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Variations on Poincaré duality for intersection homology

Martintxo Saralegi-Aranguren and Daniel Tanré

Abstract. Intersection homology with coefficients in a field restores Poincaré duality for
some spaces with singularities, as stratified pseudomanifolds. But, with coefficients in a

ring, the behaviours of manifolds and stratified pseudomanifolds are different. This work
is an overview, with proofs and explicit examples, of various possible situations with their

properties.

We first set up a duality, defined from a cap product, between two intersection

cohomologies: the first one arises from a linear dual and the second one from a simplicial
blow up. Moreover, from this property, Poincaré duality in intersection homology looks like

the Poincaré-Lefschetz duality of a manifold with boundary. Besides that, an investigation

of the coincidence of the two previous cohomologies reveals that the only obstruction

to the existence of a Poincaré duality is the homology of a well defined complex. This

recovers the case of the peripheral sheaf introduced by Goresky and Siegel for compact

PL-pseudomanifolds. We also list a series of explicit computations of peripheral intersection

cohomology. In particular, we observe that Poincaré duality can exist in the presence of
torsion in the "critical degree" of the intersection homology of the links of a stratified

pseudomanifold.
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Introduction

In this introduction, for sake of simplicity, we restrict the coefficients to Z and Q. We

consider also Goresky and MacPherson perversities, depending only on the codimensions

of strata. A more general situation is handled in the text and specified in the various

statements. Recollections of definitions and main properties can be found in Section 1.

Let M be a compact, n -dimensional, oriented manifold. The famous Poincaré

duality gives a non-singular pairing

Hk(M;Q) <g> Hn-k(M-Q) Q,

defined by the intersection product. This feature has been extended to the existence

of singularities by M. Goresky and R. MacPherson. In [GM1], they introduce the

intersection homology associated to a perversity ~p and prove the existence of a

non-singular pairing in intersection homology,

Hf(X; Q) <g> Q) -* Q,

when ~p and D~p are complementary perversities and X is a compact, oriented,

n -dimensional PL-pseudomanifold. If we replace the field of rational numbers by
the ring of integers, the situation becomes more complicated. In the case of a

compact oriented manifold, we still have non-singular pairings,

(0.1) F/4(M;Z)®F//„_fc(M;Z)^Z,

between the torsion free parts of homology groups, and

(0.2) T//fc(M;Z)®T//„_fe_1(M;Z) -* Q/Z

between the torsion parts. In contrast, these two properties can disappear in
intersection homology as it has been discovered and studied by M. Goresky and

P. Siegel in [GS]. In their work, they define a class of compact PL-pseudomanifolds
called locally ~p-torsion free (see Definition 3.6) for which there exist non-singular

pairings in intersection homology,

(0.3) FHj(X;Z) ®FH°Jk(X;Z) -> Z

and

(0.4) T//f(X;Z)<8)T//nD5_1(X;Z)^(Q/Z.

But there are examples of PL-pseudomanifolds for which the previous pairings
are singular, as for example the Thorn space associated to the tangent space of
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the 2-sphere for (0.3) and the suspension of the real projective space MF3 for

(0.4), see Examples 6.4 and 6.3.

Let us come back to recollections on Poincaré duality. For an oriented, «-
dimensional manifold, M, the cap product with the fundamental class is an

isomorphism,

(0.5) H*{M\Z)=*Hn-k{M\Z),

between cohomology with compact supports and homology. The existence of
the non-singular pairings (0.1) and (0.2) are then consequences of (0.5) and

the universal coefficient formula. In intersection homology, this method was

investigated by G. Friedman and J. E. McClure in [FM] and taken over in [Fril,
Section 8.2], As cohomology groups, the authors consider the homology of the

dual Cj(X;Z) — Hom(C*f(X\Z),Z) of the complex of ~p-intersection chains

and, under the same restriction as in Goresky and Siegel's paper, they prove the

existence of an isomorphism induced by a cap product with a fundamental class,

(0.6) //|>C(*;Z)4> H^k(X-Z),

for a locally ^-torsion free, oriented, paracompact, «-dimensional stratified

pseudomanifold X. With this restriction, the pairings (0.3) and (0.4) are then

deduced from (0.6) and a formula of universal coefficients, as in the case of a

manifold.
In [CST5], we take over the approach (0.5) using blown-up cochains with

compact supports, N 5 c (—), that we have introduced and studied in previous

papers [CST7], [CST1],' [CST2], [CST6], [CST3], [CST4] (also called Thom-

Whitney cochains in some of these works). One of their features is the existence

of cup and cap products (see [CST3] or Section 1) for any ring of coefficients
and without any restriction on the stratified pseudomanifold. Indeed we prove in

[CST5, Theorem B| that, for any oriented, paracompact, «-dimensional stratified

pseudomanifold, X, and any perversity ~p, the cap product with a fundamental
class is an isomorphism,

(0.7) - - m : 3t±c{X\ Z) ^ H*_k(X; Z),

between the blown-up cohomology with compact supports (—) and the
p,C

intersection homology. The blown-up cohomology is not defined from the dual

complex of intersection chains but proceeds from a simplicial blow up process
recalled in Section 1. Thus, there is no universal coefficients formula between

Mj(—) and H?(—) and we cannot deduce from (0.7) a non-singular bilinear
form as in the classical case of a manifold. In [CST5, Theorem C], for a compact
oriented stratified pseudomanifold X, we prove the non-degeneracy of the bilinear
form
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(0.8) <i>y FM^X-Z) ®F^fe(Z;Z) Z

built from the cup product. (There are examples of stratified pseudomanifblds
where this bilinear form is singular, see [CST5, Example 4.10] or Example 6.4.)
In contrast, there are examples (see Example 6.3) of the degeneracy of the

associated bilinear form

The existence of such examples is not surprising: as the blown-up cohomology
is isomorphic through (0.7) to the intersection homology, the defect of duality
detected by Goresky and Siegel is also present in (0.8) and (0.9). In sum, we
have two intersection cohomologies, //-(—) and MA (—) : the first one has a

universal coefficient formula and the second one satisfies the isomorphism (0.7)

through a cap product with a fundamental class. But, as the quoted examples

show, neither satisfies a Poincaré duality with cup products and coefficients in

Z, in all generality. (However, the blown-up cohomology satisfies (0.7) over Z
without restriction on the torsion of links.)

This work is also concerned with not necessarily compact stratified pseudo-
manifolds and, for having a complete record, let us also mention the existence of
an isomorphism,

between the blown-up intersection cohomology and the Borel-Moore intersection

homology, (see [SAT] or [CST6] in the PL case) for any paracompact, separable
and oriented stratified pseudomanifold of dimension n.

After this not so brief "state of the art", we present the results of this work.
The starting point is the existence of a duality between the two intersection

cohomologies, developed in Section 2. To express it, we use the injective
resolution, I£: Q Q/Z, and the Verdier dual, DA*, defined as the Horn
functor of a cochain complex A* with value in l-f, see (1.14).

Theorem A. [Theorem 2.2] Let X be a paracompact, separable and oriented

stratified pseudomanifold of dimension n and ~p be a perversity. Then, there exist

two quasi-isomorphisms, defined from the cap product with a cycle representing
the fundamental class [A] e Hf°' (A;Z),

ty. C|(A;Z)^(D AÎC(A;Z))„_* and My. N ^(X;Z) -> (Z)C~c(A; Z)„_*.

(0.9) Ly. TM^{X-1)®TMnD+l-k{X\1) -> Q/Z.

(0.10) [X]: M±(X]Z) ^ //~'*(A;Z),

As a consequence, in the compact case, we deduce two non-singular pairings
between the two intersection cohomologies,
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(0.11)

F//|(X; Z) ® FX±~k(X;Z) -> Z and TH±(X;Z) <g> FMfk+l{X\Z) -> Q/Z.

In a second step, we are looking for a quasi-isomorphism between N j(X ; Z)
anr/ D N Dp C(X;Z). This can be deduced from Theorem A and the

existence of a quasi-isomorphism between N j(X; Z) and C*D-{X; Z). For

investigating that, we use the existence (see Proposition 3.1) of a cochain

map, xj: N j(X; Z) Cfp(X: Z), and its version with compact supports,

Zp,c: Nj)C(X; Z) C*- c(X; Z). So, by setting % ~eDp°Xp, we get a

cochain map,

(0.12) %: aT;(X;Z) -> Z),

which is a quasi-isomorphism if, and only if, the map is a quasi-isomorphism.
Hence, the homotopy cofiber of in the category of cochain complexes plays

a fundamental role in Poincaré duality. We study it in Section 3. We call it the

peripheral complex and denote it and its homology by R* and IR*p, respectively.

(A brief analysis shows that it corresponds effectively to the global sections of
the peripheral sheaf of [GS], in the PL compact case.) This complex, which

personifies the non-duality, owns itself a duality in the compact case. To write it
in our framework, we introduce the compact supports analogues, RL

c
and IR'X

c,
of Rj and IR*

Theorem B. [Theorem 3.4] Let X be a paracompact, separable and oriented

stratified pseudomanifold of dimension n and ~p be a perversity. Then, there exists

a quasi-isomorphism,

RL(X-,Z)^(DR*DptC(X-Z))n_^_v

We also describe some properties of this complex, established in [GS] foi-

PL compact stratified pseudomanifolds. For instance, as xj induces a quasi-

isomorphism when the ring of coefficients is a field, the homology lRj{X ; Z) is

entirely torsion. As the nullity of IR~(X ; Z) is a sufficient and necessary condition
for having the quasi-isomorphism ID-p, we may enquire what means the "locally
~p-torsion free" requirement appearing in [GS] and [FM], In Proposition 3.9, we
show that it is equivalent to the nullity of the peripheral cohomology IRj(U ; Z)
for any open subset of X. Example 6.7 shows that this last property is not

necessary for getting the quasi-isomorphism Dp.
Suppose ~p < D~p. We denote by N DP/p(X h) the homotopy cofiber

of the inclusion of cochain complexes, N j(X ; R) N Dp(X; R) and by

N Dp/p,c(X; R) the compact support version of it. In [FH, Lemma 3.7], G.
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Friedman and E. Hunsicker prove that the homology analogue of this relative

complex owns a self-duality for compact PL-pseudomanifolds and intersection

homology with rational coefficients. In Section 4, we extend this result to

paracompact, separable and oriented stratified pseudomanifolds of dimension

n, X. Denote by C^/D~ c(X;Z) the cofiber of the inclusion c{X;Z) ->
C-£-(X;Z). In Proposition 4.1, we get a quasi-isomorphism, similar to the one

P )C

of Theorem 2.2,

^Dp,p(X;Z) (DC±/D7c)n-*.

Next, if x~p an<3 Xp,c are quasi-isomorphisms, we prove the existence of a quasi-

isomorphism,

Ttvprp\X\Z) -> {DÏÏDpir/(X-, z))n_^_v

which gives back the self-duality of [FH], see Corollary 4.2.

In Section 5, we study some components of the peripheral cohomology for

compact oriented stratified pseudomanifolds. The pairings deduced from (0.11) are

investigated separately for the existence of non-singular pairings in the torsion

or in the torsion free parts. In Section 6, examples of the different possibilities
are described. In particular, Example 6.7 is a not locally ~p-torsion free stratified

pseudomanifold with Poincaré duality over Z. Finally, let us emphasize that most

of the duality results in Sections 2, 3, 4 do not require an hypothesis of finitely
generated homology.

Notations and conventions. In this work, homology and cohomology are

considered with coefficients in a principal ideal domain, R, or in its field of
fractions QR and, if there is no ambiguity, we do not mention the coefficient

explicitly in the proofs. For any R-module, A, we denote by T4 the R-
torsion submodule of A and by FT A/TA the R-torsion free quotient of
A. Recall that a pairing A ® B —> R is non-degenerate if the two adjunction

maps, A -> Horn{B,R) and B Hom(4,R), are injective. The pairing is

non-singular if they are both isomorphisms.
For any topological space X, we denote by cX — X x [0,1 \/X x {0} the cone

on X and by cX X x [0, \ [/X x {0} the open cone on X. Elements of the

cones are denoted [x,t] and the apex is v [—,0],
In the previous introduction, H?(—) denotes the intersection homology of

[GM1| or [Kin|. It can be obtained from the chain complex of filtered simplices
of Definition 1.7, see [CST4, Proposition A.29]. The perversities used in this

work are completely general: they are defined on the set of strata and do not

only depend on the codimension. Moreover, we lift any restriction on the values

taken by a perversity. An issue of that freedom is that an allowable simplex in
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the sense of [GM1] or [Kin] may have a support totally included in the singular
subset. This has bad consequences, as the breakdown of Poincaré duality. To

overcome this failure, we use a complex built from filtered simplices that are

not totally included in the singular set, see Remark 1.9. As it differs from the

complex of [GM1] or [Kin 1, we denote it by <£*(—) and its homology by fj%(—).

We emphasize that for the original perversities of the loc. cit. references, we
have Cf (—) (—) and Hf(—) fy* (—). Simply, our approach allows an

extension of the original historical definition that leaves it unchanged. Thus we

call it intersection homology without ambiguity.
The dual complex £A(-) Hom(C£(-),R) gives birth to a cohomology

ff* (—). As explained before in the introduction, this cohomology does not satisfy
a Poincaré duality, through a cap product, with intersection homology for any
coefficients. For having this property, we use a cohomology constructed from a

simplicial blow up. For a clear distinction with the previous cohomology obtained

with a linear dual, we denote M~(—) the blown-up cohomology and N ji—) its

corresponding cochain complex

1. Background

We recall the basics we need, sending the reader to [CST4|, |CST3|, |Fril| or |GM1|,
for more details.

Pseudomanifolds. First come the geometrical objects, the stratified pseudoman-
ifolds. In this work, we authorize them to have strata of codimension 1.

Definition 1.1. A topological stratified pseudomanifold of dimension n (or a

stratified pseudomanifold) is a Hausdorff space together with a filtration by closed

subsets,

X-i 0 c X0 ç Xx ç c Xn-2 Ç Xn-i $ Xn X,

such that, for each i e {0,...,«}, is a topological manifold of dimension

i or the empty set. The subspace Xn-\ is called the singular set and each point
x 6 Xi\X{-i with i 7^ n admits

(i) an open neighborhood V of x in X, endowed with the induced filtration,

(ii) an open neighborhood U of x in Xj\\Xi-i,
(iii) a compact stratified pseudomanifold L of dimension n — i — 1, whose cone

cL is endowed with the conic filtration, (cL),- cL;_i,

(iv) a homeomorphism, (p: U x cL —> V, such that
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(a) (p(u,v) — u, for any u e U, where v is the apex of cL,

(b) <p(U x cLj) — V n Xi+j.i-i, for any j e {0,— 1}.

A topological stratified pseudomanifold of dimension 0 is a discrete set of points.
The stratified pseudomanifold L is called the link of x. The connected

components S of Xj\Xi-i are the strata of X of dimension i. The strata

of dimension n are said to be regular and we denote by Sx (or S if
there is no ambiguity) the set of non-empty strata. We have proven in [CST4,

Proposition A.22] that S < S' if, and only if, S c S', defines an order relation.
We also denote S < S' if S < S' and S ^ S'.

Definition 1.1 of stratified pseudomanifold is slightly more general than the one

in [GM2] where it is supposed Xn-\ Xn-2 In this work, we are concerned

with Poincaré duality and general perversities, for which the previous restriction
is not necessary. On the other hand, the hypothesis Xn / Xn-i implies that
the links of the singular strata are always non-empty sets, therefore Xn\Xn-i
is dense in X. This infers a "good" notion of dimension on X which is the

relevant point in [GM2, Page 82] and motivates us for keeping the appellation
of pseudomanifold in this case.

Example 1.2. Among stratified pseudomanifblds, let us quote the manifolds, the

open subsets of a stratified pseudomanifold (with the induced structure), the cones

on compact manifolds with the singular set reduced to the apex, the Thorn spaces
filtered by the compactification point. As relevant examples of spaces admitting a

structure of stratified pseudomanifolds, we may also take over the list of [GM2]:
complex algebraic varieties, complex analytic varieties, real analytic varieties,

Whitney stratified sets, Thorn-Mather stratified spaces. For instance, the following
picture represents the real part of the hypersurface of C3 called Whitney cusp,
with its stratification:

c

Xo C Xi C X2 X
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Definition 1.3. The depth of a topological stratified pseudomanifold X is the

largest integer I for which there exists a chain of strata, S0 < Si < < St. It
is denoted by depth X.

In particular, depth X — 0 if, and only if, all the strata of X are regular.

Perversity. The second concept in intersection homology is that of perversity.
We consider the perversities of [MacP] defined on each stratum. They are already
used in [Sar], [SA], [Fri2], [Fri3], [FM],

Definition 1.4. A perversity on a stratified pseudomanifold, A, is a map,
~p: Sx -» Z, defined on the set of strata of X and taking the value 0 on

the regular strata. The pair (X,fi) is called a perverse pseudomanilfold. If ~p and

q are two perversities on X, we set ~p < q if we have ~p(S) < q(S), for all
S eSx.

Among perversities, there are those considered in [GM1] and whose values

depend only on the codimension of the strata.

Definition 1.5. A GM -perversity is a map ~p: N -> Z such that ~p{0) /?(1)

~p(2) 0 and ~p{i) < ~p(i + 1) < ~p(i) + 1, for all i > 2. As particular case, we

have the null perversity 0 constant with value 0 and the top perversity defined

by t(i) i —2 if i >2. For any perversity, ~p, the perversity D~p \=t-~p is

called the complementary perversity of p. A GM-perversity induces a perversity
on X by ~p(S) p(codim S).

Example 1.6. Let us mention the lower-middle and the upper-middle perversities,

respectively defined on the singular strata by

m(S)
(codim S) — 2

and n(S) Dm{S) —
(codim 5) — 2

which play an important role in intersection homology. They coincide for Witt
spaces ([GS, Definition 11.1]) and, for them, a non-singular pairing exists in
intersection homology with rational coefficients, see [GS]. For instance, this is

the case for the Thorn space of the tangent bundle of the 2-sphere and there

is a pairing induced by the cup product, (g) d(^~k(X-,Q) -» Q. Its

behaviour with integer coefficients is analyzed in [CST5, Example 4.10],

Intersection homology. We specify the chain complex used for the determination

of intersection homology of a stratified pseudomanifold X equipped with a

perversity fi, cf. [CST7].
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Definition 1.7. A filtered simplex is a continuous map a: A -> X, from a

Euclidean simplex endowed with a decomposition A A0 * • • • * A„, called a -

decomposition of A, such that cr~1Xi — A0 * • • • * A,-, for all i 6 {0,...,«}, where

* denotes the join. The sets A, may be empty, with the convention 0 * Y — Y,
for any space Y. The simplex a is regular if A„ / 0. A chain is regular if it
is a linear combination of regular simplices.

Given a Euclidean regular simplex A A0 * • • • * A„, we consider as

"boundary" of A the regular part DA of the chain 3A. That is DA

3(A0 * ••• * A„_i) * An, if |A„| 0, or DA 3A, if |A„| > 1. For any

regular simplex a: A -> X, we set da er* o 0 and denote by £*(X; R) the

complex of linear combinations of regular simplices (called finite chains) with
the differential D.

Definition 1.8. The perverse degree of a filtered simplex a : A A0*- • A„ —* X
is the (n + 1 )-uple, ||oj| (||a||0, -.., ||cr||„), with ||oj|f dim(A0 * • • • * A„_,)
and the convention dim0 —oo. The perverse degree of a along a stratum S

is defined by

_ I -oo, if S n er (A) 0,
s \ IIer llcodims> Otherwise.

A regular simplex is ~p -allowable if

(1.1) l|°1ls < dim A — codim S + ~p(S) dim A — D~p(S) — 2,

for each stratum S of X. A chain f is ~p -allowable if it is a linear combination

of ~p -allowable simplices, and of ~p-intersection if £ and its boundary d£ are fi-
allowable. Let 'i(X: R) be the complex of ~p-intersection chains and (A; R)

its homology, called ~p -intersection homology.

Remark 1.9. This homology is called tame intersection homology in [CST7] and

non-GM intersection homology in [Fril], see [CST7, Theorem B], It coincides

with the intersection homology for the original perversities of [GM1], see [CST7,
Remark 3.9].

We introduce also the complex <L°f'p(X\R) of locally finite chains of fi-
intersection with the differential D. If X is locally compact, metrizable and

separable, this complex is isomorphic (see [CST6, Proposition 3.4]) to the inverse

limit,
£~^(A; R) lim £j(X, X\K; R),

K<ZX

where K runs over the compact subsets of X. Its homology, Sff'p(X\R), is

called the locally finite {or Borel-Moore) ~p -intersection homology.
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Blown-up cohomology. Let N*(A) be the simplicial cochain complex of a

Euclidean simplex À, with coefficients in R. Given a face F of A, we write 1p
for the element of N*(A) taking the value 1 on F and 0 otherwise. We denote

also by (F, 0) the same face viewed as face of the cone cA [v] * A and by

(F, 1) the face cF of cA. The apex is denoted (0,1) c0 [v], Cochains on
the cone cA are denoted 1(f,e) with s 0 or 1. If A A0 * • • • * A„, let us set

JV*(A) Al*(cAo)<g>---® N*(cAn-i)®N*(An).

A basis of N *(A) is formed of the elements 1(f>£)

1f„, where e,- e {0,1} and F, is a face of A, for i e {0,...,«} or the empty
set with Ei 1 if i < n. We set |l(F,e)|>lS £,->s(dimFi + £/).

Definition 1.10. Let f e {1The I-perverse degree of 1çp,e) e N *(A) is

l|l(F,£)llr
-oo if en-t 1,

11(F,e)\>n-l if en-l °-

For a cochain co — Yb ^b 1 (F,e)h e N (A) with Xb ^ 0 for all h, the I-perverse
degree is

HI/ max ||l(F>e)J/.
b

By convention, we set ||0||/ —oo.

Let a : A A0 * • • • * A„ -> X be a filtered simplex. We set N * N *(A).
If 8( : A' -> A is an inclusion of a face of codimension 1, we have 3io
a o 8t : A' X. If A A0 * • • • * A„ is filtered, the induced filtration on A'
is denoted A' A(, * • • • * A'n and 3io is a filtered simplex. The blown-up
intersection complex of X is the cochain complex N (X) composed of the

elements co associating to each regular filtered simplex a : A0 * • • • * A„ ->• X an

element coa e N * such that {(»„) coge<7, for any face operator : A' -> A
with A'n ^ 0. The differential dco is defined by (dco)„ — d(oj„). The perverse
degree of co along a singular stratum S equals

His sup {\\coa Hcodim s I o \ A X regular such that ct(A) nS^0}.
We denote ||<w|| the map which associates ||m||s to any singular stratum S and 0

to any regular one. A cochain co e N (X: R) is ~p-allowable if |jm|| < ~p and

of ~p-intersection if co and dco are ~p -allowable. Let N j(X: R) be the complex
of ~p -intersection cochains and 3(*(X ; R) its homology, called blown-up ~p-

intersection cohomology of X.
Finally, we mention the existence of a version with compact supports,

N jKC(X; R) and C(A: R), whose properties have been established in [CST5],
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Products. Let X be a stratified pseudomanifold equipped with two perversities,
~p and q. In [CST3, Proposition 4.2], we prove the existence of a map

(1.2) - - R) <g> TV |(A;R) -* R),

inducing an associative and commutative graded product, called intersection cup
product,

(1.3) _ _ ML(X; R) ® XI(X; R) -> X^X; R).

We mention also from |CST3, Propositions 6.6 and 6.7] the existence of cap

products,

(1.4) - - 7V L(X; R) ® cj(X; R) -> cJ+«(A; R),

such that (p w at) ^ £ — q (&> ^ £). (By definition, we say that the

collection {Cj(3f; R)}p^v is a left perverse module over the perverse algebra

{ N 4(L ; R) }qV •) Moreover, we have

(1.5) ö(cu ^ £) — dm ^ £ + (— l)'®'cu ^
and the cap product induces a map in homology,

(1.6) - - - : M^X- R) ® SjJ(X; R) -+ f)]+?(X; R).

The map (1.4) can be extended to maps,

(1.7) - - Nlj(X; R) ® <Ç*(X; R) -> +«(*; R),

(1.8) - - - : N'^C(X-R) ® ?«{X\R) -> d]^(X;R),

which induce,

(1.9) - - - : Mip(X; R) ® %?«{X\ R) -> ^ (X; R),

(1.10) - - M^C(X-R) ® Sj°°'^(X; 7?) -> f)J+*(X; R).

A second cohomology coming from a linear dual. Let A be a stratified

pseudomanifold with a perversity ~p. We set

d^(X; R) HomR(j(X;R),R)

with the differential t>c(£) — (— l)'c'c(ö£). The homology of d^(X,R) is

denoted $jj(X\ R) (or f)î(L) if there is no ambiguity) and called ~p -intersection

cohomology. From Remark 1.9 and the Universal Coefficients Theorem [Fril,
Theorem 7.1.4], we deduce that this cohomology coincides with the non-GM

cohomology of [Fril L
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The cap product (1.4) defines a star map

(1.11) *:4(X:R)®lïL(X;R)^<tg±(X;R)

by
(c *«)(£) c(û) — I).

We check easily c (co ^ rj) (c + co) * rj. Hence, the collection {£j(X; R)}je-p

is a right perverse module over the perverse algebra i N UX; R) > Moreover,
l q qV

we have

(1.12) ö(c to) — be eu + (— l)'e'c da)

and the star product induces

(1.13) _ sy^X; R) ® J^(*; R) -> S^(X\R).
The module structures (1.11) and (1.13) have also variants with compact supports.
We do not describe them in detail.

Background on Poincaré duality. This notion has been described in the

introduction, for compact oriented manifolds and stratified pseudomanifolds. We

recall the main results of |CST5] and [SAT] which represent a first step for a

duality over a ring.

Proposition 1.11. [CST5, Theorem B], [SAT, Theorem B] Let (X,~p) be an
oriented paracompact, perverse stratified pseudomanifold of dimension n. The cap
product with the fundamental class [A"] e (X ; R) induces an isomorphism

Xlc(X;R)%S%_k(X;R).

Moreover, if X is second countable, this cap product also induces an isomorphism,

M^X-R) =>^k{X-,R).

Dual of a complex. Let 0 —»/?—» QR QR/R —> 0 be an injective resolution

of the principal ideal domain R.

We denote by 1%, the cochain complex QR—f~^lR — QR/R and define

the dual complex of a cochain complex, A*, as the chain complex

(1.14) (DA*)k (Hom(A*,I*))k HomR(Ak,QR)®HomR(Ak+1,QR/R)

with the differential d(<po,<pi) (—(— l)k<Po ° d, — (— \ )k(p\ od — po(p0). This dual

complex verifies a universal coefficient formula, see [Lai, Lemma 1.2] for instance,
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(1.15)

0 ^ExtR(Hk+l(A*), R) ^Hk(DA*)-^HomR(Hk(A*), R) »0,

where k is the canonical map defined by (k[(Po, <Pi])(["]) <po(u) The complex
DA* plays the same role as the Verdier dual in sheaf theory. A self-dual cochain

complex of dimension n is a complex, A*, together with a quasi-isomorphism

(1.16) A*^(DA*)n-*.

Similarly, we define the dual of a chain complex, A*, as the cochain complex,

(1.17) (DA*)k (HomC4*,/£))* HomÄ(4t, ß*) ® HomÄ(4fc-i, ßÄ/Ä),

with the differential c/(Vh), Vfi) (—(— 1)^0°^,— (— \)kfi °3 — po^o)- This dual

complex also verifies a universal coefficient formula,
(1.18)

0 ^Ext*(//fc-i(/U), R) Hk(DA*) ^HomR(Hk(A*), R) ^0.

Torsion and torsion free pairings. We recall how the existence of a duality
gives pairings between the torsion and torsion free parts, see [Fril, Section 8.4]
for a similar treatment.

Proposition 1.12. Let A* and B* be two cochain complexes with finitely generated

cohomology. To any cochain map, V (To, V\ : B* —> DA*, sending Bk to

(DA*)n-k, we can associate two pairings,

VF : FHk(B) -» Horn(Hn~k(A), R)

and

VT : THk(B) -» Hom(T//n"fc+104), QR/R).

The first one is defined by

VF([b])([a]) Vo(b)(a)eR.

For the second one, let [b] e THk(B). There exists h' e Bk~1 and I e R such

that db' lb and we set

VT{[b]) p{^f^j+Vl(b).

Moreover, the pairings Vf and Vj are non-singular if and only if V is a

quasi-isomorphism.
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Proof. We first construct the following diagram,
(1.19)

0 ^ THk(B) > Hk(B) >- FHk(B) ^ 0

Vt v VF

0 —Hom(THn~k+1(A), QR/R) Hn_k(DA*) Hom(/^(T), R) —> 0.

The upper line is the decomposition of a module in torsion and torsion free

parts. The lower one is a universal coefficient formula. Recall that the short exact

sequence,

0 ^ Hom(A*+1, QR/Rf ^ DA* > Hom(d*. QR) ^ 0,

gives a long exact sequence with connecting map denoted 8,

—Hom(Hk+1(A), QR) -4- Hom(//fe+1(d), QR/R) —> Hn_k(DA*) -A-

As QR is injective and H (A*) finitely generated, there are isomorphisms

KerS ^ Hom(//*+1(d; R), R) and Cokerd) Ext(//*+1(d), R) ^
Hom(T//*+1(zl), QR/R). Hence, the map j2 is induced by the canonical
inclusion Horn{A*+1,QR/R)( >DA*.

As Horn(Hk(A), R) is torsion free, the composite koVo j\ is zero and there

exists a lifting Vt such that j2 ° Vt V ° j\ This map induces Vf making
commutative the diagram. The map Vf is easily determined as in the statement.

We now determine the map Vt With the notations of the statement, we

analyze the compatibility of V with the differentials. We first have:

(V o d)(b') (Vo(db'), Vx (db')) {iV0(b), IVi (b)),

dV(b') d(V0(b'),Vi(b'))

- {-iy-k+1V0(b') O d, -(-1 )n~k+iVi(b') od-po Vo (ft'))-

The equality 3 o V V ° d implies

I iVo(b) -(-l)"-k+1Vo(b')od,
\ iVx(b) -(-\)n~k+xV\{b') od - po Vo(b').

(1.20)

We now show the commutation /2 ° Vt V o j1 by proving that the difference
is zero in homology:

(V0(b),-VT([b]) +Vi{b)) V(b)-(0,VT([b])).

The last equality comes from the definition of Vt and (1.20).
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If Vf and Pr are isomorphisms, V is one also, from the five lemma.

Conversely, suppose that V is an isomorphism. The Ker-Coker exact sequence
associated to (1.19) implies Ker TV Coker TV 0 and Ker Vf Coker TV-
But Ker 7°f is free and Coker Pr is torsion, thus Ker TV Coker TV 0.

2. Verdier dual of intersection cochain complexes

In Theorem 2.2, we prove Theorem A for any principal ideal domain as ring of
coefficients. The main feature is the use of a cap product which gives the duality map
between the two intersection cohomologies. We continue with a necessary and sufficient
condition for the existence of a duality at the level of the blown-up intersection cohomology
(or intersection homology) itself.

Proposition 2.1. Let (X, ~p) be an oriented perverse stratified pseudomanifold

of dimension n and yx a representing cycle of the fundamental class [X j e

Sf/f' (X ; R). The two following maps,

dip. TV j{X; R) -+ {D^C(X-R))n_^ and Vr. ^(X; R) -> (dTTj^X; R))n_t,

defined by

• 'M-p(a)) (<p(w),0) with <p(eo)(c) (-l)l<w||e|(c *co)(yx),

• ~p(c) (f(c),0) with f(c)(co) (c co)(yx),

are cochain maps.

Proof. Let p: QR -> QR/R be the quotient map. We first observe that

pcp(co)(c) 0 e QR/R since <p(co)(c) e R. Also, as yx is a cocycle, we
have b(c * co)(yx) 0. With (1.12), we deduce

(he * co)(yx) + (-l)|c|(c dco)(yx) 0.

Thus, we have (— 1)M(ICI +1^(m)(t)c) + (— l)'ö,"c'<p(dm)(c) 0 which implies
<p(da>) —(—l)'"'^^) o h. From these observations, we get

d<Mp(cü) — (d<p(co),0) - (-\)^(p(co) oj, -p<p(o))) (<p(dco), 0)

,Np(dw).

The proof is similar for *Cj.

Theorem 2.2. Let (X,~p) be a paracompact, separable and oriented perverse
stratified pseudomanifold of dimension n. Then, the two maps, JTp: N j(X ; R) —>

(DLC(X\ /?))„_* and Vj. £L(X; R) -> (dTTj^X; R))n-*, of Proposition 2.1,

are quasi-isomorphisms.
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We need some lemmas before giving the proof. The first one is proven in

[CST3],

Lemma 2.3. [CST3, Lemma 13.3] Let X be a locally compact topological space,
metrizable and separable. We are given an open basis of X, U — {Ua}, closed

by finite intersections, and a statement P(U) on open subsets of X satisfying
the following three properties.

(a) The property P(Ua) is true for all a.

(b) If U, V are open subsets of X for which properties P(U), P(V) and

P(U fi V) are true, then P(U U V) is true.

(c) If (Ui)iei is a family of open subsets of X, pairwise disjoint, verifying the

property P(Uf) for all i e I, then P(|_|; Ui) is true.

Then the property P(X) is true.

Lemma 2.4. Suppose given a cochain map, fx'- A*(X) —> B*(X), for any
paracompact, separable perverse stratified pseudomanifold X, satisfying the

following three properties.

(i) The map fix is a quasi-isomorphism for any X R°xcL, with L a

compact stratified pseudomanifold or the empty set.

(ii) The two complexes, A*(X) and B*(X), verify the Mayer-Vietoris property
and fix induces a morphism of exact sequences (up to sign).

(iii) If fiijj is a quasi-isomorphism for a family of disjoint stratified pseudoman-

ifolds, then fiu,Uj is a quasi-isomorphism.

Then fix is a quasi-isomorphism for any X.

Proof. As X is metrizable (cf. [CST7, Proposition 1.11]) we may use Lemma 2.3.

We denote by P(X) the property " fix is a quasi-isomorphism". We consider
the family U {Ua} formed of the open subsets of charts of the topological
stratified pseudomanifold X together with the open subsets of the conical charts

of the topological manifold X\Xn-i.
Observe that Property (b)u is a direct consequence of the existence of a

morphism between the Mayer-Vietoris sequences in the domain and codomain.

Also, Property (c)u coincides with the hypothesis (iii). We are reduced to establish

a)u-
For that, we proceed by induction on the depth of X. If depth A =0, the

stratified pseudomanifold A is a manifold and we have that Ua is an open subset

of E". We now consider the basis V formed of the open n -cubes of E" included

in Ua. This family is closed by finite intersections and verifies the hypotheses of
Lemma 2.3, Property (a)v being given by the hypothesis (i). This proves P(Ua).
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To carry out the inductive step, we first observe that P(U) is already
established for each open subset U of X\Xn-\ since depth U 0. We consider

an open subset Ua of a conical chart Y x cL of X, with L a compact
stratified pseudomanifold. We choose the basis W of open subsets of Ua, formed

of the open subsets W c Ua with W D (Ma x {v}) 0, which are stratified

pseudomanifolds with depth IT < depth (Ra x (cL\{v}) < depth Y < depths,
together with the open subsets W B x crL c Ua, where B is an open a-
cube, r > 0 and crL (L x [0, r[)/(L x {0}). The family W is closed by finite
intersections and verifies the hypotheses of Lemma 2.3, the property (a)w being

given by induction and the hypothesis (i). This proves P(Ua).

The third lemma is the proof of Theorem 2.2 in a particular generic case.

Lemma 2.5. The conclusion of Theorem 2.2 is true if X =lflxcL, where L
is a compact oriented perverse stratified pseudomanifold of dimension m — 1.

Proof We begin by checking the finite generation of the various homologies and

cohomologies. First, we know that the intersection homology of a compact stratified

pseudomanifold is finitely generated, see [Fril, Corollary 6.3.40] for instance.

From Poincaré duality, universal coefficients formula or direct computations, this

infers the finite generation of J£j(X), f)L(A) and Sff'p(X). For the blown-up

cohomology with compact supports, Jfjc(X), this is a consequence of [CST5,

Propositions 2.18 and 2.19], As we do not find an explicit reference for the last

one, Sj^c(X), we supply a short direct proof.
Set Kn — [—n,n]a x cnL with c„L — L x [0, (n — 1 )/n[/L x {0}. The family

{Kn)n being cofinal among the compact subsets of laxcl, we have

£Lc(]r x cL) lim x cL, (Mfl x cL)\Kn).
n

As all the open subsets (Ra xcL)\Kn are stratified homeomorphic, it suffices to
consider n — 0 and

(2.1) J)f c(r X cL) f)4(r X cL, (la x cL)\{(0, v)}).

As we observed before, the cohomology f)L(Ma x cL) is finitely generated.

For the second one, we know that Ma x cL\{(0, v)} is stratified homeomorphic
to c(Sa_1 * L)\{u}, cf. fBro, 5.7.4] and proof of [CST6, Proposition 3.7], As

ij2.(c(S'a~1*L)\{u}) is also finitely generated, so is the relative homology of (2.1).

For the rest of this proof, we set X l"xcL. Let us observe that the two

following maps are quasi-isomorphisms,

ât;iC(A) -> K_AX) -* (DtfyX))^.
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The left-hand map is the Poincaré duality of [CST5, Theorem B], For the right
hand one, this comes from the fact that is a free module with finitely
generated homology, see [Lai, Proof of Proposition 1.3] for instance. By applying
the dual functor to this composition, we get the map

Vj: £X(X) -> (DD£j(X))* (DaT;;C(X))„_+,

which is a quasi-isomorphism, since the homologies are finitely generated, see

[Lai, Proposition 1.3],

For the second quasi-isomorphism, J\fj, we decompose it as

TfiiX) -> C'(X) -> (D£^c(X))n_^

where the left-hand map is the duality of [SAT] (recalled in Proposition 1.11). Thus

the proof is reduced to the study of the right-hand map. First, recall from [FM] and

[SAT, Proposition 2.2], that <^C(A) firnR(tX(X,X\K) £^(X, X\{(0,v)})
and 0*(*) lim (tJ(X,X\K) <£JX, X\{(0, v)}). Thus, it is sufficient to

-<—K P

prove the existence of a quasi-isomorphism,

e?(*,A\{(0,v)}) (d£l{X, A\{(0,v)}))^.

As the complex £%(X) is free with finitely generated homology, the evaluation

map £*(X) -> (Z)£2.(A))„_* is a quasi-isomorphism.

Replacing the subspace A\{(0, v)} by c(Sa~1 * L)\{u} as we do above, we
also get a quasi-isomorphism ££(A\{(0, v)}) -* (£>£T(A\{(0, v) }))„_£. From a

five lemma argument, we get that the map <t°f'p(X) —> (D£ic(A))„_* is a

quasi-isomorphism.

Proof of Theorem 2.2. We check the hypotheses of Lemma 2.4.

(i) This is Lemma 2.5.

(ii) We already know that each complex has a Mayer-Vietoris sequence. The

fact that any of the maps under consideration induces a morphism of exact

sequence comes from the naturality of the choice of the fundamental classes:

for an open subset U C I, we may choose the restriction of a fixed

cycle yx e £'°(X) representing the fundamental class of X to define the

fundamental class of U.

(iii) This is a consequence of the fact that the duality D sends inductive limits
to projective limits and of the following properties:

a;(uiUi) UiïïiiUi), xr~c(UiUi) ©iAr;>c(üi), <^(utUi)
Ui and e±c(LfUi) (BiCXJUi).

(iv) This is immediate.
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Remark 2.6. The two complexes, N -(—) and ££(—), have elements of the same

nature (they associate a number to chains) but have a different behaviour.

• In N ~(—) a blown-up cochain is defined on each filtered simplex.

• The cochains in <££(—) are defined only on the chains of 7?-intersection. We

can view them as relative cochains taking the value 0 on chains which are

not of /I-intersection.

Viewing 3£j(—) as an absolute cohomology and $jj(—) as a relative one, the

pairings coming from Theorem 2.2 look like the Poincaré-Lefschetz non-singular
pairings of a compact oriented manifold with boundary, that is, by example for
the torsion free part,

FH*(M, dM;R) ®FHn~*(M; R) R.

Remark 2.7. For sake of simplicity, we suppose that X is an oriented compact
stratified pseudomanifold. In [CST5, Theorem B], we prove that the chain map
defined by the cap product with a cycle yx representing the fundamental class,

is a quasi-isomorphism,

-ny*: 'N*ë(X,R)^CZ_ir(X,R).

Theorem 2.2 shows that the composition with a certain dualization of the chain

complex, in fact the Verdier dual of the linear dual, is a quasi-isomorphism as

well,

V^M) ^ (D£i(M))„_v
making of the blown-up cochain complex a Verdier dual of £X(X; R). In the next

section, we are now looking for a duality involving only the blown-up cochains.

3. Poincaré duality with pairings

After defining the peripheral complex, we prove two main properties of it (see |GS|
in the case of compact PL-pseudomanifolds): its link with the occurrence of a duality in
intersection homology and the existence of a duality on itself. In Proposition 3.9, we show

that the locally torsion free condition, required by Goresky and Siegel (see Definition 3.6)

is equivalent to a local acyclicity of the peripheral complex. Finally, we give an example of
a stratified pseudomanifold which is not locally torsion free and has an acyclic peripheral

complex, thus satisfies Poincaré duality.

A Poincaré duality on an oriented stratified pseudomanifold, X, similar to the

duality on manifolds, should be the existence of a quasi-isomorphism
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(3.1) Dp-. d(n*d^c(X;

With Theorem 2.2, such map Dp can be obtained from the composition of Gap

with a quasi-isomorphism N j(X; R) £r>p(X• R) We introduce now such

crucial map, already present in [CST4] and [CST3, Section 13].

Proposition 3.1. Let (X,~p) be a perverse stratified pseudomanifold and

s\ R), ö) -» (R, 0) an augmentation. Then there is a cochain map,

(3.2) xr^j(X;R)-+£*DJ(X-,R),

defined by Xp{°J) — s * to. We denote by xp,c ' N pc(X; R) £*D-c(X; R) the

restriction of xp lo the cochains with compact supports.

Proof. Let co N p(X; R) and £ 6 £^P(X; R). With the notation of the

statement, we observe from (1.4) that co --- £ e C(,(3f; R) and thus s(co ^ tj) is

well defined, To check the compatibility with the differentials, we apply s at the

two sides of (1.5). First, we have s(d(co ^ £)) 0 which implies,

0 s((dco) ~ ç) + (-l)He(© - (^)) Xjidcom + (-l)MXp(co)m
Xp(doo)(f) - h/p(m)(^)

and Dxpi®) Xp(d<*>).

Corollary 3.2. Let (X, ~p) be a paracompact, separable and oriented perverse
stratified pseudomanifold of dimension n and yx a representing cycle of the

fundamental class [V] e H%°' (X ; R). Then, the map

(3.3) Dp:7TiF(X-,R)^(Dir*DpAX-,R))n^

defined by Dp(oj)(a/. co") ((s to * o/)(yx). 0) is a quasi-isomorphism if and

only if the map Dxdp,c is one aiso.

The torsion and torsion free pairings arising from Dp are studied in Section 5.

Proof. With the notation of Proposition 2.1, the map Dp is equal to the following
composition,

^*P(X) % (DILJX))^ (D7f *Dp,c(X))n_..

Thus the result is a consequence of Theorem 2.2. Let us also notice that

Dp — Gop o xp d
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In view of Corollary 3.2, the cofibers of xj and Xp,c in the category of
cochain complexes play a fundamental role in Poincaré duality. We call them the

peripheral complexes. (A brief analysis shows that they correspond to the global
sections of the peripheral sheaf of [GS].)

Definition 3.3. Let (X,~p) be a perverse stratified pseudomanifold. The ~p-

peripheral complex of X is the mapping cone of xj'- X j(X ; R)

Rj(X;R) (£*Dp(X\R)® Nj+1(X;R),D), with D(c,<w) (dc+Xj((o),-d(o).

We denote by IRL(X; R) the homology of Rj(X ; R) and call it the peripheral ~p-

intersection cohomology of X. Similarly, we define R~C(X\R) and fRL((X: R)

from Xp,c-

If R is a field, the maps xj and Xp,c are quasi-isomorphisms, see [CST3,
Theorem F] and [CST5, Proposition 2.23], Therefore, the peripheral cohomologies

lRj(X; R) and c(X; R) are R-torsion. Also, from a classical argument, as

N *p{—\ R) and Ö^(—; R) have Mayer-Vietoris exact sequences, so does the

peripheral complex.
The next result concerns the existence of a duality on the peripheral

cohomology, IR*(—; R), we follow the same way as in [GS, Proposition 9.3]. (Let us

also notice that this technique works in the general framework of a triangulated

category, see [Bal, Theorem 1.6].)

Theorem 3.4 ([GS]). Let (X,~p) be a paracompact, separable and oriented

perverse stratified pseudomanifold of dimension n and yx a representing cycle

of the fundamental class [A] e H%°'°(X] R). Then, there is a cochain map,

inducing an isomorphism in homology.

Proof. The various arrows of the following diagram are specified below.

i.e.,

RL(X-,R)-+{DR*Dli>c(X;R))

(3.4) RUx)

(o^;ck(x))n_k ^(DN*Dp,c(X))n_k
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The map x~p is recalled in (3.2) and XopC ^XDp,c is defined by duality.
The two vertical maps of the front square are defined in Proposition 2.1. By
construction, the front square commutes and induces the cochain map (pp. From

Theorem 2.2 and the 5-lemma, we get that <pp- induces an isomorphism.

Corollary 3.5. Let (X. ~p) be a paracompact, separable and oriented perverse
stratified pseudomanifold. Then, the following conditions are equivalent.

(1) The stratified pseudomanifold (X, ft) verifies Poincaré duality; i.e., the map

Dp is a quasi-isomorphism.

(2) The map Dxd~p,c is a quasi-isomorphism.

(3) The map x~p is a quasi-isomorphism

Proof. The equivalence of (1) and (2) is done in Corollary 3.2 and the equivalence

of (2) and (3) comes from the commutativity of the front face of (3.4) and

Theorem 2.2.

This corollary means that Dp is a quasi-isomorphism if, and only if, the

peripheral complex Rp(X ; R) is acyclic. In [GS], Goresky and Siegel give a

sufficient condition of acyclicity for the peripheral complex that we describe now.

First, let us observe that the two complexes, N j(X; R) and <%(«)>
are connected by a cochain map, have Mayer-Vietoris sequences, coincide on

Euclidean spaces and have the same behaviour for disjoint union of open subsets.

Therefore (see Lemma 2.4), the map Xp induces an isomorphism if it does on the

products M" x cL where L is a compact stratified pseudomanifold. To exemplify
this point, we first reduce to the particular case of a cone over a compact manifold,
X c M. Already known computations (see Example 6.1) show that in this case,

the difference between the two cohomology groups is concentrated in one degree,

where we have

(3.5) Jf|(v)+1(cM; R) 0 and f)g)+1(cM; R) T%(v)(M; R).

Thus the lack of torsion in the homology of the manifold M, in this critical degree,

is a necessary and sufficient condition for having an isomorphism between the

two cohomologies MX(cM ; R) and TfD-(cM : R). We examine now the general

case.

First, observe that "the" link of a stratum is not uniquely determined but

all the links of points lying in the same stratum have isomorphic intersection

homology groups, see [Fril, Corollary 5.3.14], Thus, for sake of simplicity, we

use the expression the link Ls of a stratum S if only the intersection homology

groups of the links appear, as in the following definition.
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Definition 3.6 ([GS]). A stratified pseudomanifold X is locally {Dp, R)-torsion
free if

for each stratum S with associated link Ls

As dimX dimLs + dim S + 1, we have D~p(S) J(S) — ~p(S) —

dim Ls — f)(S) — 1. From Poincaré duality, one can deduce (see for instance [Fril,
Corollary 8.2.5]) that X is locally ('p, R) -torsion free if, and only if, it is locally
(DJ), A1)-torsion free. We therefore use them indifferently. Let us also notice that

any open subset of a locally Çp, R) -torsion free stratified pseudomanifold is a

locally Çp, R) -torsion free stratified pseudomanifold.

Proposition 3.7. Let (X, J>) be a paracompact, separable, perverse, stratified
pseudomanifold. If X is locally Çp, R) -torsion free, then the maps /j and x~p,c

induce isomorphisms,

(3.7) xp- X; R) ^ Sj^X; R) and X*p,c : X^(X; R) ^ &D7iC{X; R).

Proof The assertion for Xj is proven in [CST3, Theorem F] and in [CST5,

By using that the dual of a quasi-isomorphism is a quasi-isomorphism and

Corollary 3.5, we deduce that a locally Çp, R) -torsion free stratified pseudomanifold

satisfies Poincaré duality and we recover [GS, Theorem 4.4], The reverse

way is not true in general, as Example 6.7 shows.

Proposition 3.8. There are examples of compact oriented stratified pseudoman-

ifolds with a perversity J), which are not locally (J), R)-torsion free and whose

J)-intersection homology satisfies Poincaré duality.

We complete this section with a characterization of the property " Çp, R) -

torsion free" in terms of local acyclicity of the peripheral complex, which is

equivalent to the nullity of the associated sheaf, considered in [GS].

Proposition 3.9. Let X be a compact oriented stratified pseudomanifold of
dimension n and J) a perversity. Then, the stratified pseudomanifold X is locally
Çp, R)-torsion free if, and only if 3TTÇU; R) — 0 for any open subset U C X.

Proof. Suppose IRjÇU) — 0 for any open subset (J of X. We choose a

conical chart U x cL. From Example 6.1, we observe that the condition

IRjÇU) — 0 implies

(3.6) (LS\R) 0,

Proposition 2.23] for Xpc-
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R*(cL) T^(L) 0.

Therefore, the stratified pseudomanifold X is locally Çp, R) -torsion free.

We establish now the reverse way and suppose that the stratified pseudomanifold

X is locally Çp, R) -torsion free. We apply Lemma 2.3 taking for P(U) the

property
"for any open subset V of U, we have Sl*p(V) 0."

We proceed by induction on the depth of the stratified pseudomanifold, starting
easily with the case of a manifold with empty singular set. The induction uses

two steps.

• First, we prove P(U) for any open subset U of a fixed conical chart
Y x cL. This is obvious if L 0 therefore, we suppose L/0.
We consider the following basis, V, of open subsets V of U composed of
subsets of two kinds:

- The open subsets V of U that do not contain the apex of cL. They are

stratified pseudomanifolds of depth less than depth X and the induction

hypothesis can be used.

The open subsets V B xceL, where B cl is an open cube, s > 0

and ceL (L x [0, e[)/(L x {0}). The acyclicity of Rj(V) comes from
the local (D~p, R) -torsion freeness of X, as at the beginning of this

proof.

This family V is closed for finite intersections and satisfies the hypotheses of
Lemma 2.3. We have just proved condition (a). Property (b) is a consequence
of the existence of Mayer-Vietoris sequences and (c) is direct. Thus, P(U)
is true.

• Finally, for establishing the property P(X), we choose the open basis

composed of open subsets of conical charts or regular open subsets and

apply Lemma 2.3. Note that condition (a) is proved in the first step. For (b)
and (c), the arguments used for a conical chart apply also.

Note that Example 6.7 is in accordance with Proposition 3.9. Here, conical
charts are products, ]0, [xc(k' xS'x MP3), that are not locally torsion free.

4. A relative complex

In this section, we take over the relative complex introduced by Friedman and Hunsicker

[FHJ, for locally torsion free compact PL-pseudomanifolds. We extend the properties given
in loc. cit. to the case of an acyclic peripheral complex, with coefficients in R.
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Let (X, p) be a perverse space such that p < Dp. We consider the homotopy
cofiber sequence,

7jj(X\R) - 'N*DJj(X;R) 7ÏDpip(X;R).

We call it the (D~p, /J)-relative complex (or relative complex if there is no

ambiguity) and denote its homology by Xp-,~(X ; R). Similarly, we consider the

homotopy cofiber sequence

bpAx-> R) - £kc(X-> R) - <%IDPAX' *>•

In [FH, Lemma 3.7], G. Friedman and E. Hunsicker also introduce relative

complexes for intersection homology with rational coefficients of compact PL-

pseudomanifolds. Their general purpose is the extension of Novikov additivity and

Wall non-additivity in the case R Q, for An -dimensional PL-pseudomanifolds.

Proposition 4.1. Let (X,~p) be a paracompact, separable and oriented perverse
stratified pseudomanifold of dimension n with ~p < D~p. Then there is a quasi-

isomorphism

fr- Dpip*(X; R) (D£L/DJc(X; /?))„-*->•

Proof. We introduce a diagram, as in the proof of Theorem 3.4,

(4.1)

Nj(X)
I

NDJ(X)

•^Dp

The two vertical maps of the front face are quasi-isomorphisms. They induce, the

back vertical arrow, \j/j, which is also a quasi-isomorphism.

By construction, we have {{dc co + (—l)'c'c dm)(yx), 0),
where yx is a cycle representing the fundamental class.

Corollary 4.2. Let (A' ,~p) be a paracompact, separable and oriented perverse
stratified pseudomanifold of dimension n such that xp and Xp,c are quasi-

isomorphisms. Denote by N op/p.c (X: R) the cofiber of N -p C(X; R) —>

N *Dpc(X', R). Then there is a quasi-isomorphism

*p- vp/p*{X\R) -> {Dir DT/p/{X-R))n_^_v
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As in Proposition 1.12, such quasi-isomorphism induces non-singular pairings
for the torsion and the torsion free parts of the homology of N D-pi~p (X: R). In
the compact PL-case, the previous statement corresponds to the duality obtained

in [FH], In contrast with the peripheral complex of the previous section, the

homology of this relative complex is not entirely torsion, see Example 6.8.

Proof. Let us observe that the maps Xp,c and XDp,c induce a map

XD~p/p,c N D~pl~p,c ~~* ^p/Dp,c(^ '

As Xp,c is a quasi-isomorphism, its dual Dxp,c is one also. On the other hand,

with Corollary 3.5, as x~p is a quasi-isomorphism, then Dxd~p,c is one also.

Therefore, with the five lemma, we deduce that Dxd~p/p,c is a quasi-isomorphism.
In conclusion, the composition Dxd~p/p,c oxl/j is the quasi-isomorphism 4^.

5. Components of the peripheral complex

In this section, we study the peripheral complex in the compact case. It is constituted of
"three components" coming from the torsion and torsion free parts of the two cohomologies

defining it. They correspond to failures of the existence of non-singular torsion or torsion
free Poincaré pairings for intersection homology and blown-up cohomology.

If X is compact, the map Dp: N j(X: R) -» (D N *D-p(X\ R))n-k generates

two pairings,

(5.1) 4>p: YX±(X\R)®YJt%g(X\R)^ R

and

(5.2) Lp : TJ(|(A; R) <g> T^±l~k{X: R) -> QR/R.

For sake of simplicity, we call <î>p the Poincaré torsion free pairing and Lj the

Poincaré torsion pairing. Let us also observe that any of the isomorphisms of
Proposition 1.11 allows the replacement of by $)pn_k{—), giving pairings of
the intersection homology itself. If x~p is a quasi-isomorphism, these two pairings
are non-singular. In this section, we are looking for sufficient conditions suitable

for one of them to be non-singular.

5.1. Components of the peripheral complex. From Xj- Xj(X; R) ft*D-p{X ; R),
we construct, by restriction and projection, a morphism of exact sequences,
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(5.3) 0 - TXjiX; R) - MX{X\R) - FX±(X; R) - 0

Xp.T *P X*P.F

0 T$j*DJ(X; R) S)*DJ(X; R) FSfDJ{X\ R) 0.

As Xj ® QR is an isomorphism, the map yi f injective and Coker yL p
entirely torsion. Therefore, we can define.

jr*{X- R) Cokery*F

T7*c(X; R) Coker yL T and T*K(X- R) Kery£)T s KeryL.

As first observation, we deduce from the Ker-Coker Lemma applied to (5.3) the

short exact sequences,

(5.4) 0 -71*C(X; R) -CokeryL ^(X; R) -0.

By definition of the peripheral complex, we also have short exact sequences,

(5.5) 0 -> Coker yL -> S%{X; R) -> Ker y *+1 -> 0.

Observe from these two series of sequences that TjC(X; R) is a submodule of

Rj(X\R).

Proposition 5.1. Let (X, ~p) be a compact perverse stratified pseudomanifold.
Then, there exists an exact sequence:

(5.6) 0 -* *£(*;R) -> ^(X; R)/T£C(X-, R) -> T*+\X; R) -> 0.

Proof. The proof follows directly from the commutative diagram of exact

sequences,

(5.7)
0 0 0

o 7j(X; R) R)/T£C(X; R) T*+\X\R) 0

0 Coker xj dlj(X; R) 77+\X- R) 0

0 7-*c(X- R) ^—= 7dc(X\ R) 0 0

0 0 0

where the first column is (5.4) and the middle row (5.5).



Variations on Poincaré duality for intersection homology 145

We continue by establishing the existence of a non-singular pairing between

the two components coming from the restriction of Xj to the torsion submodules,

T-*C(X:R) and T-*K(X;R).

Proposition 5.2. Let (X,~p) be an oriented compact perverse stratified pseudo-

manifold. Then, there is a non-singular pairing,

Kr. T£k(X; R) ® T£+}fk(X-, R) QR/R.

Proof. Consider the following commutative diagram, whose columns are exact

sequences

0 0

(X;R)'p,K

TJ(j{X-,R)

XP.T

TtfDJ(X-,R)

tj,C(X\R)

Horn(T£+}rk(X; R), QR/R)

P.T
Hom(Tf3^-+1-fc(Z; R), QR/R)

T)
J>,T

!XD~p.T)"

Hom(TX$Ll~k{X\ R), QR/R)

Hom(T^+lrk(X; R), QR/R)

0

Above, the maps Q'- T and 23^ T are the isomorphisms of the torsion pairing
associated via Proposition 1.12 to the dualities ,Sfp and Ldp of Theorem 2.2.

The left-hand column is exact by construction and the right-hand one also, since

QR/R is injective. As QLT and 33~T are isomorphisms, the result follows.

5.2. Poincaré torsion and torsion free pairings. As observed before, if the

peripheral intersection cohomology vanishes, we have two non-singular pairings
(5.1) and (5.2). We study now the existence of one of these two dualities,

independently of the other one. Proposition 1.12, Corollary 3.2 and Corollary 3.5

give directly the following observations.

Proposition 5.3. Let X be a compact oriented stratified pseudomanifold of
dimension n and ~p be a perversity.
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(1) The non-degenerate torsion free pairing

4)^: FM*{X\ R) 0 FM°_Pk(X- R) -* R

is non-singular if, and only if 'F-*(X ; R) — Coker yT F 0.

(2) The torsion pairing

Lj: TX*{X\ R) 0 TM°Px_k(X- R) -> QR/R

can be degenerate and is non-singular if and only if F*C(X: R)

T-\(X ; R) 0, which is also equivalent to IR* IF*{X; R) Coker y*p F.

Remark 5.4. In the previous statement, the different possibilities can occur.

• In Example 6.3, the torsion free pairing is non-singular and the torsion

pairing is degenerate.

• In Example 6.4, the torsion free pairing is singular and the torsion pairing
is non-singular.

• In Example 6.5, the torsion free pairing is singular and the torsion pairing
is degenerate.

5.3. Poincaré duality for intersection homology. Let X be a compact oriented

PL-pseudomanifold of dimension n and ~p be a GM-perversity. As recalled in
the introduction, Goresky and MacPherson ([GM1]) proved that the intersection

pairing defined on the f> -intersection homology,

rh : Hf(X;Q) ® H^X-Q) Q,

is non-singular. This duality has been extended over Z in (0.3) and (0.4) by

Goresky and Siegel ([GS1) in the case locally ft-torsion free.

The existence ([CST5]) of the isomorphism — [A] : 3(kp (X; R)

Hp_k (X ; R) allows the definition of an "intersection product" defined on the

intersection homology of a topological stratified pseudomanifold from the com-

mutativity of the following diagram.

With this structure, the map 33p of (3.3) and Proposition 1.12 give two pairings:

R) 0 X§(X; R) — R)

—[X]® [X] —IX]

HPn_k{X-R) 0 Hlt(X- R)^ HnPX,(X; R).

(5.8) %,F: FHP{X- R) 0 FH?Jk(X; R) R
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and

(5.9) : THj{X\R) ® TH^fk l(X; R) -> QR/R,

which are non-singular if, and only if, the peripheral complex is acyclic. The

previous results on components of the peripheral cohomology can also be

translated here through the duality map - [X], In particular, the torsion

pairing may be non-singular even if the stratified pseudomanifold X is not

(D~p, R) -locally torsion free (see Example 6.7) or even if the peripheral term

Mj(X; R) is not trivial (see Example 6.4).

6. Examples

This section contains references and details on the examples appearing in the text. The

most significant example is Example 6.7 which presents a compact stratified pseudomanifold
which is not locally ~p -torsion free but whose intersection homology satisfies Poincaré

duality.

In the case of isolated singularities on an n -dimensional stratified
pseudomanifold, n > 2, a GM-perversity ~p is defined by the natural number 'p(n) — k ;

we denote it by k.

Example 6.1 (Cone on a pseudomanifold). Let L be an (n - 1)-dimensional

compact stratified pseudomanifold. Recall the computations [CST3, Theorem E]
and [Fril, Proposition 7.1.5],

(6.1) X£(cL; R) Mj(L; R) if j < p(v),
0 if j > p(v),

fiJDp(L'> Ä) if J - P(y)'

(6.2) $)JD-(cL; R) < Ext{ftf\(L\R),R) if j=p(v) + 1,

0 if j>p(y) + 1.

Moreover, we have also (see [CST5, Proposition 2.18]),

(6.3) Mlc{cL,R) MÇ\L-R) if j > p(v) + 2,

0 if j < p(y) + 2.

From (2.1), (6.2) and the exact sequence associated to the pair (cL,cL\{v}), we

deduce,

(6.4)

ftJDTÎ(L'>R) if j>p(y) + 3,

F^JDpl (L;R) if J p(v) +2'
0 if j < ~p(v) + 2.
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We also have

7V*C(SM; R) 71^V)+1(SM; R) T//^(v)+1(M; P)

and

Tj>k(ZM; R) 5"|[v)+2(E/W; P) T//?(v)+1(M; P).

Thus, here, the duality of Proposition 5.2 is given by the Poincaré duality on the

manifold M. Moreover, as !F*(X; P) 0, the torsion free pairing <t>p of {5.1) is

non-singular for any perversity. Let us consider two examples where the torsion

pairing Lj of (5.2) is degenerate.

(a) Consider X ERP3, R Z and ~p 1 D~p (the middle perversity),
we have

&£(*; Z) 3gr(*; Z) © îgc(*; Z) - Z2 © Z2.

(b) Consider T S(5' x 5"1 xif3), R Z and ~p 2 D~p (the middle

perversity), we have

X^(X; Z) (X; Z) © 5gc(Jf; Z) - © Z3.

Here, in contrast with (a), the torsion free pairing is non-trivial.

The next example is an illustration of a peripheral cohomology which comes
from the torsion free part of the map xP.

Example 6.4 (Singular torsion free pairing with non-singular torsion pairing). We

present two examples of Thorn space built from the circle space of a manifold
B relatively to an Euler class e.

(a) We choose B S2, P Z, ~p D~p 1 and e 2w where

w e H2(S2: Z) is a generator. This example has been described in [CST5,

Example 4.10] by using the Thorn isomorphism and the Gysin sequence. We

deduce from this reference that the map xj- jKj(X; Z) Z -» f)j(X; Z) Z
is the multiplication by 2. Since both cohomologies are abelian free groups,
we have

Mj(X\Z) iRj(X ; Z) Ft2(X;Z) Z2.

Thus, the torsion pairing Lj of (5.2) is non-singular and the torsion free
pairing 4>y of (5.1) is singular.

(b) We choose P RP3xCP2xS1, R Z, ~p D~p 4 and e — (a, 3co,0),
where a e //2(RP3;Z) and co e //2(CP2;Z) are generators. We have,

ft%(X; Z) 3ij(X\Z) F^(X; Z) Z3 © Z3.

We leave the details to the reader. Here, in contrast with a), we have a

non-trivial torsion pairing.
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For the suspension of M P3, the peripheral cohomology cornes entirely from
the torsion in cohomology; in other words, this is a case where the sequence in

[GS, Remark 9.2.(3)] is exact. This is not the case in the following example.

Example 6.5 (Singular torsion free pairing with degenerate torsion pairing). We

consider the Thorn space built from the circle bundle over S2xRP3xS3, relatively
to the Euler class e — (3co,a,0), where co e H2{S2\Z) and a e //2(RP3;Z)
are generators. We choose R Z, ~p — D~p 4. With the same process than in

Example 6.4 a), we prove that /Î: M^(X\Z) $j^(X;Z), if k f 5, 6, and that

\ X§(X;Z) - Z© Z ->f)§(*;Z) Z © Z © Z2

is defined by /^(a,ft) (3a,3h,h). Finally, we have /i: J(£(X;Z) Z2 ->
ij|(Ar ; Z) 0. We compute

,ft|(2f;Z) Z6 © Z6.

If we go deeper in the torsion and the torsion free parts of we get

F-*(ATZ) 3^(X;Z) Z3©Z3,

T{iK(X-,Z) T£K(X-,Z)=Z2,
T*c(X;Z) T*c(X;Z)=Z2.

Here, the torsion free pairing O4 is singular and the torsion pairing Lj is

degenerate. Moreover, the exact sequence (5.6) is non-trivial: 0 —> Z3 ® Z3 —>

(Zß © Z6)/Z2 —> z2 —> 0.

In the previous examples, the peripheral cohomology is non-trivial and the

stratified pseudomanifold is not locally /'-torsion free. The general situation can

be more elaborate. We first study the peripheral cohomology of the suspension

of a stratified homeomorphism of a stratified pseudomanifold, see (6.6). Next, we

give a specific example of a non-locally ~p -torsion free stratified pseudomanifold
with trivial peripheral cohomology.

Example 6.6. [Suspension of a stratum-preserving homeomorphism.] Let (L,~p)
be a stratified pseudomanifold and / : L -» L a stratified homeomorphism, cf.

[CST3, Definition 1.5]. It induces homomorphisms, /*: Jf~(L;R) —>• R)

and f* :Sjp-(L:R) -> f)^(L; R) (see [CST3, Proposition 3.5] and [CST7,

Proposition 3.11]) and therefore /*: SV^{L\R) -> iR~(L\R). The suspension of

f is the quotient

(6.6) I Lx[0,1]/ ~,
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From (6.3) and (6.4), we get,

(6.5)

3tyL\R) if j < ~p(y) — 1,

Coker {x~p- Mj(L; R) -> SjJDj(L; /?)} if j p(v),

TSjJD-(L-R) if j — ~p(v) + 1,

0 if j > piy) + 2.

S^{cL- R)

In the particular case of an oriented, compact manifold M, we get the peripheral

complexes,

• «cM; R) äJ(v)+1(cM; r) Ext(//Kv)(M; R), R) TR),pk ' ' p

?7>(v)+D°,
"p,c^~"~,"/ " p,c_

T//P(v)+i(M;Ä).
Âî (cM;/i) M(VC>+\cM;R) Ext(//Kv)(M; /?),/?)

Let M be (n - 1)-dimensional. Observe that (~p(y) + 1) + (D~p(y) + 1) n.
Thus, the non-singular pairing of the torsion part of the peripheral cohomology
(see Theorem 3.4) corresponds to the classical Poincaré duality of the manifold

M,
T//"(v)+i(M; R) ® THDp(yH1(M; R) -> QR/R.

Moreover, the condition "locally (p, R) -torsion free" of Definition 3.6 for cM
is exactly what we need for having an acyclic peripheral complex and thus a

non-singular pairing in blown-up intersection cohomology, since

T4(V)(M; R) T//„_2_KV)(M; R) s T#Kv)(M; R) TH+l(M; R)

Sty? M-R).

Example 6.2 (Isolated singularities). Let X be a stratified pseudomanifold of
dimension n with isolated singularities S. Let Mm x cLa be a conical chart for

any singularity a e S and set U — Uaes x cLa. As there is no singularity
on V — X\~E, the peripheral and compact peripheral cohomologies of V and

U n V are reduced to 0. From the Mayer-Vietoris sequences, we get

StyX\ R) X-R) (Baezttfa)+\cLa; R) ©asETH^a)+x{La-R)

and

!R1C(X-, R) R) ®a^^)+\cLa-R) ©üsST//^ö)+1(Lö; R).

Example 6.3 (Non-singular torsion free pairing with degenerate torsion pairing).
Let M be an oriented compact manifold. Lrom the previous example, we deduce:

3tyLM-,R) ^(cM;Ä)©^(cM;Ä) T//^(v)+1(M; fl)®T//Kv)+1(M; R).
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with (x, 0) ~ (/(jc), 1) for any x e L. We obtain a stratified pseudomanifbld

relatively to the filtration x [0,1]/ Locally, this stratified pseudoman-
ifold is stratified homeomorphic to L x J, where J CM is an interval. So, the

perversity ~p on L extends naturally to a perversity on X, also denoted ~p. We

cover X with two open subsets, {U,V}, where

U (Lx ([0,1 [\{1 /2})/ ~ and V — (Lx]0,1 [)/ ~= Lx]0,1 [.

We have U C\V — L x (]0, l[\{l/2}) and the restriction map in the Mayer-Vietoris
sequence, fRj(U) © tRj(V) —> Slj(U n V), becomes

(6.7) v : fR^(L) © (L) -> © #*(L),

with v(x,y) (x — y,x — f*(y)). The correspondences (x,y) i-» x and (x,y) i->

y-x giving isomorphisms, Kern ^ Ker(/-id)* and Cokerv s Coker(/-id)*,
the Mayer-Vietoris sequence reduces to short exact sequences

(6.8) 0 ä-Coker (/* - id)* ^Ker(/* - id)fc+1 ^0.

Example 6.7 (Pseudomanifold which is not locally ~p -torsion free and whose

~p -intersection homology has a Poincaré duality). With the notation of Example

6.6, we choose the stratified pseudomanifold L S(5'xS' xlf3), R Z
and ~p D~p 2. The corresponding peripheral cohomology can be determined

from Example 6.3 as

(6-9)

!R*(L) (L) TH3(Sl x S1 x IP3) © JH3(S1 xS'xRf3)
H^S1 x Sl) <8 H2(RP3) © H\Sl x Sl) (8) H2(RP3)

Z\ © Zf.

Let Hl(S1 x S1) Z[«,£], //2(KP3) Z2[w] be described by generators. Then,

using the cross product, we have

(6.10) <ftf(L) Z2[a x u] © Z2[b x u] © Z2[a' x u] © Z2[b' x u].

For the stratified homeomorphism / : L -> L, we choose the suspension of the

map g: S1xS1xRP3->S1xS'xRP3, defined by g(x, y,z) — (x + y,—x,z).
Using the notations of (6.9), the induced endomorphism of the peripheral

cohomology group (L) satisfies

(6.11) f*(axu) — (a + h)xu, f*(bxu) —axu,

f*(a' x u) (a' + h') x u, f*(b' x u) — —a' x w.

We can now prove the two required properties on the stratified pseudomanifbld
X obtained from the suspension of /.
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(i) The link of singular points of X is the product (S1 x A1 xif3) which
verifies

TRIGS'1 x 51 x RP3) T//2(51 x S1 x MP3) Z2 © Z2 + 0.

Thus X is not (2, Z) -locally torsion free.

(ii) From (6.11) and (6.8), we deduce Ker(/*-id) Coker(/*-id) 0 and the

triviality of the peripheral cohomology of X. Therefore, the ~p -intersection

homology of X satisfies Poincaré duality.

This example is inspired by an example of H. King ([Kin, §1]). The devotees of
Riemannian foliations can observe a similar idea in an example of Y. Carrière

([Car]).

Example 6.8 (Relative complex of a suspension). This example shows that the

homology of the relative complex of Section 4 is not entirely torsion, in contrast

to the peripheral cohomology. Let M CP2 x Sl with the perversities p — 1,

D~p 3. Using the Mayer-Vietoris sequence and the classical conical calculation,

one gets

XJ tSM-Zl-iZ0Z if->=2'3'
j o if not.
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