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Holding convex polyhedra by circular rings

Hiroshi Maehara and Horst Martini

Abstract. In 1995, T. Zamfirescu proved that most convex bodies can be held by circles, that

is, for most convex bodies B it is possible to attach a hinged circular ring of appropriate

size to B so that it cannot slip out of B. Since then, many results have been obtained

concerning the existence of such circles for various convex polyhedra, and the sizes of such

circles when they exist. It seems, however, that these results were obtained individually

by ad hoc methods. In this paper we develop a unified concept and methods enabling a

systematic presentation of these results, and we also obtain a few new results. A complete

survey on the topic is also presented.

Mathematics Subject Classification (2010). Primary: 51M05, 51M20, 52A15, 52B10,

52C99, 70B10.

Keywords. Baire category, holding circle, holding frame, circle-free, immobilizing shapes,

trunk of a convex polyhedron.

1. Introduction and a survey of related results

A convex body is a compact convex set with interior points in M 3. How is

it possible to hold a convex body by a hinged circular ring (see Figure 1.1) of
suitable size? This paper is an attempt at a rather systematic treatise concerning
this problem and variants thereof, especially for convex polyhedra.

In applied disciplines like robotics (and subfields thereof, such as motion

planning) one is confronted with many geometric problems, and also their
solutions need a lot of geometric intuition. This implies that typical questions
from computational, discrete, and convex geometry can also yield basic knowledge
for very applied situations. The general type of question investigated here can
be described as follows: given some geometric object A (e.g., a compact point
set, called "body") and some system B of barriers (described as a geometric
configuration, like a finite point set, a family of compact sets, or the complement
of it), A should pass B with respect to the group of motions (or its subgroup
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Figure 1.1

A hinged circular ring

of translations) remaining completely in the complement of B, with or without
friction. Contrarily, one can ask for a system B sufficient to block A in some

optimal sense (e.g., for B a finite set having, for instance, smallest cardinality to
do so). Choosing A as convex body, B as family of translates of A or as finite
set, and using the translation group, we enter combinatorial geometry, i.e., we
refer then to notions like blocking numbers, fixing systems and hindering systems

(see [Zon], [BMS, § 4], and [BM]). Extending this to the group of motions, we

are in the small field of immobilizing (convex) shapes which is investigated mainly
in computational geometry (cf., e.g., [BFMM] and [CSU]) and more related to

our investigations here. The piano mover's problem is even more general: one has

to find a continuous motion that will take a given body or a family of bodies,

presented by A, from a given initial position to a desired final position, but with

strong geometric constraints which forbid the bodies to come in contact with the

fixed barrier system B and with each other (see, e.g., [SS] and, for an even more
general concept, [Daw]). This problem is also nicely presented in the problem
book [CFG], see G5 there.

The problem that we will discuss here is closely related to these concepts:

given a convex body A, find a non-extensible string forming a net B around
A (which can, in particular, consist only of a circle) such that A cannot slip
out. And describe, somehow contrarily, a related situation where A unexpectedly
can slip out. Fooking at the existing references, this small field might be called
"circles (and cages) holding convex bodies against continuous motions", and is

mainly developed in 3-space. It is our aim to survey first the recent state of
knowledge, to develop then a unified concept which allows a convenient approach

to and a new presentation of existing results, and to derive also various new
results. In a few cases, results described in the following sections in a detailed

way are, for the sake of completeness, already shortly mentioned in the survey
starting now.

In 1920, Zindler [Zin] studied problems on circular cylinders C of smallest

possible radius ri which cover a convex body A. He observed that if A is for
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example an affine cube, then one can move a circle, whose radius r0 is smaller

than r\, "over A". Conversely, one can interpret that circle as fixed object B,
and then A as the body that can be moved "through B". Zindler posed the

interesting question for the smallest possible ratio ^ still guaranteeing that this

process is possible. Zindler's contribution can be seen as the starting point for
the small field that we discuss here. More precisely, we ask for the optimal total

length of circles that can hold (certain types of) convex bodies against motions.

Zamfirescu [Zaml] defined that a convex body A in M3 is said to be held by

a circle B if the intersection of B and the interior of A is empty and it is not

possible to continuously and rigidly move B away from A without intersecting
the interior of A (we say then that B holds A). He proved that the family
of convex bodies which cannot be held by some circle form a nowhere dense

subset of the space of all three-dimensional convex bodies with respect to the

Hausdorff metric (see [Sehn, §1.8]). A single, but suggestive result was derived

in [Tanl] (see also [Tan2]): the regular triangular prism with all edges of length
1 can be held by a circle. In [Fru] it was shown that if a circle of diameter d
holds a convex body of minimum width w, then ~ > |, which is sharp. The

author also claims that this can be generalized to W,n > 2, for holding spheres

of dimension n — 2, and he derives respective inequalities in terms of d and

w. In [Zam3] it is proved that, in the sense of Baire category (cf. [Gru] and

[Sehn, §2.6]), for most convex bodies in R3 Zindler's observation is true: they

can be pushed through a circle whose radius is smaller than that of the smallest

circumscribed circular cylinder. (From now on we use the word "most" in this

sense.) If we imagine this circle as a circular hole in a wall, the natural question

occurs which influence then the thickness of this wall has. This is studied in

[Zam2], and it turns out that in most cases it has influence. This type of results

is clearly related to embeddings of convex bodies A into infinitely long cylinders
perpendicular to the holes in walls. See [Mael] for regular tetrahedra in circular

cylinders, and [MT2] for regular tetrahedra in regular triangular cylinders. In the

first case all tetrahedra have equivalent positions (i.e., they can be superposed

by a rigid motion within the respective prism), in the second case not, and

the non-equivalent positions are described in [MT2], The analogous question for

square prisms seems not to be settled. Coming back to holding circles, Maehara

[Mae4] proved that, for A being the regular icosahedron, the range of the space
of all circles (defined via diameter) holding A has two components. This was

generalized by Bârâny and Zamfirescu. They showed in [BZ2] and [BZ1] that

for most convex bodies the space of their holding circles has infinitely many
components, and that various "counterintuitive" relations between extremal radii
of holding circles exist. Another result from [BZ1] refers to the replacement of
holding circles by planar closed convex curves, called holding frames. It says
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that if the holding frame is neither a triangle (no triangle holds any convex

body) nor a circle (any circle fixes some convex bodies, e.g., tetrahedra), then

some tetrahedron in R3 is fixed by this frame without motion. The latter means
that even the rotation is excluded which is trivially possible for holding circles.

Continuing the study of holding frames, it is proved in [BMT] that a convex body
can pass through a triangular hole iff it can do so by a translation along a line

perpendicular to the hole. As an application, the minimum size of an equilateral
triangular hole through which a regular tetrahedron with unit edge-length can pass
is determined. Again the fact that no triangular frame can hold a convex body is

used, and it is shown that every non-triangular frame can fix some tetrahedron.
The authors of [ITZ] determine the smallest circular and the smallest square
hole in a plane of R3 through which a regular tetrahedron of fixed size can

pass. Extensions of these problems to higher dimensions are given in [IZ] and

[MT1], In the first paper diameters and minimal widths of convex hyperplanar
holes in dimensions 3, 4, and 5 are determined, through which respective regular
simplices can pass. And [MT1] refers to «-dimensional simplices which can be

pushed through hyperplanar holes whose shapes are given by (« —1)-dimensional
regular simplices, cubes, and balls.

It is clearly impossible to hold a ball in R3 by a circular ring. So we continue

by recalling some classical results on holding a unit ball by other constraints. We

now do this in greater detail, since this part of the field is no longer discussed

in the following sections.

Theorem 1.1 (Besicovitch [ Besl]). The length of an inextensible string to construct
a net around a unit ball so that the ball cannot slip out of it is greater than 3n,
and it is possible to bring it as near to 3re as we like.

Figure 1.2 shows that for any s > 0 there is a net of total length smaller than

3ic + e that holds a unit ball. Indeed, since the length of the string used in any
"3-cycle" of the net in Figure 1.2 is less than 2n, the ball cannot slip out of the

Figure 1.2

A net that holds a unit ball



Holding convex polyhedra by circular rings 277

net. Croft [Cro] proved the same result with a different method, see also [Ste].

By allowing that some of the six great circular arcs (see again Figure 1.2) can

break, in [Cro] also a more general question is studied.

The smallest cube that contains a unit ball must have dimensions 2x2x2.
Hence the sum of its edge-lengths is 24. L. Fejes Töth |8, p. 143] conjectured
that the total length of the edges of a convex polyhedron that contains a unit ball
is greater than or equal to 24, with equality only when the polyhedron is a cube.

This conjecture was proved by Besicovitch and Eggleston.

Theorem 1.2 (Besicovitch and Eggleston [BE]). The total length of the edges of
a convex polyhedron that contains a unit hall is at least 24, and 24 is attained

only by a cube.

By a cage we mean the one-skeleton of a convex polyhedron; this notion

creates several interesting problems in combinatorial geometry (see, e.g., [Sehr]).
Coxeter asked for the minimum of the total edge-length of a cage that can hold

a unit ball. For a right triangular prism, all whose edges are of length V3, the

distance from the center of the prism to the midpoint of each edge is equal to 1.

Hence the 1-skeleton of this triangular prism is a cage that can hold a unit ball,
and the total length of edges of this cage is 9\/3 « 15.5884. Coxeter conjectured
in his review of the paper [BE] (see MR0095448 and also [Cox]) that this is the

smallest value of the total length of edges of a cage that can hold a unit ball.

His conjecture was refuted by Besicovitch.

Theorem 1.3 (Besicovitch [Bes2], Aberth [Abe]). The total length of the edges

of a cage that can hold a unit ball is greater than y + 2y/3 « 11.84, and

y is the greatest lower bound.

Besicovitch constructed a cage of total length y + e that holds a unit ball,
and Aberth proved that y is the greatest lower bound of the total length of edges

of such a cage. Figure 1.3 shows Besicovitch's cage. In the review of [Bes2]
(see MR0155236) Coxeter repeats his conjecture restricted to polyhedra with the

property that all their edges have to touch the enclosed sphere.

In [Zam4] Zamhrescu extends the representations of usual segments with two

endpoints to "segments" between two convex bodies in their space with respect to
the Hausdorlf metric. A path in this space consisting of k consecutive segments
is then called a k-move. He shows that if a convex body A is held by a cage

B, it can migrate through a 2-move to a translate A' of A outside B, keeping
its diameter constant on the way. Also further results of this type are verified in

[Zam4], and two interesting research problems on cages are formulated in [MZ].
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Figure 1.3

Construction of Besicovitch's cage

Let us return here to convex bodies and circles. To make our arguments clear,

we define some notions as follows. For a given closed domain V c R3, two
circles in M3 \ int('D) are said to be isotopic to each other over V if one of
these circles can be continuously and congruently moved in R3 \ int(X>) so that

it coincides with the other one, where int(*) denotes the interior of *. Thus,

circles isotopic in that sense are congruent. A circle F is said to be attached to

Pel3 if Pf! int(T>) 0 and conv(T) (1P^0, where conv(*) denotes the

convex hull of *. If a circle F attached to a convex body B in R.3 is isotopic
over B to a circle F' satisfying conv(7") n B — 0, then we say that F can slip
out of B. If F cannot slip out of B, then we say that F holds B. A convex

body B is called circle-free if no circle can hold B.

Balls and ellipsoids in R3 are clearly circle-free. It is also not difficult to see

that every right circular cylinder is circle-free. Every right circular cone is also

circle-free. For two nonempty subsets U, V cl3, the Minkowski sum U + V is

defined as

U + V — {u + v : u e U, v e V).

It is known (Maehara [Mae3]) that for every compact convex set X contained
in a plane in R3, the Minkowski sum X + B is circle free, where B is a hall

of arbitrary radius centered at the origin. Thus, a sausage (i.e., the Minkowski

sum of a line-segment and a ball) is also circle-free.

Is there a convex body that can be held by a circle? Surprisingly, most convex
bodies (in the sense of Baire categories, see again [Gru] and |Schn, §1.8J) can

be held by circles, as was proved by Zamfirescu.

Theorem 1.4 (Zamfirescu [Zaml]). The set of circle-free convex bodies farms a
subset in the space of all convex bodies in R3 which is nowhere dense with

respect to Hausdorff metric.
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In the sequel, we mainly concentrate on holding circles of convex polyhedra.
In §2, we introduce "trunks of convex polyhedra" and "transversal disks of trunks"
as basic notions, give several examples, and present a so-called "Symmetrization
Lemma" and an "Isotopy Lemma" as key lemmas. In §3, various results on circles

holding convex polyhedra are shown by using these notions and lemmas, and in

§4 the key lemmas are proved.

2. Holding a convex polyhedron by a circle

2.1. Trunks of a convex polyhedron. In the sequel, a set of points A, B, C,...
in M 3 and its convex hull are both denoted by the juxtaposition ABC

A trunk £ of a convex polyhedron FI in M 3 is a nonempty set of those edges

of 77 that are cut by a single plane passing through no vertex of 77. Since such

a plane divides the endpoints of the edges into two nonempty sets, a trunk can be

represented as £ — (U, V), where U is the set of endpoints on one side of the

plane, and V is the set of endpoints on the other side of the plane. The convex
hull of £ (i.e., the convex hull of U U V) is denoted by (£}. (Note that {£) is

a convex polyhedron, and £ can be regarded as a trunk of (£).) For example,
in a tetrahedron ABCD in R3, the pair (AB, CD) represents a trunk of the

tetrahedron. A circle is said to be attached to a trunk of a convex polyhedron if
the disk bounded by the circle intersects all edges of the trunk.

Let us recall here two types of quadratic surfaces that we use in the following.
Let g,I be a pair of lines in M3, and suppose that g jj / (non-parallel) and

that g does not lie in a plane perpendicular to I. By rotating g around /, we
obtain a surface. If g and I intersect, then we have a (double) circular cone with
axis I ; otherwise, we have one-sheet hyperholoids of revolution with axis J, see

Figure 2.1. These surfaces are ruled surfaces, represented by the equation

Figure 2.1

A one-sheet hyperboloid of revolution
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(If c 0, then this equation represents the surface of a (double) circular cone,
and otherwise a one-sheet hyperboloid of revolution is represented.) Note that the

latter surface is also "constricted" at z 0. A one-sheet hyperboloid of revolution
divides R3 into two parts, and the one that contains the axis of the surface is

called the inside of the surface.
The next lemma is obvious, but useful.

Lemma 2.1. Let Li he a circular cone or a one-sheet hyperboloid of revolution.

(1) A section of LI by a plane is a circle if and only if the plane is perpendicular
to the axis of LI.

(2) If a section of LL is an ellipse, then its minor axis lies on a plane
perpendicular to the axis of LI.

The length of a line segment AT in R3 is denoted by |AT|. For a point
X and a line g in R3, the distance d{X,g) from X to g is defined by

d(X, g) min{|AT| : Y eg}. The distance d(l,g) between two lines l, g
is defined by d{l,g) min{|AT| : X e l, Y e g}. For a family of lines

gi,gi, ,gn (n > 2), a line / that satisfies

X e I =* d(X,gl) - d(X,gn)

is called an equidistant line of the family {gi,... ,g„}. For example, for a family
of lines gi,...,gn lying on a one-sheet hyperboloid of revolution LI, it can be

proved by using Lemma 2.1 (1) that the axis I of LI is an equidistant line of
{gi ,...,gn}-

Theorem 2.1. If a family of lines {gi,...,g„} has an equidistant line I such

that I does not lie on a plane perpendicular to gi and I j) gi, d(l,gi) > 0,
then gi,... ,gn lie on a one-sheet hyperboloid of revolution with axis I.

Proof. We use the following fact, without proof.

For two disjoint lines l,g, let P,X el, Q,Y eg be points that

satisfy \PQ\ — d(g,l) and XY _L /. Then, (i) I _L PQ _L g and (ii)
I AT I is uniquely determined by \PQ\, \ PX\ and d(X,g).

Let LI be the hyperboloid obtained by rotating gi around I. Since / is the

equidistant line of gi,...,g„, there exist Pel and Qi e gi such that

l^ôil — •" \PQn\ d{l,gi). Then PQi _L /, and hence each Qi lies

on H. For a point X el, let T; e gi satisfy that AT; _L /. By (ii) of the above

fact we have |ATi| ••• \XYn\. Hence each T, lies on LI. Therefore each

gi lies on LI.
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A trunk £ (U, V) is called hyperboloidal (resp. conic) if all edges of the

trunk lie on a one-sheet hyperboloid of revolution (resp. on a circular cone). In

a right pyramid with apex P whose base is a regular polygon, the set of edges

emanating from P is clearly a conic trunk.

Example 2.1. In the regular icosahedron 1 shown in Figure 2.2 left, the trunk
£ (ABCDE,A*B*C*D*E*) is hyperboloidal. (Indeed, the line FF* is an

equidistant line of the lines determined by the edges in £.) Thus, by rotating I
around the line FF*, we have a non-convex figure as shown in Figure 2.2 right.
Note that £ contains pairs mutually symmetric to the center of the icosahedron,

say (AD*, A*D), (BE*, B*E), etc. Let F be the minimal circle attached to £
at its most "constricted" part, and let r' (/ F) be any other circle attached to

£. If the plane determined by F' is perpendicular to FF*, then clearly F' has

larger diameter than F. If the plane of F' is not perpendicular to FF*, then

the plane cuts a pair of edges of £ that are symmetric to each other with respect
to the center of the icosahedron, at a pair of points with distance greater than the

diameter of F. Hence the diameter of F' is larger than that of F. Therefore 1
can be held by a circle.

Figure 2.2

A hyperboloidal trunk of a regular icosahedron

Example 2.2. Similarly, a regular tetrahedron T, a cube C, and a regular
octahedron O have hyperboloidal trunks, and they can be held by circles as shown

in Figure 2.3. A regular dodecahedron has two different types of hyperboloidal
trunks as indicated by attached circles in Figure 2.4, and it is also not circle-free.

Remark 2.1. Even if a convex polyhedron has a hyperboloidal trunk, the smallest

circle attached to the hyperboloidal trunk does not necessarily hold the convex

polyhedron. For example, in a right triangular pyramid P -ABC with equilateral

triangular base ABC, its trunk (PA, BC) is hyperboloidal by Lemma 3.2 in §3,
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Figure 2.3

Holding circles

Figure 2.4
Circles attached to hyperboloidal trunks of a dodecahedron

but if the height of the pyramid is very small, then the pyramid is circle-free, as

proved in Theorem 3.3 in §3.

Lemma 2.2. If a hyperboloidal trunk £ has at least five edges, then it determines

a unique one-sheet hyperboloid of revolution.

Proof. Let Hi, i — 1,2, be one-sheet hyperboloids of revolution, each containing
the trunk £, and let /,•, i 1,2, be their axes. Let £ denote the set of lines

determined by the edges of £. Since a quadratic surface and a line that does not
lie on the surface intersect in at most two points, each Hi must contain £. Let H
be a plane that is perpendicular to l\. Then H DHi is a circle by (1) of Lemma
2.1. Since £ contains at least five lines, it is possible to choose H so that H n £
contains at least five points. Then H DH2 is a quadratic curve on H that has five

points in common with the circle H C\H\, and hence H HH2 H DH\. In this

case, H is also perpendicular to l2 by (1) of Lemma 2.1, and l2 passes through
the center of the circle H Fl H\. Therefore l\ — l2, and hence H\ —H2.

Remark 2.2. If a hyperboloidal trunk £ of a convex polyhedron has at most
four edges, then a one-sheet hyperboloid of revolution that contains £ is not

necessarily unique. For example, consider the rectangular pyramid B-AB*C*D
inscribed in the cube A BCD-A* B*C* D*, see Figure 2.5. It has a hyperboloidal
trunk £ (AB*, BC* D) consisting of four edges DA, AB, BB*, B*C*, which
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is a subset of a hyperboloidal trunk (AB*D*. BC*D) of the cube ABCD-
A*B*C* D*. Hence the line A*C is an equidistant line of the family £ of
lines determined by the edges of £. Since the lines in £ are also determined

by D\A, AB, BB*, B*Cf, the line C\A* is also an equidistant line of £, where

Ci,Di,C* are the mirror images of C,D,C* with respect to the plane AA* B* B.
Hence there is another one-sheet hyperboloid of revolution that contains £ by
Theorem 2.1.

Figure 2.5

A rectangular pyramid inscribed in a cube

2.2. Transversal disks of a trunk. Let £ be a trunk of a convex polyhedron
in M3. A disk £2 is called a transversal disk of £ if £2 intersects all edges in
the trunk £. (Note that £2 may intersect an edge in £ at its endpoint.) More
generally, for a set of lines £, a plane (or a disk) is called a transversal plane
(or a transversal disk) of £ if the plane (or the disk) intersects all lines in £.
The boundary circle of a transversal disk of a trunk £ is a circle attached to the

trunk £. If a transversal disk of £ contains a prescribed vertex P of £, then the

disk is called a transversal disk of the trunk £ on P. Note that a transversal disk

of £ on P is also a transversal disk of £. Among the transversal disks of £ (on
P one that has the minimum diameter is called a minimal transversal disk of £

(on P Since disks are compact and convex, it follows, by employing Blaschke's

selection theorem (cf. [Sehn, §1.8J), that for any trunk (and a prescribed vertex
P there always exists a minimal transversal disk of the trunk (on P Note that
the boundary circle of a minimal transversal disk of a trunk £ intersects (£} in

at least two points unless the disk degenerated into a point. The diameter of a

disk £2 is denoted by d(£2).
Let us prove here the following theorem obtained by Tanoue [Tan3],

Theorem 2.2. Every triangular right prism with equal edges is not circle-free.

Proof. Let ABCA*B*C* be a triangular prism as shown in Figure 2.6 left, and

let £ (ABB*, A*C*C). Let £2 be a minimal transversal disk of £, and £2a
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be a minimal transversal disk of £ on A. It is enough to show that the boundary
circle of ß cannot slip out of the triangular prism. To show this, we use the

inequality
(*) d(Q) < a V7/2 d(£2A),

where a is the edge-length of the prism. This is proved later. Tentatively, we

assume this. Suppose that the boundary circle 3ß of ß can slip out of the

triangular prism. During the slipping out process, the circle 3ß and the disk ß
move, and ß must meet vertices of the triangular prism. Let Z denote the first
vertex that ß meets during a slipping out process, and denote by ßz the disk
when ß comes to Z. The point Z must be one of A,A*,C, B*. If Z A*
then, ßa* is a transversal disk of £ on A*. However, the diameter of a minimal
transversal disk of £ on A* (which is equal to d(£2A)) is larger than d(£2) by

(*), a contradiction. Suppose Z — B*. Let X be the intersection of AC and

ßß*. Since \B*X\ > \A*M\ a*Jl/2, we have d(ßß*) > d{£2) by (*), a

contradiction. Similarly, in the cases Z — A, C, there arise contradictions. Hence

the circle 3ß cannot slip out of the prism.
Now, to prove (*), we show that (1) d(£2A) a-Jl/2 and (2) J(ß) < a*JÏ/2,

where a is the edge-length of the prism.

(1) Every transversal disk of £ on A intersects the edge B*C* at a point
Y. fhen the diameter of the transversal disk is greater than or equal

to \AY\. While Y moves on the line segment B*C*, the minimum
value of \AY\ is attained when Y is at the midpoint N of B*C*, and

|/HV| \ju2 + ci2W3/2)2 a*Jl/2. Thus d(QA) > a-Jl/2. On the other

hand, denoting the midpoint of BC by M, the smallest disk that contains
the rectangle A A* NM is a transversal disk of £ on A and has diameter

a.y/ï/2. Hence d(£2A) a^/l/2.

C

C*

p M

of
\
1

L
1

I
I

1

\N\P*

A*

\ /

Q*

B

B*

I) Let P and P"

Figure 2.6

A triangular prism

be the points on the segments MC and NB*, respectively,
such that IMFI \NP*\ s/2, where e is a small positive number. Let
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L be the midpoint of AA*, and let Q,Q* be the points where the plane
PLP* cuts the segments AC and A* B*, respectively, see Figure 2.6 right.
Then PQ || p*Q* || MA, and PP*Q*Q is a rectangle. Since \AQ\ s

(because \PM\ — s/2), we have \QP\ — (a — e)V3/2. Hence

\QP*\2 (a — e)2 _|_ a2 _)_ g2 — 2^2 _ lEa _|_ 2s2.

If s is very small, then —|sa + 2s2 < 0, and |QP*\ < a\fl/2. Hence the

diameter of the circumscribed circle of the rectangle PQQ*P* is smaller
than «V7/2. Moreover, if s is very small, then the midpoint L of A A *

is contained in the smallest disk that contains PP*Q*Q, and hence the

smallest disk containing PP*Q*Q is a transversal disk of £. Therefore

d(£2) < a J7/2.

This completes the proof of the theorem.

2.3. The Symmetrization Lemma and the Isotopy Lemma. A plane H is

called a symmetry plane of a trunk £ (U, V) if both U, V are plane-symmetric
to themselves and have a common symmetry plane H For example, in the regular
icosahedron in Figure 2.2 left, the plane determined by F, A, F* is a symmetry
plane of the trunk (ABCDE, A* B*C* D*E*).

The following lemma is sketchily proved by Maehara [Mae3]. We present a

complete proof in §4.

Lemma 2.3 (Symmetrization Lemma). Suppose that a trunk £ of a convex

polyhedron has a symmetry plane H, and let £2 he a transversal disk of £.

(1) The boundary circle of £2 is isotopic over (£) to the boundary circle of a

transversal disk of £ that is symmetric to itself with respect to the plane H.

(2) If £2 is not symmetric to itself with respect to H, and £2 D H cf {£), then
£2 is not a minimal transversal disk of £.

This lemma is also true if we replace "transversal disk of £" by "transversal

disk of £ on P ", for a vertex P of £ lying on H.
The following conjecture was stated by Maehara [Mae4].

Conjecture 2.1. If the diameters of two circles attached to the same trunk of a

convex polyhedron are equal, then the two circles are isotopic over the convex

polyhedron.

Though we could not prove this conjecture, the following special case is useful.
The proof of this special case is also given in §4. By a directed line, we mean

a line, like the z-axis in M3, in which the (+)-direction is specified. Then, for
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any plane that cuts the directed line, its upper side ((+)-side) and its lower side

are defined naturally. For a trunk £, the set of lines determined by the edges in
£ is denoted by £.

Lemma 2.4 (Isotopy Lemma). Let £ {U, V) be a hyperboloidal trunk of a

convex polyhedron FI that lies on a one-sheet hyperboloid of revolution H with
"directed" axis I. Suppose that (i) there is a transversal plane of £ that is

perpendicular to I and U lies in its upper side, and that (ii) £ has a symmetric
plane.

(1) If a circle F d£2o attached to £ satisfies that

(I) the plane of the circle cuts the axis I and U lies in its upper side,

then the disk £2q can be continuously and congruently moved, through
transversal disks of £, to a transversal disk £2\ of £ that lies on a plane
perpendicular to the axis I of H. Hence r is isotopic over 77 to d£2

(2) Two congruent circles attached to £, both satisfying (f), are isotopic over 77.

Remark 2.3. For every hyperboloidal trunk of regular polyhedra shown in

Figures 2.2, 2.3, 2.4, the Isotopy Lemma can be applied and any two congruent
circles attached to the trunk are isotopic over the regular polyhedron.

Example 2.3. Let £ (ABCDE, A*B*C*D*E*) be a trunk of a regular
icosahedron 1 as shown in Figure 2.7 left, and £' (AA*,CD) be a trunk of
the tetrahedron ACDA*. Iben the minimal transversal disk of £ on A coincides

with the minimal transversal disk of £' on A.

F

Figure 2.7

Example 2.3

This can be seen as follows. Let £2 be a minimal transversal disk of £ on

A. First, note that the plane H containing AFF* is a common symmetry plane

of the trunk £ and the trunk £'. Note also that since 77 IT £2 (f (£), £2 must be

symmetric to itself with respect to 77 by (2) from the Symmetrization Lemma.
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Since the trunk £ is hyperboloidal, the intersection points of £2 and the edges

in this trunk lie on an ellipse passing through A, and A is an endpoint of the

major axis of this ellipse. Hence 3£2 n (£) consists of A and two points X, Y

on the edges A*C,A*D, see Figure 2.7 right. On the other hand, if X, Y are

points on the edges A*C, A*D such that |/4*Ar| \A*Y\, then the smallest disk

containing the triangle AX Y becomes a transversal disk of £ through A. Hence
£2 coincides with the minimal transversal disk of £' on A.

Example 2.4. Let P -A\A2 A2m be a regular pyramid with apex P whose
base is a regular (2m)-gon AXA2... A2m. Let £ — (P, AXA2 A2m), and £2X

be the minimal transversal disk of £ on A\. Then 3£2\ intersects £ in only two
edges PA\, PAm+x, and d(£2\) min{|^4iA'| : X e PAm+\}.

To see this, we may suppose that £2\ is symmetric to itself with respect to
the plane l'A\ Am+\ by (1) from the Symmetrization Lemma. Then the plane

containing £2X cuts the circular cone determined by £ in an ellipse whose major
axis lies in the plane PA | Am+i. Hence 3 £2 intersects only two edges PA x, PAm+x

of £. Moreover, for every X on the edge PAm+x, a disk with diameter A\X
which perpendicularly intersects the plane PAxAm+x is a transversal disk of £
on A\. Hence d(£2x) — min{|yliA'| : X s PAm+1}.

Similarly to Example 2.4, we have the following

Example 2.5. Let P -AXA2 A2m+\ be a regular pyramid with apex P whose

base is a regular (2m. + l)-gon A\A2 A2m+\ Let £ (P, AXA2 A2m+\),
and £2X be the minimal transversal disk of £ on A\. Then £2\ coincides with the

minimal transversal disk of (PA\, Am+xAm+2) on A\, where (PAX, Am+\Am+2)
is a trunk of the tetrahedron PAxAm+\Am+2.

3. Various results

3.1. The range of holding circles. The holding range h(B) of a convex body
B is a subset of the reals M defined by

h(B) — {d M : there is a circle of diameter d that holds B).

Theorem 3.1. For a regular tetrahedron T, a cube C, and a regular octahedron

Ö, all having unit edges, we have

(i) h(T) [1/V2,0.896...),

(ii) h(C) W2,1.535...),

(iii) h(0) [1,1.1066...),
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where the upper hounds of (i), (ii), (iii) are the minimum values of the functions

2(x2 — x + 1) \[2(x2 + 2) 2(x2 + 1)

y/3x2 — 4x + 4 y/x2 + 2x + 3 y/3x2 +2x +3
respectively.

The result (i) was obtained by Itoh et al. [ITZ], and (ii) as well as (iii) were
obtained by Maehara [Mae2] and Tanoue [Tan3].

Proof We show only the octahedron case (iii). The other cases follow similarly.
Put labels A, B.C, A*, B*,C* on the six vertices of Ö as in Figure 3.1. First,
note that a circle attached to a trunk of Ö that is not hyperboloidal can always

slip out of O by a translation. Let £ — (ABC, A*B*C*), a hyperboloidal trunk
of O. It will be clear that the minimum diameter of a holding circle of Ö is

the diameter of a minimal transversal disk of £, that is, the diameter of the

circumscribed circle of the regular hexagon whose vertices are the midpoints of
the edges in £. ITence its diameter is 1.

Figure 3.1

The attached circle F

Now let r be a circle attached to £. If this circle can slip out of the

octahedron, then during the process of slipping out, the disk conv(T) must meet

vertices of O. We may suppose that A is the first vertex that it meets. At the

moment when it meets A, the disk conv(F) becomes a transversal disk of £

on A. Hence the diameter of F must be at least the diameter d0 of a minimal
transversal disk of £ on A. On the other hand, if the diameter of F is greater
than or equal to c/0, then F is isotopic over Ö to the boundary circle of a

transversal disk of £ on A by the Isotopy Lemma. Then by a translation in the
>

direction C*B, F can slip out of Ö. Hence we have h(ö) [1, t/o) -

Let us find the value do of the diameter of a minimal transversal disk of £

on A. Since the plane H determined by A, A* and the midpoint of BC is a

symmetry plane of £, we may consider the diameter of a minimal transversal

disk £2 of £ on A that is symmetric to itself with respect to H by (1) from
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the Symmetrization Lemma. Let K be the plane that contains the disk £2. Let

P, Q be the points where K cuts A* B and A*C, respectively. Since £ is

hyperboloidal, the intersections of K and the edges in £ lie on an ellipse and A

is an endpoint of the major axis of this ellipse. Hence the circle 3£2 must pass

through P, Q and A.
Let x \BP\ \CQ\. Then \PQ\ \PA*\ \-x, and since ZABA* 90°,

we have \AP\ Vl + x2 \AQ\. Now, the diameter of the circumscribed circle
of the isosceles triangle APQ is computed as 2(* +1)

; ancj the minimum
\/ 3^. I I 3

value d0 of this function is d0 — 1.106...

Fruchard [Fru] proved that for every convex body B, its holding range h(B) is

a subset of the interval (2u;/3,oo), where w denotes the width of B, that is, the

minimum distance between a pair of parallel planes bounding a strip containing
B. The lower bound 2w/3 cannot be improved generally.

If V is a regular tetrahedron, or a cube, or a regular octahedron, then h (V)
is an interval as seen in Theorem 3.1. However, the holding range of a convex

polyhedron is not always an interval. Indeed, it is known (Maehara [Mae4]) that

the holding range of a regular icosahedron is disconnected. Moreover, it was
shown by Bârâny and Zamfirescu [BZ1] that there are convex bodies B such that

h(B) has arbitrarily many connected components.

3.2. Regular pyramids.

Lemma 3.1. Let P - A1A2 An denote a regular pyramid with apex P whose

base is a regular n-gon A1A2 An, n > 3. Let £\ (PA\, A2A2 An), and
denote by £2p,£2\, and £2 the minimal transversal disk of £1 on P, the minimal
transversal disk of £\ on A\, and the minimal transversal disk of £\, respectively.
Then the following statements hold:

(1) d(£2) < d(£2x).

(2) The inequality d{£2) < d(£2p) implies that the boundary circle 3£2 of £2

holds the pyramid.

Proof. (1) Denote by O the center of the base. We may suppose that £21 is

symmetric to itself with respect to the symmetry plane A\PO of £\. Let Q be

the center of £2\. To make our argument clear, let us consider the case n 5,
see Figure 3.2. (Other cases follow almost similarly.) In this case, the boundary
circle d£2\ intersects the edges PA3, PA4 at X, Y (possibly X — P — Y),
respectively, by Example 2.5 (that is, 3£?! is the circumscribed circle of the

triangle A\XY, and Q is the circumcenter of the triangle AiXY). And the

edges PA2, PA5 pass through the interior of the disk £2\. Let B be the ball
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P

A5

Ai

Figure 3.2

3ßi is circumscribed to EA\XY

of diameter c/(ßi) centered at Q. Since ZQA\A2 ZQA\A5 < 90°, both

Ai A2 HB and AiA5 nB are intervals. Hence we can rotate the plane containing
ß] around the line XY slightly so that the intersection of B and the rotated

plane is a transversal disk of £\. The diameter of this disk is clearly smaller than

d(Qi), and hence d(£2) < d{£2\).
(2) Suppose that c/(ß) < r/(ß/>) and 9ß still can slip out of the pyramid.

During the slipping out process, ß meets vertices of the pyramid. Let Z be the

first vertex that ß meets, and denote by ß(Z) the disk at the moment when ß
meets Z. Then, since t/(ß) < r/(ßi), Z must be P or A2 or A5. If Z P, then

ß(/>) is a transversal disk of £\ on P, which means r/(ß) d{£2{P)) > J(ß/>),
a contradiction.

Suppose that Z A2. The disk ß(42) is a transversal disk of the trunk

(PA2,A3T4T5). By Examples 2.4 and 2.5, J(ß(A2)) is at least the diameter

of the minimal transversal disk of (PA2, /I3/I4T5A1) on A2, which is equal to

r/(ßi), a contradiction. The case Z A5 is similar to the case Z A2.

Let us define the slope p of a regular pyramid by

height
^ circumradius of the base

Though every circular cone is circle-free, every regular pyramid of slope greater
than 1 is not circle-free.

Theorem 3.2, Every regular pyramid with slope p > 1 can be held by a circle.

Remark 3.1. It is known (Maehara [Mae3]) that for every 0 < e < 1 and

m > 2n/s2, a regular (4m)-gonal pyramid with slope p 1 — e is circle-free.

Proof. To make our argument clear, let us consider again the case of a

regular pyramid with pentagonal base. Let P - A\A2A3A4A5 denote a regular
pyramid with apex P whose base is a regular pentagon AiA2A3A4A5 Define
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Figure 3.3

3k2p is circumscribed to A PST

£i,S2p,S2\,S2 as in Lemma 3.1 and let £ (P, T1T2T3T4/I5). Note that a

transversal disk of £ on A i is a transversal disk of £\ on A {, and vice versa.

By Lemma 3.1 (2), it is enough to show that p > 1 implies d(L2) < d{L2p).
The minimal transversal disk Qp of £\ on P intersects the edges A\A2, A\As
at S,T such that |/4iS| \A\T\ > 0, see Figure 3.3. Now, let Q be the

center of Qp, and B be the ball with center Q and diameter d(Qp). For every
i (2 < i < 5), the triangle A\PAi is an isosceles triangle with base A\Ai and

height greater than or equal to | OP \, where O is the center of the base. Thus,

p > 1 implies that AA\PAi < 90°, and hence /-QPAi < 90° for i 2,3,4,5.
This implies that the edges FT,, i 2,3,4,5, pass through the interior of B.
Therefore, by rotating slightly the plane PST around the line ST, we have a

plane whose intersection with B is a transversal disk of £\ with diameter smaller
than d(Qp). Hence, d{£2) <d(£2p).

Lemma 3.2. Let P -ABC be a regular pyramid with apex P whose base is an

equilateral triangle ABC, and let p be the slope of P-ABC. Let A A* be the

diameter of the circumscribed circle of ABC. Let D be a point on the edge AP
such that \AD\ : \DP\ \AB\ : \ BP\. Let E be a point on the line through A*
perpendicular to the plane ABC, lying in the opposite side of P with respect
to the plane ABC, with \A*E\ \AO\/{2p), see Figure 3.4. Then

(1) the trunk £ — (PA, BC) is hyperboloidal, and

(2) the line DE is the axis of a hyperboloid of revolution containing £.

Proof. By Theorem 2.1, it is enough to show that the line DE is the equidistant
line of the four lines AB, AC, PB, PC. We may suppose that the circumscribed
circle of A ABC has unit radius with center O. Then the height of the pyramid
is p, i.e., \PO\ — p. Note that \AB\ \BC\ \/3, \BO\ \BA*\ — 1 and
I FT I |FZ?| \PA*\ VT+p2. Since \AD\ : \DP\ \AB\ : \PB\, we have
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P

A
"AA*

c

D

Figure 3.4

The line DE is an equidistant line of {AB, AC, PB, PC)

Z.ABD APBD. Since ZABA* 90°, AB is perpendicular to the plane

BA*E, and hence AB L BE. Since

we have PB _L BE. Now, AABD APBD, AB _L BE, and PB _L BE imply
together that every point on the plane DBE is equidistant to the lines AB and

PB. Since £ is symmetric to itself with respect to the plane DPE, we can
deduce that the line DE is equidistant from the lines AB, AC, PB, PC.

Theorem 3.3. A right pyramid P-ABC with apex P and equilateral triangular
base ABC is circle-free if and only if

where p is the slope of the pyramid.

Tanoue' [Tanl] proved that if p > p0, then P-ABC can be held by a circle,
and Maehara [Mae3] proved the converse.

Corollary 3.1. The property "circle-freeness" is not affine invariant.

Proof of Theorem 3.3. We use the same notations as in Lemma 3.2 and Figure

3.4. By Theorem 3.2, we may consider the case p < 1. Let £ (AP, BC),
and H be the one-sheet hyperboloid of revolution with directed axis I DE.
Note that the conditions (i) and (ii) of the Isotopy Lemma hold. First, we show

\PE\2 (|PO| + \A*E\f + |CF4*|2

(P + 2^)2 + 1 p2 + 1 + 1 / (2p)2 + 1

\PB\2 + \A*E\2 + \BA*\2

\PB\2 + \BE\2,

P < Po := (3a/Î7 — 5)/32 0.47988
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that any circle r attached to £ is isotopic over (£) to a circle attached to

£ that satisfies the condition (f) of the Isotopy Lemma (1). We may suppose
that r is symmetric to itself with respect to the plane H APO by the

Symmetrization Lemma. The intersection conv(r) fl {£} is an isosceles trapezoid

XYZW, where X, Y, Z, W are the intersection points of conv(T) with the edges

PB, PC, AC, AB, respectively. Let L,N be the midpoints of XY,ZW, respectively.

If ZLNA > it/2, then the plane of r clearly cuts DE, and the condition

(f) of the Isotopy Lemma (1) holds. Suppose ZLNA < jr/2. Let XYZ'W' be

the isosceles trapezoid obtained by cutting the pyramid by the plane containing
XY and being perpendicular to the line AM. Then the height of the trapezoid
XYZ'W' is smaller than that of XYZW, and \Z'W'\ < \ZW\. Hence, by a

continuous rotation of r around the line XY, we have an isotopy over the

pyramid to a circle attached to £ that satisfies the condition (f) of the Isotopy
Lemma (1). Hence, any circles attached to £ are isotopic over the pyramid to a

circle that lies on the plane containing the minimal circle attached to £ by the

Isotopy Lemma. Therefore, to show that the pyramid is circle-free if and only if
P < Po, it is enough to show that the boundary circle of the minimal transversal

disk of £, denoted by £2, holds the pyramid if and only if p > p0. Note here

that £2 is symmetric to itself with respect to the plane APM, and its boundary
circle d£2 intersects the four edges AB, AC, PB, PC (for otherwise, by sliding
£2 slightly in the direction MA or MP, and squeezing its radius, we could get

a transversal disk of smaller radius).

Let P0 be the point on the line DE such that PP0 !_ DE. Since p < 1,

we have \AB\ > \ PB\. Since AB L BE and PB _L BE (see the proof of
Lemma 3.2), we have \PE\2 \PB\2 + \BE\2 and \AE\2 \AB\2 + \BE\2. Put

a \AO\. Then \AP\2 a2(\+p2) and \AB\2 3a2. Hence \AB\2-2\AP\2
3a2 - 2a2{\ + p2) a2(l - p2) > 0. Ihus, \AB\2 > 2\AP\2 \AP\2 + \PB\2,
and hence

\AP\2 + \PE\2 \AP\2 + \PB\2 + \BE\2 < \AB\2 + \BE\2 \AE\2.

This implies that ZEPA is an obtuse angle, which implies that P0 lies on the

line segment DE. Therefore, the disk with center P0 and radius |PPo| whose

plane perpendicularly cuts DE at Po. is a transversal disk of £.
Let Q,X be the points on the lines DE, PB, respectively, such that \QX\

is the minimum distance between the lines DE and PB. Then the section of PL

by the plane perpendicular to / at Q is the smallest circle lying on PL (cf. the

statement in the proof of Theorem 2.1). See Figure 3.5.

Case (a): The ray PM does not intersect the line DE.
In this case, we have ZP0PM > ir/2, and hence ZP0PB(= ZP0PC) > n/2,
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P

Figure 3.5

The minimal circle on PL

which implies that Q lies on the ray PoD, possibly with Q P0. By the

Isotopy Lemma the boundary circle 3£2 of the minimal transversal disk £2 of £
is isotopic over the pyramid to a boundary circle P' of a transversal disk of £
that is perpendicular to I. If the plane of P' intersects the ray PqE, then the

radius of P' is larger than |PoP| (since the most constricted part of PL is the

section of PL by the plane perpendicular to / at Q Hence 3£2 can slip out of
the pyramid, and hence the pyramid is circle-free.

Case (b): The ray PM intersects the line DE.
In this case Q lies on the ray PqE and Q / P0. Let Pi be the foot of
perpendicular dropped from M to DE. Since Pi lies between Po and E, we
have ZPjPP < 7r/2. Hence 0 lies between P() and Pi. Therefore the disk

with center Q and radius \QX\ lying on the plane perpendicular to DE is the

minimal transversal disk £2 of £. The boundary circle 3£2 intersects the edges

AB, AC, PB, PC.
Let £2p be the minimal transversal disk of £ on P. The boundary circle

3£2p also intersects the edges AB,AC. Since Q ^ P0, we have d{£2) < 2|P0P|.
If d(£2p) > 21P0 PI, then we have d{£2p) > d(£2), and the circle 3£2 holds the

pyramid by (2) of Lemma 3.1.

Suppose that d(£2p) < 2|P0P|. Let Z be the intersection point of / and

£2p, and S, T be the intersection points of £2p with the edges AB, AC,
respectively. The three points Z, S, T lie on the same side of the plane that

perpendicularly intersects the line / DE at P0. If Z lies on P0 D and

Z + P0, then \ZS\ \ZT\ > d{S,l) > |P0P|, and |ZP| > |P0P|. Hence

the radius of the circumscribed circle of the isosceles triangle PST is larger
than IP0 PI, which implies that d{£2p) > 21 Po P |, contradicting the assumption
d(£2p) < 21P0 PI. Therefore, Z lies on PqE Then, ZZPA/ < tt/2, and hence,
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y

Figure 3.6

Projection on the plane APO

by rotating T2p slightly around the line ST, and squeezing its radius, we can

get a transversal disk of £. Hence d(P2) < d{P2p), and dT2 holds the pyramid
by (2) of Lemma 3.1.

Thus, the pyramid is not circle-free if and only if the ray PM intersects

the line DE. Now we show that the ray PM intersects the line

DE if and only if p > p0. To do this, let us regard the plane PAO as

the xy-plane, and A (—1,0), O (0,0), see Figure 3.6. Then P —

(0, p), M (1/2,0),A* (1,0), E (1,=£), and since \AB\ : \BP\ V3 :

V1 + p2,

ß — ~Vi+p2 PV3 A

y -s/3-f- 1 +p2 1 +r>2 J

The ray PM intersects the line DE if and only if the slope of the line DE is

greater than the slope of the line PM. The slope of PM is —2p, and the slope

of DE is

(-1 P-J3 \ / I \A+P2 ^
\2p VT+VI+p2/ V V3+V1+P2/

'

Thus, the ray PM intersects the line DE if and only if

and (by simplifying) if and only if

V3~2^3p2 < (8p2- l)Vl +p2.

The left side is monotone decreasing on p, whereas the right side is monotone

increasing on p. So let us find the value of p where both sides become equal.

Putting £ p2, we have V3 — 2*/3£ (8£ — 1)^/1 + £, and after squaring both
sides as well as simple calculations, we have

64£3 + 36§2 - 3£ - 2 0.
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This equation has three real solutions, namely

-5±3a/Î7 -1* ~~
32 ' T'

Since £ > 0, we have £ ~5+332v^
»

and hence the pyramid is not circle-free if
and only if p > p0.

Remark 3.2. It was proved by Maehara |Mae3] that a regular pyramid with

3.3. Holding circles with much play. Let r be a circle attached to a convex

polyhedron 77, and PQ be an edge of 77 such that PQ fl conv(E) 0.
Suppose that there is an isotopy Ft, 0 < t < 1, over 77 with F0 r such

that (i) Q f conv(r() tor all t, and (ii) conv(Fi) cuts the edge PQ into two

segments. Then we say that F (and any circle isotopic to it over 77) can cross

over P

Theorem 3.4. For every vertex P of a regular icosahedron, there is a holding
circle of the regular icosahedron that can cross over P.

Proof. We use Figure 2.7 left and the same notations as in Example 2.3. It is

enough to show the case P A. Let 72 be the minimal transversal disk of £
on A. Then 72 is also a minimal transversal disk of £' on A by Example 2.3.

Since the trunk £ is hyperboloidal, it is possible to rotate the circumscribed
circle of the pentagon ABCDE slightly around the line passing through A and

being perpendicular to the plane 77 determined by A FF* (see Figure 3.7), and to

squeeze its radius a bit so that it is still attached to the trunk £. Hence the diameter

of 72 is smaller than the diameter of the circumscribed circle of the pentagon
ABCDE. Let X, Y be the points where 72 cuts the edges A*C, A* D, respectively,
and let M be the midpoint of X Y. Since the boundary circle 372 of 72 intersects

square base can be held by a circle if and only if p > 33 — 3)/4 sa 0.828.

F

A

Figure 3.7

Move the circumscribed circle of ABCDE
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the icosahedron only at the points A, X, Y, and ZMAF < ZF*AF — 90°, it is

possible to rotate slightly the circle 3F! around the line X Y in either direction,
without intersecting the interior of the icosahedron. Hence there is an isotopy
Ft, 0 < t < 1, over the icosahedron such that conv(To) C\AF 0, F $ conv(Ft)
for all t, and conv(A) cuts the edge AF dividing it into two segments. Hence

r0 (and I) can cross over the vertex A.

Let us show that r\ holds the icosahedron. The diameter of F\ is equal

to d(Q). We may assume that the disk conv(ri) contains no vertex, and cuts
all edges of the trunk (BCDEF, A A* B*C* D* E*). Suppose F\ can slip out
of the icosahedron. During the slipping out process, conv(Fi) meets vertices

of the icosahedron. Let Z be the first vertex that conv(TT) meets during the

slipping out process. We may suppose that Z ^ A. Clearly, Z ^ F, F* and

Z ^ C, D,C*, D*. Is it possible that Z B1 If B is the first vertex that

conv(Ci) meets during the slipping out process of 7~i, then at the moment that

convfTi meets B, conv(C1) becomes a transversal disk of the trunk BB*, DE)
on B, and it is not symmetric to itself with respect to the plane FBF*, which
is a symmetry plane of (BB*,DE). Hence, the diameter of conv(/~i) must be

greater than the diameter of the minimal transversal disk of (BDE, B*) on B,
by the Symmetrization Lemma. However, the latter is equal to the diameter of
the minimal transversal disk of £' on A, which is equal to the diameter of Q,
a contradiction. Similarly Z ^ E.

If Z A*, then at the moment that conv(Ci) meets A*, it becomes a

transversal disk of the trunk {A*A, BF) on A*, and analogously we have a

contradiction. We can deduce Z ^ B*,E*, similarly. Hence F\ cannot slip out
of the icosahedron.

Remark 3.3. The boundary circle r dQ of the minimal transversal disk of
the trunk £ (ABCDE, A* B*C*D*E*) on A cannot cross over F and F*.
However, since £ is hyperboloidal with symmetry plane, F is isotopic over the

icosahedron to the boundary circle of the minimal transversal disk of £ on B,
by the Isotopy Lemma. Hence F can cross over B and, similarly, can cross over
C, D, E.

Now, there arises a problem. Does there exist a convex polyhedron, together
with its holding circle, such that the circle can cross over every vertex of
the polyhedron? The answer is yes. From the regular icosahedron shown in

Figure 2.7 we get, by cutting off two pentagonal pyramids F-ABCDE and

F* - A* B*C* D* E*, a regular pentagonal anti-prism as shown in Figure 3.8.
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E

D

A •D

E*

Figure 3.8

A regular pentagonal anti-prism

Theorem 3.5. In case of the regular pentagonal anti-prism (see Figure 3.4) the

boundary circle of the minimal transversal disk û of (ABCDE, A*B*C*D*)
on A can cross over every vertex of the anti-prism, but still it cannot slip out of
the anti-prism.

Proof Let d0 be the diameter of û. As seen in Remark 3.3, dû can cross over

every vertex of the anti-prism.
To show that dû cannot slip out of the anti-prism, we suppose the contrary,

namely that it can slip out of the anti-prism. During the slipping out process, the

disk Û crosses over vertices of the anti-prism. We may suppose that A is the

first vertex that Û crosses over, and Û is at the position of a transversal disk of
the trunk (BCDE, AA*B*C*D*E*). Let Z be the vertex that û meets next.

We may assume Z ± A. It is also clear that Z cannot be any of C, D. C*, D*.
Suppose Z B. At the moment when û meets B, it becomes a transversal disk
of (BB*, DE) on B. At that moment, since û becomes not symmetric to itself
with respect to the plane determined by B.B* and the midpoint of ED, this
disk is not a minimal transversal disk of (BB*, DE) on B (which has diameter

do). Hence the diameter of Û is greater than do, a contradiction. Thus, Z f B.
Similarly, we have Z E,B*,E*.

Finally, consider the case that Z — A*. We use the following fact which will
be proved later.

(*) The diameter of the minimal transversal disk of (AA*, BE) on
A* is greater than the diameter of the minimal transversal disk of
(AA*,C*D*) on A*.

At the moment when Û meets A*, it becomes a transversal disk of (BCDE, AA*)
on A*, which is at least the diameter of the minimal transversal disk of (AA*, DE)
on A*. Hence the diameter of this minimal transversal disk is greater than the

diameter of the minimal transversal disk of (AA*,C*D*) on A* by which
is equal to do by Example 2.3, a contradiction. Therefore, the circle dû cannot

slip out of n.
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Now we show (*). Suppose the minimal transversal disk of (A A*, BE) cuts
the edges AB,AE at X, Y, respectively. We may assume that |BX\ — \EY\ — t.
Let X', Y' be points on AC*, AD* such that \C*X'\ — \D*Y'\ t. Consulting
Figure 2.7 left, we can see that \A*B\ \A*E\ \A*C*\ \A*D*\ and

ZA*BA Z_A*D*A ZA*EA ZA*C*A 90°. Hence \A*X\ \A*X'\
\A*Y\ — \A*Y'\. Since \XY\ > \X'Y'\, the diameter of the circumscribed circle
of the isosceles triangle A*XY is greater than the diameter of the circumscribed
circle of the isosceles triangle A*X'Y'. Since the latter is greater than or equal

to the diameter of the minimal transversal disk of (AA*,C*D*), the proof is

complete.

4.1. Proof of the Symmetrization Lemma. Let K be the plane containing £2,

and let £2',K' be the mirror images of £2, K with respect to H, respectively.
The disk £2' is also a transversal disk of £.

If K K', then put £2t £2 + ^zz', where z,z' are the centers of the

disks £2 and £2', respectively. Then 3£2t, t e [0, 1], is an isotopy over (£) and

()L?0 3£2, 3Q\ is symmetric to itself with respect to H. Moreover, if £2 ^ £2',
then the smallest disk containing £2 n £2' is a transversal disk of £ that is smaller
than £2.

Now suppose that K ^ K', and put £ (U,V). Let K+ denote the side

(half space) of K that contains U, and K- be the other side containing V.
Similarly, let K'+ be the side of K' that contains U, and K'_ be the other side

of K'. The planes K and K' together divide R3 into four regions

Figure 4.1 shows the projections on the plane perpendicular to the line H (T K.

4. Supplement

K+ n k'+, k+ n k'_, k_ n K'+, K- n k'_

u

K+ n K'_ K- n K'+
-Ki/i

K K'
Figure 4.1

Projections onto the plane perpendicular to H n K



300 H. Maehara and H. Martini

Note that U c K+(1K'+, V C K-HK'_. Since ß' is the mirror image of ß with
respect to the plane H, the disks ß and ß' together determine a ball B such

that Bn AT ß, Bn AT' ß'. Let Kt, t e [0,1], denote the uniform rotation of
the plane K around the line K n H, through (K+ n K'_) U (K- n K'+) such that

K() K and K\ K'. Since Kt separates U from V for each t e [0,1], Kt
intersects all edges in £. Since conv(ß U ß') cB, Kt n B intersects all edges

of £, that is, K, n B is a transversal disk of £.
Now put Ùt Kt n B for t e [0,1]. Note that among the planes Kt, t e [0, 1],

the planes K0 K and Kx K' are those nearest to the center of B. Hence

d(£2t) < d(Q) for all t e [0, 1]. Therefore, replacing each Ût by the concentric
disk ß, in Kt whose diameter equals d(£2), we have an isotopy 3ß(, t e [0,1],
over {£). Then 3ßi/2 is symmetric to itself with respect to H.

Next, suppose that K ^ K' and ß (T H <£_ (£). Since ß n H ß D ß', it
follows that ßnß'jz! (£). Thus, at least one endpoint of the line segment ßnß'
is not contained in (£), that is, 3ßn3ß' <jL (£). Note that conv(ßUß')n3ß1/2
3ß IT 3ß'. Since

{£) n 3ß1/2 (£) n k1/2 n 3ß1/2 c conv(ß u ß') n 3ß1/2 3ß n 3ß',

3ß fi 3ß' ^ (£) implies that (£) (T 3ßi/2 consists of at most one point. Since
the boundary circle of a minimal transversal disk of £ must intersect £ in at

least two points, ß]/2 is not a minimal transversal disk of £. Therefore, ß is

not a minimal transversal disk of £, either.

4.2. Proof of the Isotopy Lemma. (1) We may suppose that ß0 is symmetric
to itself with respect to the symmetry plane H of £ — (U, V). Then the center

Z of ß0 lies on H. Let K be the plane that contains ß0. Let H (1T — {P, Q}.
The line segment PQ is a diameter of ß0 and Z is the midpoint of PQ. We

may suppose that I intersects the ray ZP. Let O be the intersection of / and

the plane that perpendicularly bisects PQ, and let B be the ball with center O

and radius \OP\, see Figure 4.2. Among the points on PQ that are obtained

by the orthogonal projection of the points ß0 IT £ on PQ, let X be the one

nearest to P. Let A be a point in ß0 n £ that is projected to X. Then, clearly
I OX I < |OP|. Let K' be the plane containing XX and perpendicular to I, and

let Z' be the intersection point of K' and I. Since every line £ lies on PL,

the circle K' n PL has center Z', radius |Z'X|. Since |OX| < |OP|, the circle
K' IT PL is contained in the disk B n K'. Hence, every line in £ also passes

through Bn K'. Let K+ (resp. K-) be the upper side (resp. the lower side)
of K. Let K'+ (resp. K'_) be the upper side (resp. the lower side) of AT'. Then

U C K+, V c K- and Q e K'+,P e K'_.

Claim: No line in £ passes through int(X+ IT K'_)
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Figure 4.2

Projection on the plane H

To see this, suppose, on the contrary, a line g in £ passes through

int(/f+ n K'_). Then the projection g of g on the plane H never intersects

the segment X P. For otherwise, we have a contradiction to the definition of X.
Hence g must intersect the line segment XQ. Let AB (A e U, B e V) be the

edge of £ that determines the line g. Then, since the line g never passes through
int( AT n K'_) and B e K- n K'+, it follows that there is no transversal plane of
£ that is perpendicular to I, contradicting the assumption (i) of the theorem.

Let £2t (0 < t < 1) denote the continuous rotation of £20 around the line

XX (if X X, then around the line through X and perpendicular to 77) as

shown by the curved arrow in Figure 4.2 such that 721 lies on the plane K'.
Since each line in £ passes through both £2 and K' fl B, and since no line of
£ passes through int(/f+ n K'_), £2t (0 < t < 1) are all transversal disks of £.
Since 77 is enclosed by the planes determined by the "lateral faces" of (£), we
have (B n K+ n K'_) fl int(/7) 0. Hence r is isotopic over 77 to d£2\.

(2) Let rx,r2 be congruent circles attached to £, each lying on the plane

perpendicular to I. Consider the tube obtained as the trajectory of the translation

of 7"i to r2. Since each line in £ passes through conv(Tj), i 1,2, int(77)
does not intersect this tube. Hence A and P2 are isotopic over 77. Now, (2)
follows from (1).
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