(i) For all x G X, there is some rx > 0 such that, for all y,z e U(x,rx), there

is a geodesic ayz \ [0, 1] -> U(x,rx) from y to z, and

U {(y, z) G X x X : y, z G U(x, rx) for some x}.

(ii) Tlte selection is consistent with taking subsegments of geodesies, i.e.,

ayz((l - 0^1 + "2)

for (y, z) G U, 0 < si < S2 < 1 and t G [0, 1].

We call a local geodesic bicombing a convex if it is locally convex, i.e. for

y,z,y',z' G U(x,rx), it holds that

t v* d(oyz{t),cjy>z>(t))

is a convex function. Furthermore, o is reversible if

ttzy(t) OyZ( 1 t)

for all (y,z) G U and t g [0,1].
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Remark. Observe that, by property (ii), a local geodesic bicombing is convex if
and only if

d{oyz{t),ayz'{t)) < (1 - t)d(y, y') + td(z,z')

for all y,z,y',z' e U(x,rx) and f e [0,1].

A (local) geodesic c : [0,1] -> X is consistent with the local geodesic

bicombing a if
C[a,b](0 ®c(a)c(è)(0

for all 0 < a < b < 1 with (c(a), c(b)) e U.
To prove Theorem 1.1, we roughly follow the structure of Chapter II.4 in [BH].

Adapting the methods of S. Alexander and R. Bishop [AB], we can prove the

following key lemma.

Lemma 2.2. Let X be a complete metric space with a convex local geodesic

bicombing a and let c be a local geodesic from x to y which is consistent with a.
Then, there is some e > 0 such that, for all 5c, y e X with d(x,5c),d(y,y) < e,
there is a unique local geodesic c from x to y with D{c,c) < e which is

consistent with a. Moreover, we have

L(c) < L(c) + d(x, 5c) + d(y, y)

and if c is another consistent geodesic from 5c to y with D(c,c) < e, then

t i-s- d(c{t), c(i))

is convex.

Proof Let e > 0 be such that ^\u(mae)xU{c{t)ae)mi] is a convex geodesic

bicombing for all t 6 [0,1]. Now, let P(A) be the following statement:

P(T): For all a,b e [0, 1] with 0 < b — a < A and for all p.q e X with
d(c(a), p),d(c(b),q) < e, there is a unique local geodesic cpq ' [0,1] —> X
from p to q with D(c[a^],cpq) <e which is consistent with a. Moreover,
for all such local geodesies the map t i-^ d(cpq(t),cp'q'(t)) is convex.

By our assumption, P(j^y) holds. Therefore, let us show P(T) =>• P(^).
Given a,b e [0,1] with 0 < b — a < define po '= c(^a + |b) and

qo := c(^a + |b). Then, by P(v4), there are consistent local geodesies c\ from p
to qo and c\ from po to q. Inductively, we set pn cn(~) and qn c'n(\),
where cn is a consistent local geodesic from p to qn-\ and c'n from pn~\ to q.
Observe that, by convexity of the cn,c'n, we have d(p„-\, pn), d(qn-\, qn) <
and hence the sequences (pn)n and (q„)n converge to some p^ and q00,
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respectively, and we have d(poo, po). d{q00, qo) < e. Furthermore, by convexity,
the cn,c'n converge to the consistent local geodesies cQ0 from p to and c'œ

from poo to q, which coincide between poo — CooC^) and qoo cto(^)- Hence,

they define a new local geodesic cpq from p to q which is consistent with o
and Poo — Cpq(^), qoo Cpqi^f

Now, given two local geodesies cpq and cp'q' with D(c[a^, cpq) < e and

D(c[aM,cp'q') < set ä := d(p,p'), t := d(q,q'), s' : d(cpq(\),cp'q>(\))
and t' := d(cpq(^), cy3'(|)). Then we have s' < t' < anc] therefore

s' < § + j + I, he- s' < ancj similarly t' < follows. Hence, we get

convexity of t i-> d(cpq(t), cp'g'(t)) and therefore also uniqueness follows.
It remains to prove that L(c) < L(c) + d{x, x) + d{y, y). Let c be the unique

consistent local geodesic from x to y with D(c,c) < e. For t small enough we
have

tL(c) — d (c(0), c(0) d (c(0), c(t))

S d(c(0), c(t)) + d(c{t),c(t)) < tL(c) + td(c(l),c(l)),

i.e., L(c) < L(c) + d(y, y) and similarly L(c) < L(c) + d{x,x).

Definition 2.3. Let X be a metric space with a local geodesic bicombing a.
For some fixed x0 e X, we define

XXo '= {c: [0,1] -» X local geodesic with c(0) x0, consistent with a}.

We equip XXQ with the metric D(c,c') supre[0 jj d(c(t), c\t)) and define the

map

exp: Xxo -> X, c h> c(1).

If X is complete, this map has the following properties.

Lemma 2.4. Let X be a complete metric space with a convex local geodesic

bicombing a. Then the following holds:

(i) Tlte map exp : XXo -> X is locally an isometry. Hence a naturally induces

a convex local geodesic bicombing à on XXQ.

(ii) XXQ is contractible.

(iii) For each x e Xxo, there is a unique local geodesic from xo to x which is

consistent with ä, where xo is the constant path xq(t) — xo-

(iv) XXQ is complete.

Proof. By Lemma 2.2, for every c e XXQ, there is some e > 0 such that the

map exp J^ : U(c,e) £/(c(l),e) is an isometry. Hence, o naturally induces

a convex focal geodesic bicombing à on XXQ.
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Consider the map r: XXQ x [0,1] -» Xxo,(c,^) h» (rs(c) : t >-» c(st)). This

defines a retraction of XXQ to x0.
A continuous path c : [0,1] -» XXQ is a local geodesic in XXo which is

consistent with cr if and only if expoc is a local geodesic in X which is

consistent with a. Therefore, for any c 6 XXQ, the map s i-> rs(c) is the unique
local geodesic from x0 to c.

Finally, if (cn)n is a Cauchy sequence in X, by completeness of X, for every
t [0,1], the sequences (c„(t))n converge in A, to c(t) say. Locally, i.e., inside

U{c(t),rc(f)), the subsegment c|[f_e><+e] is the limit of the consistent geodesies

(cn|[,_ej,+e])„ and hence c is consistent with o by the convexity of the local

geodesic bicombing.

The following criterion will ensure that exp is a covering map.

Lemma 2.5. Let p : X —> X be a map of length spaces such that

(i) X is connected,

(ii) p is a local homeomorphism,

(iii) for all rectifiable curves c : [0,1] —> X, we have L(c) < L(p o c),

(iv) X has a convex local geodesic bicombing a, and

(v) X is complete.

Then p is a covering map.

Proof. The proof of Proposition 1.3.28 in [BH] also works in our setting. In
the second step, take U U{x,rx) and define the maps sx : U(x,rx) -> X by

sx(y) öXy{T), where axy is the unique lift of oxy with dxy(0) x.

Remark. For a local isometry p, conditions (ii) and (iii) are satisfied.

Corollary 2.6. Let (X, d) be a complete, connected metric space with a convex
local geodesic bicombing a. Then exp: XXo —>• X is a universal covering map.

Proof. Consider the induced length metrics d and D on X and XXQ. Since

(X,d) locally is a length space, the metrics d and D locally coincide with
d and D, respectively. Hence p still is a local isometry with respect to the

length metrics and cr is a convex local geodesic bicombing. Thus Lemma 2.5

applies.

Proof of Theorem 1.1. First, we show that, for all x,y e X, there is a unique
consistent local geodesic from x to y Since X is simply-connected, the covering



240 B. Miesch

map exp : Xx -» X is a homeomorphism which is a local isometry and by Lemma

2.4, there is a unique consistent local geodesic öxy from x to y.
Next, we prove that axy is a geodesic. To do so, it is enough to show that, for

every curve y : [0,1] -» X and every t [0, 1], we have L(cry(o)y(f)) < L(y|[o,f])-
Let

A := {s e [0,1] : Vf e [0,5] we have L(cry(0)y(f)) < L(y|[0,q)}.

Clearly, A is non-empty and closed. To prove that A is open, consider s e A.
For S > 0 small enough, by Lemma 2.2, we have

£(^y(0M*+5)) < i(ô-y(0)y(5)) + d(y(s), y(s + 8))

Flence, A [0,1] as desired.

Finally, we show that t d(àxy(t),âxy(t)) is convex. By Lemma 2.2, there

is a sequence 0 t\ < <tn 1 and ek > 0 such that

• the balls U(äxx(ti), a U(5xx(t„), e„) cover âxx,

• the balls U{oyy(t\), ex),..., U(àyy(tn), en) cover 5yy, and

• for all p.p e U(axx{tk),ek) and q.q e U(âyy(tk),ek), the map t

d(äpq(t),äpq(t)) is convex.

Consider now a sequence 0 5o < s\ < < sn 1 with

&xx(Sk) e U(öxx(tk),k) n U(0xx(tk+l),k+l),
Gyyi^k) ^ U(Öyy(tk)->k) C U(Öyy(tk+\),Tfc+l),

for k 1,... ,n — 1. Then we get

d(axy(t),âxy(t))
n

— ^2 ^{^Ô-Xx(Sk-l)âyy(Sk-l)(t)^dXx(Sk)dyy(Sk)^))
k=1

n n

- ^ ~ t){Yld(ôxy{sk-i),Ôxï(sk))^ +/^^^(a3,y(5A:_1),CTyy(5(t))^)
k=1 k=1

(1 - t)d(x, x) + td{y, y).

Hence, cr is a convex geodesic bicombing on X.
If a is reversible, then ôxy(t) := dyx(l — t) also defines a convex geodesic

bicombing on X which is consistent with a. Therefore, by uniqueness, à* and

a coincide, i.e. ct is reversible.
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3. Locally injective metric spaces

N. Aronszajn and P. Panitchpakdi [AP] proved that injective metric spaces are

exactly the hyperconvex metric spaces, namely metric spaces with the property
that for every family of closed balls {B(xi, r;)}i6/ with d(xi,Xj) < rt + rj, for
all i,j el, we have fj/e/ B(xi,ri) 7^ 0- Note that in hyperconvex metric spaces
closed balls are hyperconvex.

Definition 3.1. A metric space X is locally injective if, for every x e X, there

is some rx> 0 such that B(x,rx) is injective. If we can take rx — r for all x,
we call X uniformly locally injective.

Lemma 3.2. Let X be a metric space with the property that every closed ball

B{x,r) is injective, then X is itself injective.

Proof. Let {#(x;, r,)}^/ be a family of closed balls with d(xi,xj) < r,- + >j.
Fix some z0 e / and set At := B(xi, rf fi ß(xi(), r!Q). Since, for r big enough,

we have Xi, xj e B{Xi0,r), we get that the At 's are externally hyperconvex in

Aio and Ai n Aj 0 for all i, j e I. Hence, it follows

(~)B(xi,ri)=(~)Aiyé0
iel iel

by [Mie, Proposition 1.2].

Proposition 3.3. Let X be a uniformly locally injective metric space with a

reversible, convex geodesic bicombing o. Then X is injective.

Proof Consider the following property:

P(R): For every family {B(xi, r,)};6/ with d{xi,xj) < r, + rj and r, < R, there

is some x e f]ie/ B(xi,n).
Since X is uniformly locally injective, this clearly holds for some R0 > 0. Next,

we show P(Ä) =» P(2R) and therefore P(i?) holds for any R > 0.

Let {B{xi,ri)}iei be a family of closed balls with d(xi,Xj) < r, + rj and

r; <2R. For i,j e /, define yij := oXiXj(\). By convexity of a, we have

d(yij,yik) d(oXiXj{\),oXiXk{\)) < \d(xj,xk) < ^ + ff.

Hence, for every iel, there is some z,- e flye/ 'fr) Now, observe that

d(zi,zj) < d{zi,yij) + d(yij,Zj) < y + '-f and therefore, we find

x e H 2") C P) B(xi,ri).
iel iel
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Since all balls with center in B(x,r) and radius larger than 2r contain B(x,r),
P(R) for R — 2r implies that B{x,r) is injective. Hence, by Lemma 3.2, X is

Since compact, locally injective metric spaces are always uniformly locally
injective we conclude the following.

Corollary 3.4. Let X be a compact, locally injective metric space with a

reversible, convex geodesic bicombing a. Ttien X is injective.

Corollary 3.5. Let X be a proper, locally injective metric space with a reversible,

convex geodesic bicombing a. Then X is injective.

Proof. Let {B(xi, r;)};6/ be a family of balls with d(xj,xj) < /-,• + rj. Fix
some io e I and define /„ {i e I : d(xi,Xj0) < n}, for n e N. Since

B(xi0, n) is compact, by the previous corollary, there is some yn e His/,, > ri)
Especially, (yn)n C 5(x/0,r,0) and hence, there is some converging subsequence

Remark. In [Lan], U. Lang proves that every injective metric space admits a

reversible, conical geodesic bicombing (Proposition 3.8). Observe also that this is

the only property of the geodesic bicombing used in the proof of Proposition 3.3.

Therefore, we get the following equivalence statement (in the terminology of
[Lan]): A metric space is injective if and only if it is uniformly locally injective
and admits a reversible, conical geodesic bicombing.

If an injective metric space X is proper, it also admits a (possibly non-

consistent) convex geodesic bicombing [DL1, Theorem 1.1] and if X has finite
combinatorial dimension in the sense of A. Dress [Dre], this convex geodesic

bicombing is consistent, reversible and unique [DL1, Theorem 1.2]. In our terms,
this is:

Proposition 3.6. Every proper, injective metric space with finite combinatorial
dimension admits a unique reversible, convex geodesic bicombing.

Recall that, by the Hopf-Rinow Theorem, any complete, locally compact length

space is proper.

injective.

ynk y e Hie/ B(Xi,n).

Corollary 3.7. Let X be a locally compact, locally injective metric space with

locally finite combinatorial dimension. Bien X admits a reversible, convex local
geodesic bicombing.
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Proof. For every x e X, there is some rx > 0 such that B(x,3rx) is compact,

injective and has finite combinatorial dimension. This also holds for B(x,rx) and

therefore, there is a reversible, convex geodesic bicombing <jx on B(x,rx).
We will check that for B(x,rx) and B(y,ry) with B(x, rx) ft B(y, ry) 0 the

two geodesic bicombings ox,oy coincide on the intersection. Assume without
loss of generality that rx > ry and hence B(x, rx), B(y, ry) c B(x, 3rx). Then the

convex geodesic bicombing r on B{x,3rx) restricts to both B{x,rx) and B(y,ry)
since, for p.q e B(z,rz), we have d{z,xpq{t)) < (1 — t)d(z.p) + td(z,q) < rz.
Hence, by uniqueness, the geodesic bicombings ox,oy are both restrictions of r
and thus coincide on B(x,rx) IT B(y,ry).

Therefore a, defined by o\b(i/i)xb(i/i) := crx\B(x,rx)xB(x,rx), is a reversible,

convex local geodesic bicombing on X.

Proof of Theorem 1.2. Let A be a complete, locally compact, simply-connected,
locally injective length space with locally finite combinatorial dimension. By
Corollary 3.7, X has a reversible, convex local geodesic bicombing, which induces

a reversible, convex geodesic bicombing by Theorem 1.1. Hence, we can apply

Corollary 3.5 and deduce that X is injective.

4. Absolute 1-Lipschitz Neighborhood Retracts

Absolute Lipschitz uniform neighborhood retracts appear for instance in the

study of approximations of Lipschitz maps, see [HJ, Section 7], The question
arises, how much absolute Lipschitz uniform neighborhood retracts differ from
being an absolute Lipschitz retract. Theorem 1.3 will give a first answer in the

case of absolute 1 -Lipschitz retracts.

A metric space X is an absolute 1 -Lipschitz neighborhood retract if, for every
metric space Y with X c Y, there is some neighborhood U of X in Y and a

1-Lipschitz retraction p: U — X. Furthermore, if we can take U U(X,e) for

some e > 0, we call X an absolute I-Lipschitz uniform neighborhood retract. In
this case, e can be chosen independent of Y ; see [HJ, Proposition 7.78]. Finally,
if there is always a 1 -Lipschitz retraction r : Y —* X, then X is an absolute
1 -Lipschitz retract. This is equivalent to X being an injective metric space [AP,
Theorem 8],

Lemma 4.1. Let X be an absolute 1 -Lipschitz (uniform) neighborhood retract.
Tien X is (uniformly) locally injective.
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Proof. Consider X cloo(X). Since X is an absolute 1-Lipschitz neighborhood
retract, there is some neighborhood U of X and a 1-Lipschitz retraction

p: U -> X. For x e X, there is some rx > 0 such that B(x,rx) c U.
Let now {B(xi, r,)};6/ be a family of closed balls with x; e B(x,rx) D X
and d(xi,Xj) < r; + rj. Then, since loo(X) is injective, there is some y e

B(x,rx)n(~)iel B{xi,rf) C U. Hence, we have p(y) e B(x, rx)n(~)ieI B{xi,r{)DX
and therefore B(x, rx) fl X is injective.

If X is an absolute 1 -Lipschitz uniform neighborhood retract, we have

U U(X,e) for some e > 0 and therefore, we can choose rx | for all

x e X

The converse is not true, as the following example shows.

Example 4.2. Consider the unit sphere S1 endowed with the inner metric. Since,

for every x e S1 and e e (0, f], the ball B(x,e) is isometric to the interval

[—e,e], the unit sphere Sl is uniformly locally injective.
But S1 is not an absolute 1-Lipschitz neighborhood retract. Fix some inclusion

S1 C lœ(Sl). We choose three points x,y,z e S1 with r d(x,y) d(x,z)
d(y,z) — ff. Let U be a neighborhood of S1 in /ooC^1). As U is open, there

is some e e (0, |) such that B(x,e) C (/. By hyperconvexity of looiS1), there

is some

p e B(x, e) fl B(y, r — e) D B(z, r — e) C U.

But since

B(x,e) C B(y,r - e) n B(z,r -a) fl5'=0,
there is no 1-Lipschitz retraction p: S1 U {p} —> S"1.

In fact, the notion of an absolute 1 -Lipschitz uniform neighborhood retract is

quite restrictive.

Lemma 4.3. Let X be an absolute 1 -Lipschitz uniform neighborhood retract.
Bien X is

(i) complete,

(ii) geodesic, and

(iii) simply-connected.

Proof. Fix some inclusion X c loo(X) and r := | > 0 such that there is a

1-Lipschitz retraction p: U(X,e) -> X.

First, if (x„)„6n is a Cauchy sequence in X, it converges to some x e U(X, e).
It follows that x p(x) X.
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Next, assume that there is a geodesic in X between points at distance less than

d. By Lemma 4.1, this is clearly true for d — r. Consider two points x,y e X
with d(x,y) < d + r. Now, since lao(X) is geodesic, there is some z e l00(Z)
with d(x, y) d{x, z) + d(z, y), d(x, z) < r and d(z, y) < d But then, we have

p(z) e X with d(x,y) d(x,p(z)) + d(p(z),y) and, by our hypothesis, there

are geodesies from x to p(z) and from p(z) to y which combine to a geodesic

from x to y.
Finally, since X is locally simply-connected, every curve is homotopic to a

curve of finite length and hence it is enough to consider loops of finite length.
We show that every such loop in X is contractible.

Let y be a loop in X of length L(y) — 2nR with R > r. Denote by
5*2 •_ {x e E3 : |x| R} the sphere of radius R endowed with the inner
metric and let A := {x e S# : 0 < x3 < R sin(^)} be the region bounded by the

two circles c {x e S\ : X3 0} and c' := {x e S\ : x3 R sin(-^)}. Let

/ : c —* X be a parametrization of y by arclength and let / : A —> loo(X) be a 1 -

Lipschitz extension. Then y' := p°/(c') is a loop of length L(y') < L(c') 2:xR'

with R' R cos(-^), which is homotopic to y. Since cos(^) < cos(^), we

find inductively a loop yn with L(yn) < 2nRcos(^)", which is homotopic to y.
If L(y) 2nR with R < r, we can use the same argument with A replaced

by the upper halfsphere of radius R to show that y is contractible.

We conclude that an absolute 1 -Lipschitz uniform neighborhood retract
is a complete, simply-connected, locally injective length space and therefore

Theorem 1.3 follows directly from Theorem 1.2.

Acknowledgments. I would like to thank Prof. Dr. Urs Lang for helpful remarks

on this work and Dr. Maël Pavön for inspiring discussions. I am also grateful for
Giuliano Basso's comments related to Theorem 1.1. Tire author was supported by
the Swiss National Science Foundation.

References

[AB] S. Alexander and R. Bishop, The Hadamard-Cartan theorem in locally convex

metric spaces. Enseign. Math. (2) 36 (1990), 309-320. Zbl 0718.53055

MR 1096422

[ABr] J.M. Alonso and M. R. Bridson, Semihyperbolic groups. Proc. London Math.

Soc. (J) 70 (1995), 56-114. Zbl 0823.20035 MR 1300841

[AP] N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transfor¬

mations and hyperconvex metric spaces. Pacific J. Math. 6 (1956), 405-439.

Zbl 0074.17802 MR 0084762



246 B. Miesch

[Bal] W. Ballmann, Singular spaces of nonpositive curvature. Sur les groupes hyper¬

boliques d'après Mikhael Gromov (Bern, 1988), 189-201, Progr. Math., 83,

Birkhäuser Boston, Boston, MA, 1990. MR 1086658

[Bas] G. Basso, Fixed point theorems for metric spaces with a conical geodesic bi-

combing. Ergodic Theory Dynam. Systems (2017), Doil0.1017/etds.2016.106.

[BH] M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature.

Springer-Verlag, 1999. Zbl 0988.53001 MR 1744486

[BM] G. Basso and B. Miesch, Conical geodesic bicombings on subsets of normed

vector spaces. arXiv:1604.04163, Aug 2016. To appear in Adv. Geom.

[Des] D. Descombes, Asymptotic rank of spaces with bicombings. Math. Z. 284 (2016),
947-960. Zbl 1360.53078 MR 3563261

[DL1] D. Descombes and U. Lang, Convex geodesic bicombings and hyperbolicity.
Geom. Dedicata 111 (2015), 367-384. Zbl 1343.53036 MR 3370039

[DL2] - Flats in spaces with convex geodesic bicombings. Anal. Geom. Metr. Spaces
4 (2016), 68-84. Zbl 1341.53070 MR 3483604

[Dre] A. W. M. Dress, Trees, tight extensions of metric spaces, and the cohomological
dimension of certain groups: A note on combinatorial properties of metric

spaces. Adv. in Math. 53 (1984), 321-402. Zbl 0562.54041 MR 0753872

[EK] R. Esp(nola and M. A. Khamsi. Introduction to hyperconvex spaces. Handbook of
Metric Fixed Point Theory, 391-435, Kluwer Acad. Publ., Dordrecht, 2001.

Zbl 1029.47002 MR 1904284

[HJ] P. Hâjek and M. Johanis, Smooth Analysis in Banach Spaces. De Gruyter
Series in Nonlinear Analysis and Applications, 19. De Gruyter, Berlin, 2014.

Zbl 1327.46002 MR 3244144

[Isb] J. R. Isbell, Six theorems about injective metric spaces. Comment. Math. Helv.

39 (1964), 65-76. Zbl 0151.30205 MR 0182949

[Ito] S. Itoh, Some fixed-point theorems in metric spaces. Fund. Math. 102 (1979),
109-117. Zbl 0412.54054 MR 0525934

[KL] U. Kohlenbach and L. Leu§tean, Asymptotically nonexpansive mappings in

uniformly convex hyperbolic spaces. J. Eur. Math. Soc. (JEMS) 12 (2010),
71-92. Zbl 1184.03057 MR2578604

[Kle] B. Kleiner, The local structure of length spaces with curvature bounded above.

Math. Z. 231 (1999), 409-456. Zbl 0940.53024 MR 1704987

[Koh] U. Kohlenbach, Some logical metatheorems with applications in functional

analysis. Trans. Amer. Math. Soc. 357 (2005), 89-128. Zbl 1079.03046

MR 2098088

[Lan] U. Lang, Injective hulls of certain discrete metric spaces and groups. J. Topol.

Anal. 5 (2013), 297-331. Zbl 1292.20046 MR 3096307

[Mie] B. Miesch, Gluing hyperconvex metric spaces. Anal. Geom. Metr. Spaces 3 (2015),
102-110. Zbl 1321.54053 MR 3349339

[Sin] R. Sine, On linear contraction semigroups in sup norm spaces, Nonlinear Anal.
3 (1979), 885-890.



The Cartan-Hadamard Theorem 247

[Soa] P. M. Soardi, Existence of fixed points of nonexpansive mappings in certain
Banach lattices. Proc. Amer. Math. Soc. 73 (1979), 25-29. Zbl 0371.47048

MR 0512051

[Tak] W. Takahashi, A convexity in metric space and nonexpansive mappings. I. Ködai
Math. Sem. Rep. 22 (1970), 142-149. Zbl 0268.54048 MR 0267565

(Reçu le 23 novembre 2016)

Benjamin Miesch, Department of Mathematics, ETH Zürich,
Raemistrasse 101, 8092 Zürich, Switzerland

e-mail: benjamin.miesch@math.ethz.ch

© Fondation L'Enseignement Mathématique




	The Cartan-Hadamard Theorem for metric spaces with local geodesic bicombings

