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Resolvent degree, Hilbert's 13th Problem and geometry

Benson Farb and Jesse Wolfson

Abstract. We develop the theory of resolvent degree, introduced by Brauer [Brau2] in

order to study the complexity of formulas for roots of polynomials and to give a precise

formulation of Hilbert's 13th Problem. We extend the context of this theory to enumerative

problems in algebraic geometry, and consider it as an intrinsic invariant of a finite group.
As one application of this point of view, we prove that Hilbert's 13th Problem, and his

Sextic and Octic Conjectures, are equivalent to various enumerative geometry problems,

for example problems of finding lines on a smooth cubic surface or bitangents on a smooth

planar quartic.
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1. Introduction

In a never-cited 1975 paper [Brau2], Brauer introduced for a field extension

L/K an integer-valued invariant RD(L/K) that we call resolvent degree. Applying
RD to function fields gives an invariant RD(Y —> X) of rational covers'

(e.g., finite branched covers) of complex algebraic varieties. The resolvent degree
RD( V n -» Vn) of the root cover of the universal family Vn of degree n

polynomials has the interpretation:

RD('P„ —> Vn) — the least d for which there exists a formula in algebraic
functions of at most d variables for the roots of a

polynomial in terms of its coefficients.

While the formal definition seems to have waited until Brauer, the study of
"reduction of parameters" for polynomials was initiated by Tschirnhaus [Tsch]
in 1683. It was developed and refined by Hamilton, Sylvester, Klein, Hilbert,
Segre and others. As we explain below, RD allows one to go beyond the

solvable/unsolvable dichotomy provided by Galois theory; in particular, it was
introduced by Brauer to give a precise formulation of Hilbert's 13th Problem (see

below).

In this paper we pick up where Brauer left off. We extend the scope of
RD from polynomials to classical enumerative problems, placing Hilbert's 13th

Problem in a broader context and restoring the geometric perspective pioneered
by Klein in his study of quintic equations [Kle2]. One use of resolvent degree
is that it gives a uniform framework for stating and relating disparate classical
results. As an example, we prove (Theorem 8.1) an equivalence of Hilbert's Sextic

Conjecture to seven other problems, for example relating it to finding lines on
cubic surfaces and finding fixed points for hyperelliptic involutions on genus 2

curves. We prove similar theorems for Hilbert's 13th problem (Theorem 8.3), and

Hilbert's Octic Conjecture (Theorem 8.4).

In [Wol], this viewpoint is used to extend a beautiful but little-known trick
of Hilbert (who used the existence of lines on a smooth cubic surface to give an

upper bound on RD( V y —> 'R> to improve the upper bounds on RD( V „ -» Vn)
given by Hamilton, Sylvester, B. Segre, Brauer and others.

1.1. Resolvent degree. We start with a problem central to classical (and modern)
mathematics.

1 See Definition 1.2 below.



Resolvent degree, Hilbert's 13th Problem and geometry 305

Problem 1.1. Find and understand formulas for the roots of a polynomial

(1.1) P(z) z" + a\zn~l -\ \-an

in terms of the coefficients a\,...,an.

It is well known that if n > 5 then no formula exists using only radicals
and arithmetic operations in the coefficients cii ,2 Less known is Bring's 1786

theorem [Bri] that any quintic can be reduced via radicals to a quintic of the

form Q(z) z5 + az + 1 (see |CHM] for a contemporary translation). In 1836,

Hamilton [Ham] extended Bring's results to higher degrees, showing, for example,
that any sextic can be reduced via radicals to Q(z) z6 +az2 +hz + 1, making it
a 2-parameter (a and b) problem. He also proved that any degree 7 polynomial
can be reduced via radicals to one of the form

(1.2) Q(z) z1 + az3 + bz2 + cz + 1,

and that any degree 8 polynomial can be reduced via radicals to one of the form
<2(z) z8 + azA + bz3 + cz2 + dz + 1. Hilbert conjectured explicitly that one

cannot do better: solving a sextic (resp. septic, resp. octic) is fundamentally a

2-parameter (resp. 3-parameter, resp. 4-parameter) problem. Of course we need

to know the exact rules of the game here; that is, we need to give a precise
definition of what it means to reduce a problem to r parameters. Surprisingly,
a precise definition was only written down in 1975, by Brauer |Brau2], and a

year later by Arnol'd-Shimura |AS]. apparently unaware of Brauer's paper. For

motivation, let's look at an example.

Let Vn C" be the space of monic, degree n complex polynomials, and let

V n be the root cover of V„ :

Vn :={(/>, A): P{X) 0} C P, x C.

The map (P, A) t-> P gives an n -sheeted branched cover V n -> Vn, with branch

locus precisely the subset of V„ consisting of polynomials with a repeated root,
given by the zero-set of the discriminant A„(«i ,an), a polynomial in the

coefficients a*.
Recall that a rational map / : X —> Y between irreducible varieties is

dominant if the image of / is Zariski dense in Y ; it is genetically finite if the

generic fiber is finite. For such a map there are Zariski opens U ç X, V ç Y so

that the restriction / : U -> V is a finite cover.

2 This was claimed by Ruifini in 1799; a complete proof was given by Abel in 1824.
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Definition 1.2 (Rational cover). Let Z and Y be irreducible varieties.3 A rational

cover f : X —> Y is a generically finite dominant rational map.

With this definition in hand, "solving an arbitrary degree n polynomial by
radicals" means precisely that there is a sequence of rational covers

Xr —> ••• —> Xq Vn

such that Xr —> Vn factors through a rational cover Xr —> V n, and where

each Xi+i —> Z, is birationally a pullback

Xi+i s- P1 z
I

I

y

Xi ^-P1 zd>

The fact that each cover Z,+i —> Xt is a pullback from P1 reflects the fact
that it is specified by dime P1 — 1 parameter, namely taking a d, -th root, and

so "solving by radicals" is a process involving only 1 parameter at a time. The

final map Xr —> V n is crucial. For example, for Cardano's solution in radicals

of the cubic, this map has degree 2, reflecting the fact that Cardano's formula

actually produces 6 solutions (with multiplicity), not just 3. While such towers

of radicals exist only for n < 4, Bring's reduction of quintics mentioned above

gives for n 5 a tower with each Z,-+i —> Z, either a radical, or the pullback
of the "Bring curve" C -» P1 (see [Gre] for a beautiful treatment of this genus 4

curve); in particular we see that solving a general quintic is also a 1 -parameter
problem. More precisely, we have the following.

Definition 1.3 (Resolvent degree). Let k be a field of characteristic 0 and let

Y —> Z be a rational cover of k -varieties. The essential dimension ed^(T —> Z)
is the minimal d so that Y —> Z is the "rational pullback" of a rational

cover of d -dimensional varieties: there exists a rational cover W —> W with

dim(fL) d, a Zariski open U ç Z, and a morphism /:{/-> W such that

f*W ^ Y\v.
The resolvent degree RDyt(T —> Z) is the minimal d for which there exists

a tower of rational covers

(1.3) Zr —> Xr—i —> > Z, — > Z0 Z

with ed,t(Z( —> Z,-_i) < d for all i and with a dominant map of Z-schemes

Zr — Y.

3 See Convention 2.2 for the case of reducible varieties.
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Definition 1.3 is equivalent to Brauer's original, purely field-theoretic definition;
see §2.1 below. One can easily check 4 that RD( V n Vn) is the minimal number

of parameters to which one can reduce a general degree n polynomial in order

to find a formula for the roots. In this language, the results mentioned above on
reduction of parameters can be restated succinctly as:

RD(P„= 1 V/t < 5, and RD( Vn Vn) < n — A V« > 5.

Remark 1.4. The theory of essential dimension has been developed by Buhler-
Reichstein, Merkurjev and others into a beautiful and widely applicable theory;
see Reichstein's 2010 ICM paper [Rei] for a survey. This disallowing of so-called

"accessory irrationalities" captures more of the arithmetic of the function field of
the base, whereas RD captures more of the intrinsic complexity of the branched

cover. For the problems we are considering, forcing a solution in a single step
does not give the correct measure. For example, there are finite covers X ->• X
that are solvable (hence RD( X -> X) — 1 but with ed( X -> X) as large

as one wants; and for example ed(7> 4 V4) — ed( V 5 -> V5) 2, even

though (as mentioned above) it was known by 1786 that these problems reduce

to 1 parameter.

1.2. Hilbert's problems. As already noted by Brauer [Brau2], Hilbert's conjecture

(explicitly asked by Hilbert in [Hill, p.424] and [Hil2, p.247]) that Hamilton's
reduction of parameters for the general polynomial of degree 6,7, or 8 is optimal,
can now be stated precisely, as can the problem for all degrees. Both Klein and

Hilbert worked on this general problem for decades (see [Kle3, Hill, Hil2]).

Problem 1.5 (Klein, Hilbert, Brauer). Compute RDCP„ -*Vn)- In particular:

Hilbert's Sextic Conjecture ([Hil2], p. 247): RD CP <•, —> TV,) 2.

Hilbert's 13th Problem ([Hill], p. 424): RD(P7 -> P7) 3.

Hilbert's Octic Conjecture ([Hil2], p. 247): RDCP8 —>- P8) 4.

Amazingly, no progress has been made on any of these three conjectures since

Hilbert stated them. In 1957, Arnol'd and Kolmogorov proved (see [Arn]) that
there is no local topological obstruction to reducing the number of variables;
however, as Arnol'd and many others have noted, the global problem remains

open. A lot of work has been done on finding upper bounds on RD(T'„ -» Vn).
This includes (in other language) theorems of Tschirnhaus (1683), Bring (1786),

Hamilton (1836), Sylvester (1887), Klein (1888), Hilbert (1927), and Segre (1945).

The best general upper bound on RDCP„ —»• Vn), prior to the present, was

given by Brauer [Brau2]. He proved for n > 4 that RD( V „ ^ Vn) < n—r once

"This is somewhat more clear via Brauer's definition.
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n > (r — 1)! + 1. Brauer's method was to systematize the classical method of
Tschirnhaus transformations. In [Wol], the point of view developed here is used

to give a significant improvement on Brauer's bound. One of the key ideas is to

expand the context of resolvent degree.

1.3. Expanding the context. Since Hilbert, resolvent degree has been considered

primarily for root covers of polynomials. However, as Klein first realized [Kle3],
RD is much more widely applicable. After all, many algebraic problems can be

reformulated in terms of a rational cover (P,s) P from the space X of pairs
P, s) of input parameters P and solutions s to the space X of parameters P,

and

RD(X —> X) minimal number of parameters of any algebraic formula
for s in the coefficients of P.

As Klein himself realized [Kiel], this general setup includes not only roots of
polynomials V n -> 7>„ (see §7), but also a second fundamental source of
examples, namely incidence varieties (see §6).

Incidence varieties. Problems in enumerative geometry are typically set up with
the following data:

(1) a pair of moduli spaces MX of algebraic varieties;

(2) a subvariety M ç M x C, called an incidence variety, consisting of pairs

(M,C) satisfying a given incidence relation; and

(3) a rational cover n : M —> M defined by n(M,C) M.

We restrict to characteristic 0 throughout this paper. By the definition of a

rational cover, for each component Mo of M there exists n > 1 so that 7r is an

n -sheeted covering space over some Zariski open U ç Mo. In particular for each

M eU there is a set {Ci ,C„} of n varieties in C, satisfying the

given incidence relation, varying in an algebraic way with M. Here are some

examples.

Examples 1.6. Let Tid.n denote the moduli space of smooth, degree d hyper-
surfaces in P".

(1) 27 lines on a smooth cubic surface:

7(3,3(1) := {(S,L) : S a smooth cubic surface, L c S a line}

and n : 7(3,3(1) -> 7(3,3 is a 27-sheeted cover. See §4 for precise definitions.
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(2) 28 bitangents on a smooth planar quartic:

^4,2(1) := {(C,L) : C CP2 a smooth quartic,

L c P2 a line tangent to C at 2 points}

and tï : 7(4,2(1) 7(4,2 is a 28-sheeted cover. See §5 for precise definitions.

(3) 3264 conics tangent to 5 given conics: Let W be the linear system of conics

in P2 and W0 C W the Zariski open consisting of smooth conics. Then we

can define

Y := {(Ci, C5, C) : C is tangent to each Ci} e IV5 x Wo

and 71 : Y —> fk5 is a 3264-sheeted dominant map.

A first goal of enumerative problems is to find such M —> M and then to

compute the degree n. One then wants to find points in in terms of
the data needed to specify M. "Find" can have several meanings.

Example 1.7 (Finding a line on a cubic surface). Cayley-Salmon proved in 1856

that a smooth cubic surface has 27 lines. How hard is it to find such a line? all

27 lines given one of them? Let 7f3>3 (r) (resp. 77{k{w(r) denote the moduli

space of (r + 1 )-tuples (S;L 1 ,Lr) where S eH3,3 and {L,} are lines (resp.

disjoint lines) in S ; see §4 for precise definitions. Harris [Har] proved:5

• The monodromy group of the 27-sheeted cover 7f3,3( 1) 7f3,3 is the Weyl

group W( E6) ; in particular it is not solvable. Harris [Har, p. 718] deduces

that "there does not exist a formula for the 27 lines of a general cubic
surface."

• The monodromy group of 7T3,3 (27) -» Ti)k{w0") is solvable for r — 3 but

not for r < 3. Thus there is a formula in radicals for the 27 lines, given 3

disjoint ones, but no fewer.

The question remains: how hard is it to find a line on a smooth cubic surface?

or 27 lines given 1 We just saw examples where a formula in radicals does

not exist, and indeed this is typical for enumerative problems; this is the main
theme of [Har]. But, in contrast to Harris's conclusion, algebraic formulas not-in-
radicals do exist, and indeed have been an object of study since the 17th century.
Resolvent degree allows us to move beyond the solvable/unsolvable dichotomy
to give a quantitative measure of the possible complexity of such formulas. In

particular it allows us to ask: what is RDfH3,3(r) 7f3)3(s))? Here is a simple
but illustrative example.

5 The first statement was known to Camille Jordan.



310 B. Farb and J. Wolfson

Example 1.8. RD("H3)3(27) -* ft3>3(l)) < RD( V 5 V5) 1.

Example 1.8 follows from a beautiful classical trick: given a line L on a

smooth cubic surface S, each plane in the pencil containing L intersects S in
L union a conic, and this conic degenerates into a union of two lines at the roots

of the discriminant Ap of this pencil of conics. Al is a one-variable polynomial
of degree 5, which by Bring [Bri] has RD 1. One then gets 5 pairs of distinct
lines on S, and gets the other 16 via radicals, by Harris's theorem.

Conjecture 1.9 (The line-finding conjecture).

The upper bound of 3 comes from work of Klein and Burkhardt [Kle3, Bur].
We give a concise proof in Theorem 4.3 below.

In §6 we will see how theorems from classical geometry can be used to
relate the resolvent degrees of different problems. For example, we use the result

described in Figure 1 to prove the following.

The projection n : Bl^fS) —P2 of the blowup at a point p of a smooth

cubic surface S is a 2-sheeted branched cover, branched over a smooth

plane quartic C. The branching locus in S is the inner rim of each of the

four holes in S, two of which go off to infinity in the left-hand picture. The

image n(C) of each of the 27 lines in S is a bitangent of C. Here we see

(the real points of) a branched cover given by projection to the plane of the

paper. The left part of the figure is taken from ISS|; the right from [PSV|.

RD(?f3>3(27) —> 3;3) — RD(?f3;3(l) —» 7f3,3) — 3.

Figure 1
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Theorem 1.10. Any minimal algebraic formula for the 27 lines on a smooth cubic

surface {in terms of its coefficients) has the same number of parameters as any
minimal algebraic formula for the 28 bitangents on a plane quartic curve, given

one of them:

RD(%,3(27) n3l3) RD(H4,2(28) «4,2(0).

We discuss in depth lines on smooth cubic surfaces and bitangents on smooth

plane quartics in §4 and §5, respectively. We focus on these examples because of
their richness and their close relationship to Hilbert's problems (see below). In §6

we discuss RD of some other enumerative problems. It is our hope that others

will work out the resolvent degree story for these problems (and many more).

Remark 1.11 (Explicit formulas). Part of the usefulness of the Galois criterion for

solvability in radicals is that one can prove it without finding such a formula explicitly.

Similarly, one can give an upper bound for the resolvent degree of a problem
without finding an explicit formula. At the same time, the answers given by non-

explicit methods can sometimes help indicate where to look for explicit formulas.

1.4. The scope of Hilbert's problems. As with many of Hilbert's problems,
the 13th Problem and the Sextic and Octic Conjectures are meant to indicate

a fundamental phenomenon whose understanding should have implications far

beyond the original problem. Hilbert was clearly interested in, and worked on

(see, e.g., [Hill, Hil2]), the general problem of determining RDCP„ -> Vn), the

cases n — 6, n — 7, and n — 8 being the first open cases. In §8 we prove the

equivalence of the Sextic Conjecture with seven other statements, the equivalence
of Hilbert's 13th Problem with four other statements, and the equivalence of the

Octic Conjecture with six other statements.
The point is both to exhibit how rich these problems are, and also to recast

them in ways that may be more amenable to solution. As a sample, here is an

abridged version of Theorem 8.1 below; for definitions see §8.

Theorem 1.12 (The geometry in Hilbert's Sextic Conjecture). The following
statements are equivalent:

(1) Hilbert's Sextic Conjecture is true: RD( V 6 -» Vf) 2.

(2) RD 2 for the problem offinding the 27 lines on a cubic, given a "double
six" set of lines {unordered) {see §4.1 and Figure 2):

RD(7f3i3(27) —> «3,3(6,6)) 2.

In fact, the resolvent degrees of the above problems coincide.
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Figure 2

A double-six of lines on (the real points of) a smooth cubic surface.

The intersection pattern is given in (4.3), with the a, colored blue
and bj colored red (see the ebook version for a full color image).
One can ask for a formula for the other 15 lines on a smooth

cubic given a double-six. The resolvent degree of this problem is
2 if and only if Hilbert's Sextic Conjecture is true. Figure taken
from www.mathcurve. com/surfaces .gb/clebsch/doublesix. shtml.

For further equivalences, as well as for problems about G-varieties with
G W(E6),S7,Ss or W(E7), see §8.

Our approach to proving Theorem 1.12 (and the versions for other G) is to

define RD as an intrinsic invariant of a finite group, in this case S6 and S2 x S6

respectively. We do this in §3. We then show that each of the specific covers
in the theorem realizes the resolvent degree of their Galois group. Finally, we

show that if a group contains as subgroups all the simple factors in its Jordan-

holder decomposition, then its resolvent degree is the maximum of these simple
factors (Theorem 3.3). From a classical perspective, a G-variety X gives an

algebraic function expressing X in terms of coordinates on X/G. The proof of
Theorem 1.12 proceeds by showing that RD(G) RDfJf —> X/G) when X is a

"versai" G -variety, for an appropriate notion of "versai", and then to prove the

versality of the varieties listed above. What "versality" means, in this context, is

that, up to accessory irrationalities, all G-varieties are birationally pullbacks of

any versai one. See §3.2 for details. We give a similar treatment for Hilbert's 13th

Problem and S7, Hilbert's Octic Conjecture and S8, as well as for various W(E(>

and W{E7)-varieties. For a more detailed treatment of versality in connection
with modular functions, see [FKW],
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1.5. Lower bounds. Theorems on resolvent degree to date have exclusively
concerned providing upper bounds. As Dixmier concludes in his 1993 paper
[Di] (using ',<(«)' for RD( V n Vn)):

Terminons sur une note dramatique, qui prouve notre incroyable
ignorance. Bien que cela paraisse improbable, il n'est pas exclu que s(n) 1

pour tout n Toute minoration de s{n) serait un progrès sérieux.

En particulier, il serait temps de savoir si s(6) 1 ou s(6) 2."6

In fact, we still cannot solve the following problem, implicit in Klein, Hilbert
and Brauer, and stated more explicitly by Arnol'd-Shimura [AS],

Problem 1.13 (Arnol'd-Shimura). Prove that there exists X —> X with

RD( X — » X) > 1.

In fact, we believe that the following stronger statement should hold.

Conjecture 1.14. RD( V „ > Vn) —> oo as n —> oc.

Along with Hilbert's Sextic and Octic Conjectures and Hilbert's 13th Problem,
these are clearly among the most important conjectures about resolvent degree.

While we make no definite progress in this paper toward solving these problems,

we hope that with renewed attention to them, and to the broader framework of
resolvent degree, future progress may be more forthcoming.

1.6. Historical Remarks. The concept of resolvent degree originates with the

classical problem of solving polynomials. It emerged in the 17th century with
the work [Tsch] of Tschirnhaus.7 In 1786, Bring [Bri] proved RD 1 for the

problem of solving the quintic, and in 1836 Hamilton [Ham] gave a general

sequence of upper bounds on RDCP„ -> Vn) for increasing n. Hamilton's
work was picked up by Sylvester and his student Hammond [Syl, SHI, SH2], by
Klein [Kle3, Kle2], and by Hilbert [Hill, Hil2], Sixty-four years after Hamilton's
work, Hilbert brought to the fore the fundamental issue: no lower bounds for

RD( V n -> Vn) had ever been shown. Hilbert's Sextic Conjecture, Hilbert's 13th

Problem 8, and Hilbert's Octic Conjecture pose the challenge of proving that

RD( V 6 -> Ve) 2, RD( V 7 -* Vj) 3, and RD( V g -> Vg) 4 respectively.

6 In English : "Let's end on a dramatic note, which proves our incredible ignorance. Although this
seems unlikely, it is not excluded that s(n) 1 tor all « Any lower bound for s(n) would be

serious progress. In particular, it's time that we know whether s(6) 1 or 5(6) 2."
7See IKK] for a discussion of Tschirnhaus' work and the relevant correspondence with Leibniz.
8 We will state what is sometimes called the "algebraic version" of this problem. Hilbert's original

phrasing of the problem leaves room for various interpretations.
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Resolvent degree was first defined explicitly in 1975 by Brauer [Brau2] in
order to make precise Hilbert's 13th Problem. Brauer also gave new upper bounds

on RD( V n —> Vn) for all n ; see §7 below. A year later Arnol'd-Shimura [AS],
apparently unaware of Brauer's paper, gave an equivalent definition of RD, also

in order to make precise Hilbert's 13th. The definition of RD seems to have lain
dormant until the paper [Di] of Dixmier, who helped publicize the concept of
resolvent degree. This concept was also discussed in passing by Buhler-Reichstein

[BR2] and Chernousov-Gille-Reichstein [CGR]. The present paper is the first to

cite [Brau2], The problem of finding any extension L/K with RD(L/K) > 1

remains open.

2. The resolvent degree of a rational cover

In this section we study the basics of resolvent degree RD. After giving the

definition of RD of a rational cover, we establish some basic properties of RD,
we prove that our definition is equivalent to Brauer's original definition in [Brau2]
of the resolvent degree of a finite field extension, and we prove a number of
technical foundational results that are useful for computations. More specifically,
we relate RD of an extension to that of its Galois closure, and we prove a crucial
result on "accessory irrationalities", a classical concept studied by Kronecker,
Klein and others, that is a key feature of RD.

2.1. Definitions of resolvent degree. For expositional reasons, we state the results

in this paper in the language of k-varieties. For the reader who prefers to work
with schemes, we will signal when a result or proof does not trivially extend to
this case.

Convention 2.1.

(1) Unless otherwise specified, throughout this paper we take the base field k

to be an arbitrary field of characteristic 0.

(2) By a k-variety we mean a reduced, possibly reducible k-scheme of finite
type.

(3) When the ground field k is clear we will generally omit the subscript k and

simply write RD(—).

(4) A solid arrow X -> Y denotes a regular map of varieties; a dashed arrow
X —> Y denotes a rational map of varieties.

(5) Given a rational cover X —> X, we will refer to a tower (1.3) as in

Definition 1.3 as a "tower solving X —> X in d variables", or as a

"tower solving X " for short.



Resolvent degree, Hilbert's 13th Problem and geometry 315

(6) We say that f : X —> Y is a "rational pullhack" of g: W —> Z if there

exist dense opens U' C X, U C Y, V' Cl W, V c Z and a pullhack square
of regular maps

U' >- V

(7) The "domain" of a rational map f : X —> Y is the largest U C X for
which f\u is a regular, map. The "image" of f is defined to he f(U).

Convention 2.2 (Rational cover of a reducible variety). Let X and X he a

(possibly reducible) varieties. By a rational cover X —> X we mean a rational

map X —> X with which restricts on each irreducible component X ,• C X to

a dominant rational map X —> Xj for some irreducible component Xj c X ;
some Zariski open of each Xj lies in the image of some X ; and for each j the

generic fiber of X over Xj is finite. In particular, we want to avoid pathologies
such as X LK* } -> X (where dim(Z) > 0 and x X(k)).

Recall that we defined in Definition 1.3 the resolvent degree of a rational

cover. We can also define it in terms of field extensions.

Definition 2.3 (Resolvent Degree of a field extension). Let K ^ L be a finite
extension of fields over k. The resolvent degree RDk{L/K) is the minimal d

for which there exists a finite sequence of finite extensions

K — LQ c—> L\ c—y • • • c—y Lr

with L^Lr (as extensions of K) and for all / 1 r,
Li — Lj-i <g)fj Ft

where Fi ^ L;_i is a subfield with tr. degyt(F,) < d and where F{ <^y Ft is a

finite extension. Here tr. degfc(F;) denotes the transcendence degree of F) over
k.

The definition of resolvent degree in terms of rational covers and in terms of
field extensions are equivalent.

Proposition 2.4 (Equivalence of definitions). If X —» X is a rational cover of
irreducible k-varieties then

RD( X —y X) RD(k( X )/k(X)).

We defer the proof until we have assembled basic properties of RD (as defined
in Definition 1.3) in the next section.
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Comparison with essential dimension. Essential dimension has its origins in
work of Hermite [He], Kronecker [Kro], Joubert [Jou] and Klein [Kle2], The

theory was revived, and definitions made explicit, around twenty years ago by
Buhler-Reichstein in [BRI], It has been studied intensively ever since. See [Rei]
and [Mer2] tor recent surveys.

A central feature of the theory of essential dimension are the invariants

edyt(—; p). These measure the prime-to- p essential dimension-, that is, any auxiliary
tower of covers of degree prime to p is allowed before one finds a dominant

map to a variety of minimal dimension. One could define the analogous invariant

RD/t (—;/?) by saying that in the tower giving a solution, one allows arbitrary
prime-to- p covers, but for covers whose degree is divisible by p, only those

of edfc(—) < d. Field theoretically, this amounts to working over the prime-to- p
closure of the function field of the base; that is, base-changing to Spec of the

fixed field of a p-Sylow of the absolute Galois group of k(X). Since /»-groups
and pro-/? groups are solvable, we immediately see that RD^(-; p) 1 for all
k and all p. This is in strong contrast to the case of essential dimension, and

shows that the study of resolvent degree is a strictly "Type 2" problem in the

dichotomy of [Rei, §5|.

2.2. Basic properties. In this section we establish some of the basic properties
of RD.

Lemma 2.5 (Easy upper bounds). Let X —> X be a rational cover of k -

varieties.

(1) RD( X --> X) < ed( X — > X) < dim(JV).

(2) Let k k' be any field extension. Then

RDkfX xk k' —> X xk k') < RDk( X —> X).

(3) Let Y —> X be any dominant rational map of k-varieties. Then

RD(Ï xz Y —> Y) < RD( X —> X).

(4) If the rational map X —> X is birational over k to Y —> Y ; that is, if
X - - Y

I I

I I

Y Y

X - - ^ Y

for some birational horizontal maps, then

RD( X —> X) RD( Y — > Y).
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Proof. The first statement is immediate from the definitions. The second, third
and fourth statements follow from base change: e.g., given a tower solving
X —> X over k, by base change we obtain an analogous tower over k'
solving X xk k' —> X xk k'. This shows that any upper bound for towers over
k immediately gives one over k' as well. The argument for the third and fourth
is analogous.

Many natural branched covers are reducible; indeed such covers arise in
Cardano's solution to the cubic; these components are responsible for so-called

"parasitic roots" in the solution. The following lemma allows us to reduce the

study of RD to irreducible components.

Lemma 2.6 (Irreducible components). Let X —> X be a rational cover. Let

{Xj C X\ be the set of irreducible components of X, and let { X C X \xt}
be the set of irreducible components of X \x: —> Xj. Then

RD(X — > X) max{RD(X u —> X,)}.
I iJ

Proof. From the definition of resolvent degree, if X ]J; Xj, then

RD(X —> X) max{RD(? |a-,. —> Xj)}.

Let X (J Xj, and let X" U,>// Xj n Xj be the set of points contained

in more than one irreducible component. Then X — Xa is a disjoint union of
irreducible components, and X - Xa is birationally equivalent to X. Because

resolvent degree is a birational invariant (Lemma 2.5), it suffices to assume that

X is irreducible, and that X ]_[, X
The inequality

RD( X —> X) < max{RD( X i —> X)}

is clear. Indeed, given a tower solving X —> X for each i, we construct a

tower solving X —> X as follows, first if r is the length of the longest tower

solving one of the X ,• —> X, we extend all the other towers (for j / i to
towers of length r by adding identity maps after the final stage. Next, we form
a tower over X whose Ith stage is the disjoint union of the Ith stages of the

towers for the X s. By construction, each stage of this tower is pulled back from
something of dimension at most max, {RD( X, —-> X)}. It remains to show that

RD( X —y X) > RD( X —> X)

for any i. This follows from a standard argument in covering space theory

(equivalently the étale fundamental group). Without loss of generality, take i — I.
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A simple induction reduces us to the case where X is the disjoint union of two
irreducible components. Write X X i\J X 2- Shrinking X as necessary, we

can further assume that X and X are regular (since, here and throughout this

paper, we work in characteristic 0). Suppose now that we have a tower of rational

covers

Yr — > > Y0 X

solving X —> X in functions of at most d variables. Let U, C K, be smooth

dense opens such that we have a tower of regular étale maps

Ur -> >U0 CX,

a dominant regular map p: Ur -> X and for each i, a pullback diagram

Ui Z,

Ut-1 Z,

where dim Z, < d. Let Ur4 be the union of irreducible components mapping

dominantly onto X Let ,v be the greatest integer for which Us is irreducible

(note that by assumption, U0 C X is irreducible). We induct on r — s. For the

base, r — s 1, we have a pullback diagram

Ur ^Zr

Ur-1 Zr

where Ur-\ is irreducible, and without loss of generality Zr is too. If the

branched cover Zr can be partitioned as Zri with Ur^ Ur-\ xZr Zrj, then,

by replacing Ur with Unr, we obtain a tower solving X i in the same number

of variables as the tower solving X Suppose therefore that Zr is connected.

Therefore, the connected generically étale map Zr —> Zr splits when pulled back

along Ur-i Zr. Equivalently, fixing a geometric point Yi -> Ur-\ -> Zr, the

image

ttJ'(Ur-i, £2) -> jrf'(Zr,£2) -> Perm(Z,|fi)

lies in a subgroup of the form Perm(/li) x Perm(/l2) C Perm(Zr|^). Let

H c nf(Zr, f2) be the pre-image of Perm(/li) x Perm(/l2), and let

Zu -> Zr

denote the corresponding étale map. Because nf {Ur-\,Q.) factors through the

inclusion H C jrf'(Zr, £2), the map Ur-\ -> Zr factors through Zu- By
construction, the pullback Zr xZr Zh splits as
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(Zr Xzr ZH)i \J(Zr xZr ZH)2

with (Zr xZr Zn)i xzH Ur-\ Urj. Because dim(Zh) dim(Zr), we have

reduced to the case where the cover Zr —> Zr is disconnected, and thus have

exhibited a tower solving X y -» X with the same bounds as the tower solving
X -* X. This completes the base of the induction. The inductive step follows
from the same construction. If r — s > 1, then applying the above construction
in sequence, we obtain a tower

U'r --U's+l -> U's Us - ••• - Uo C *
solving X i -+ X, which agrees with the tower solving X -» X for i < s, and in

which U[ -> U[_j for i > s is pulled back from a variety of the same dimension
which Ui -» Ui-i is. We conclude that RD( X —> X) > RD( X i —> X).

Proof of Proposition 2.4. The inequality RD( X —> X) > RD(T( X )/k(X))
follows from pulling back any tower solving X —> X along the map
Spec(k(X)) -> X, and then applying Lemma 2.6.

For the reverse inequality, let

Pq c—> P\ c—> ••• c—> Zj/-

be any tower solving k( X )/k(X). For each i, pick varieties T,, Z, and Z,
such that k(Yi) Li, k{Zi) Fi and k(Zt F, respectively. Then we obtain

a tower of rational covers

Yr —> > Yy —> Yq — X

such that Yr —> X factors through a rational cover Yr —> X —> X, and such

that each T,- sits in a birational pullback diagram

Yi - - - Z,
I I

I I

r Y

Yt-1 - - - Z,

Because dim(Z,) tr.deg(F;), the upper bound on RD(k( X )/k(X)) provided
by the tower over k(X) carries over to give an identical upper bound on

RD( X —> X). Taking the minimum over all such towers gives

RD( X — > X) < RD(k( X )/k(X))

as desired.
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Lemma 2.7 (RD of a composition). Let Z —> Y —> X be a pair of rational
covers of k-varieties. Then

RD(Z — > X) max{RD(Z — > T), RD(T —> X)}.

Proof. The definition immediately implies that RD(Z — > X) < max{RD(Z —>

Y), RD(T —> X)} and RD(Z —> X) > RD(T X). To see that RD(Z —>

X) > RD(Z —> Y), note that

RD(Z —> X) > RD(Z x* Y —> Y)

and, because Z —> Y embeds as a collection of components of Z xx Y —» Y,
Lemma 2.6 implies

RD(Z Xx Y —> Y) > RD(Z —> Y).

Definition 2.8. A rational cover X —> X is generically n-to-1 if n — [k Xt :

0{X Ispec(k(Xi)))\ for each irreducible component A,- c X.

While the resolvent degree RD(Pn —-> Vn) of the root cover of the space of
degree n polynomials is a specific example, it is universal in the following sense.

Lemma 2.9 (Universality of Vn Let X —> X be a generically n-to-1

rational cover. Then

RD( X —> A)<RD (Vn^Vn).

Proof. By the Theorem of the Primitive Element (using that we are in characteristic

0), there exists a e k(X such that

k( X ^ k(X)(a) k(X)[z}/pa(z)

where

pa(z) z" + aizn~l H b an

is a minimal polynomial for a. Let U C X denote the largest Zariski open for
which all the coefficients a,- e k(X) are regular functions. The polynomial pa
determines a map

U ->Pa Vn

ii (öi(m), an(u))

and this map determines a pullback square
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X Vn

u —-pn
Therefore, by Lemma 2.5,

RD(Z — > X) RD( X \u U)< RD(Vn^Vn).

This universal property will show up in many of the examples and computations
below.

2.3. Galois closures and resolvent degree. In this subsection we will relate the

resolvent degree of L/K with the resolvent degree of various related extensions,

for example the Galois closure of L over K. This often will allow us in practice
to reduce to the case of Galois covers.

Definition 2.10 (Galois theory terminology for rational covers). Let X —> X
be a rational cover of &-varieties.

(1) If X is irreducible, then the map X —» X is Galois if the associated

extension of function fields k(X) ^ k( X is Galois. We write Gal( X —>

X) for the Galois group of the associated extension of function fields.

(2) If X is irreducible, we say that a map X ' —> I is a Galois closure of
X —> X if it factors as X ' —> X —> X and if k(X) <-+ k( X ') is a

Galois closure of k(X) <-> k{ X

(3) Given Z —» Y —> X irreducible, with Z —> X Galois, the Galois closure

of Y —> X in Z —> X is any integral model of the Galois closure of
k(X) k(Y) in k(Z).

(4) If X is reducible, we say X —> X is Galois if the restriction of the map
to each irreducible component of X is Galois. Similarly, we say X ' —> X
is a Galois closure of X —> X if there is a bijection between the set

of irreducible components of X ' and of X such that the restriction of
the map X ' —> X realizes each component of X ' as a Galois closure

of the corresponding component of X Given Z —> Y —> X with Z
Galois, a Galois closure of Y in Z —> X is union of Galois closures of
the components of Y.

The following lemma will allow us to pass to Galois closures when computing
RD. The analogous lemma for ed is Lemma 2.3 of [BRI].
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Lemma 2.11 (RD is preserved under Galois closure). Let X —> X be a rational

cover of k-varieties. Let X ' —> X be a Galois closure of X Then

RD( X —> X) RD( X ' —> X).

Proof By Lemma 2.6, it suffices to prove this in the case where X is irreducible.
For this, we induct on the degree of the map X —> X. For the base case, n 2,

every quadratic extension (in characteristic 0) is already Galois, so the lemma

holds trivially.
For the induction step, assume the lemma holds for all rational covers of

k -varieties of degree less than n.
Let X —> A" be a rational cover of degree n. Consider the composition

X xx X — > X — > X

The fiber product X xx X splits as X ]J X i (at the level of function fields, this
follows from the Primitive Element Theorem), where X -> X is the identity,
and X —> X is a rational cover of degree « — 1. By the inductive hypothesis,

RD( X[—> X) RD( X i — > X

for any Galois closure X \ —> X of X i —> X By Lemma 2.6,

RD( X — > X < RD( X —> X).

Therefore, by Lemma 2.7,

RD( X \ —> X) max{RD( X x—> X RD( X — > X)} RD( X —> X).

But, by construction, we see that X\ —> AT is a Galois closure of X —> X,
and this completes the induction step.

2.4. Accessory irrationalities. We now give two results about resolvent degree

of field extensions; we defer stating the corresponding results for rational covers

of k -varieties to below. We adopt this presentation to make use of constructions
such as compositum and intersection of subfields which are easier to state in the

setting of field extensions than for covering spaces, where they correspond to

greatest lower bounds and least upper bounds in a lattice of covering spaces.
The following allows one to pass to towers of Galois covers when analyzing

RD.

Lemma 2.12 (Improving towers). Let K ^ L be a finite extension of k -fields.
Then without loss of generality, in any tower realizing RD(L/K), we can assume

that the extension at each stage is Galois. More precisely, for any d > 0 (e.g.,

d RD(L/K)), let
K K0 ^ Kx ^ Kr
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he any sequence of extensions with L Kr (as fields over K and such that

ed(Ki/Ki-i) < d for all i. Then there exists a diagram of sequences of extensions

(2.1) A ^ Kf ^ Kf > Kr
-\ p A

I
A > K'S > K'S »- • • -c > K'r

p p

Kc ^ Kfi »• Kfi • •c Kr

such that for all i,

(1) K[ is Galois over K'i—l,

(2) Ki is a Galois closure of Kj over K,

(3) ed(p/Apj) < d for all i, and

(4) RD(Ki/K) RD(Ki/K) < d for all i.

Proof. Because we work in characteristic 0, all extensions are separable. Therefore,

for the bottom row of (2.1), define Kr to be a Galois closure of Kr over K, and

for i < r, let Kj denote the Galois closure over K of Ki in Kr. Lemma 2.11

implies that

RD(Ki/K) < RD (Kt/K) < d.

To construct the middle row, we prove by induction that for any 1 < j < r
there exists a diagram of sequences of extensions of the form (2.1) in which

ed(K'i/K'i_l) < td(Kl/K,-\) for all i, and in which K[ is Galois over K'i_1 for

i < j. For the base case j 1, let K[ — Kx. This is Galois over A'0. For the

induction step, suppose that we have defined K'- for j < i. Define K'i+1 to be

the Galois closure (in Kr of the compositum (in Kr of Kl + \ with K[ over

Ki. Then the definition of essential dimension and [BRI, Lemma 2.3] imply that

ed(K'i+1/K'i) < ed(Ki+l/Ki)

as required to complete the induction step.

The following proposition is quite useful when analyzing the resolvent degree

of G -covers (and their subcovers) for G simple. In particular, it shows that a

general solution can always be put into a reduced form where the monodromy of
the original rational cover occurs precisely at the last stage.
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Proposition 2.13 (Accessory irrationalities). Let G be a finite simple group. Let

K L he a Galois extension of k -fields with Gal{L/ K) G. Fix cl > 0. Let

(2.2) K K0 ^ Kx • • • <-* Kr

be a sequence of extensions such that

(1) ed(Kj / Kj- \ < d for all i, and

(2) L Kr as fields over K.

Then, there exists s < r and a modified tower

K K0 ^ Ki ^ ^ Ks K's

such that

(1) K's is a subfield of the Galois closure of Ks+\ over Ks,

(2) ed(K's/Ks) < ed(Ks+l/Ks) < d,

(3) L <-> K's as K-fields, and under this embedding, Ks <S>k L —>= K's.

Proof. Define s to be the maximum i such that the absolute Galois group of
Ki surjects onto G, i.e.

s := max{z' | Ga\(K/Ki) -» G}.

Let Ks+1 denote the Galois closure of Ks+ \ over Ks. Then

Gal(K/Ks+i) < Gal(K/Ks)

and, by Lemma 2.11

ed(Ks+l/Ks) ed (Ks+1/Ks).

Because Ga\(K/Ks) —»• G is a surjection, it must take Gal(A7/G+i) to a normal

subgroup of G. By the definition of s, Ga\(K / Ks+X) c Gal(/f//G+i) does not

surject onto G. Therefore, because G is simple, Ga\{K/ Ks+\) must be in the

kernel of the map to G. This implies that L is contained in Ä^+i, because

L _ -^Gal(Z/L) _ —ker(Gal(Z/.K)^G)
^ --Gal(k/k,+, ~

Therefore, we have L =-»• Ks+\ but L is not contained in Ks. Define

N := ker(Gal(/G+,//G) G).

Define

Ks, := (KS+1)N.

Observe that ed(Ks'/Ks) < ed(Ks+i/Ks) ed(Ks+i/Ks), because if
Ks ®f F, then Ks> := Ks <g>p FN. Finally, because Ga\(K/Ks) surjects onto
G Gal(L/K), we conclude that

Ks' Ks (gi a: L.
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Corollary 2.14. Let G be a finite simple group. Let L/K be any finite extension

of k -fields for which the Galois closure has Galois group G. Then RD(L/K)
equals the minimal d for which there exists a tower

K K0 <-+ Kl <->• ^ Kr-1 ^ Kr

for which

(1) ed(Ki/Ki-\) < d, and

(2) Kr Kr-1 L.

Proof For any tower solving the Galois closure L of L over K, we can apply

Proposition 2.13. Let H c G be the subgroup such that L LH. Applying
Proposition 2.13 and Lemma 2.11, RD (L/K) is the minimal d for which there

exists a tower

K K0 ^ Ki ^ Kr-1 ^ Kr

for which

(1) ed(Ki/Ki-i) < d, and

(2) Kr Kr—i &)K L.

Replacing Kr by Kfi Kr-\ T, we obtain a tower of the desired form.

Remark 2.15. An accessory irrationality to a rational cover X —> X is any
rational cover E —> X which does not factor through X. If RD(L/K) /
ed(L/A"), then accessory irrationalities are intrinsic features of any solution

of L/K in d < ed(L/K) variables. The notion of accessory irrationality first

appeared in work of Kronecker and received intensive study in Klein's lectures

on the icosahedron [Kle2] (see also the appendix to [DM]). In particular, Klein
proved that

tâ{V5^V5) 2fiKD{V5^V5) - 1

and thus that accessory irrationalities are an inescapable feature of solutions of
the quintic in one variable.

Question 2.16. Let K ^ L be a finite extension of k -fields. Among towers

solving L/K in the minimal number of variables, can we always find one in
which the stages of the tower have monotone increasing essential dimension?

The geometric statement of Lemma 2.12 is the following.
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Corollary 2.17 (Improving towers, geometric version). Let X —> X be a

rational cover. Then without loss of generality, in any tower solving X —> X in
d variables, we can assume that the map at each stage is Galois. More precisely,

for any d > 0 (e.g., d — RD( X —> X)), let

Yr —> > Yl — > Y0 X

be a tower of rational covers with Yr —> X factoring through X and such

that for all i, Y, —> K,_i is pulled back from a rational cover of varieties of
dimension at most d. Then there exists a diagram of sequences of rational covers

(2.3) Yr---; ^Y2--^Yx--^X
I

I

Y

Y'r--> v Y{ - - ^ Y[ - - > X
I I I

I I I

Y Y Y

Yr--} ^Y2--^Y1--^X
such that for all i,
(1) YI —> Y!_ j is Galois,

(2) ?i —-> X is a Galois closure of Yt —> X,

(3) ed(F/ —> Y!_i) < d, and

(4) RD(K, — > X) RD(Yi —> X) < d.

The geometric statement of Proposition 2.13 is the following.

Corollary 2.18 (Geometric accessory irrationalities). Let G be a finite simple

group. Let X —> X be a rational cover for which the Galois closure has Galois

group G. Then RD( X —> X equals the minimal d for which there exists a

tower
Vr > Yx -> To X

for which

(1) Yr ^ Yr-1 X and

(2) for each i, F,+i —> F, is pulled back from a map of varieties of dimension

at most d, i.e. there is a rational pullback square with dim^ (Z, < d

Yi+1 ^ Z,
I I

I I

Y Y

Yi - - ^ Zi
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3. The resolvent degree of a finite group

In this section we define the resolvent degree RD(G) of a finite group G.
This intrinsic invariant of G gives a uniform upper bound on the complexity of
all G-covers of all varieties. Just as with the theory of essential dimension from
which it was inspired, RD(G) will be quite useful.

3.1. Definition and basic properties. Throughout this section we fix a ground
field k of characteristic 0. We will consider finite groups G with G -actions by

automorphisms on varieties X, so that X/G is a variety. We say that a G -variety
X is primitive if G acts transitively on the set of irreducible components of X.
We say that X is faithful if the representation G -> Aut(X) is injective.

Definition 3.1 (Resolvent degree of a finite group). Let G be a finite group. The

resolvent degree RD(G) of G is defined to be

RD(G) := sup{RD(.Y -» X/G) : X is a primitive, faithful G-variety over k}.

While RD(G) gives a universal upper bound on any RD(Jf -> X/G), it does

not in general provide any lower bound on any particular G-cover; see below.

On the other hand we will prove that RD(G) RD(K -» V/G) for any faithful
linear G-variety V, and more generally for any "versai" G-variety. Replacing
RD by ed in Definition 3.1 gives the definition of Buhler-Reichstein [BRI] for the

essential dimension of a finite group. Indeed, the two invariants of G-varieties

compare as follows.

Lemma 3.2. Let G he any finite group. Then

RD(G) < ed(G) < oo.

Proof For any rational cover X —> Y we have by definition RD(A —> Y) <
ed(Jf —> Y In particular, if X is any faithful G-variety then

where AG denotes the regular representation of G viewed as a faithful linear

Theorem 3.3. Let G be a finite group, and let {G; }"=1 denote the set of simple

factors in its Jordan-Holder decomposition. Then

(by Theorem 3.1 of [BRI])

RD(Jf -» X/G) < ed(X -> X/G)
< ed(AG -> Ag/G)

ed(G) < oo

G -variety.

RD(G) < max {RD(G,)|.
1 «t'IVM ^
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Moreover, if G, <—» G for all i, then

RD(G) max {RD(G,)1.
1 <i<n

The analogue of Theorem 3.3 for essential dimension is false, even in simple

examples: take 01 02 Z/2Z and G Gi x 02. Note too that ed{G/H)
can be much larger than ed(G) for normal subgroups H < G ; see Theorem 1.5

of [MR|. We do not know if the hypothesis in Theorem 3.3 that Gi ç G for
all i is necessary.

Proof If Gi <=>- G for all i, then by Lemma 3.13 below, RD(G) > max,{RD(G;)}.
To show the opposite inequality in general, we induct on the number of simple
factors (with multiplicity). For the base of the induction n 1, there is nothing
to show. Assume therefore that we have shown it for n — 1. Let

0 < Hi <•••<//„ G

be a composition series for G with //, ///,_! Gi. Let A be a primitive faithful
G -variety.

The map X -> X/ G factors as

X -> X/Hn-i -* X/G.

If X is not primitive as an Hn-1-variety, then the set of Hn-\ -orbits on the set

of irreducible components of X partitions X into a union of primitive Hn-\-
varieties. Moreover, because the G-action is primitive and Hn-\ < G, the union

of the //„_i-quotients is a primitive Gn G/Hn-\-variety. Lemma 2.6 implies
that

RD(A - X/Hn-i) max{RD(X, ^ Xj/Hn-{)}j
where the maximum is taken over the set of primitive Hn-\ -varieties in the above

partition of X. In particular,

RD(//„_i) > RD(A —> X/Hn-\).

Therefore

max{RD(G„),RD(//„_1)} > max{RD(A -> A///„_i),RD(A'///„_1 -> X/G)}
(by Lemma 2.7) RD(3f -> X/G)

Passing to the supremum and invoking the induction hypothesis, we obtain the

desired inequality
max |RD(G,)} > RD(G).

1 <i <n
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As a simple application of Theorem 3.3, we have the following.

Corollary 3.4. Let G be an "almost solvable" group, i.e. a group whose simple

factors are cyclic or A5. Then RD(G) 1.

Proof. By Theorem 3.3,

RD(G) < max{{RD(Z/nZ)}„6M,RD(/l5)}.

Because G is nontrivial, there exists a faithful, geometrically connected G -variety
X of dimension > 1. Because X is geometrically connected, there is no faithful

G-equivariant rational map X —> Z for Z any faithful O-dimensional G-variety.
We conclude that RD(G) > 1.

By Bring's bound and item 1 of Corollary 3.17 1 below,

1 RD( V5 -> V5) RD(S5) RD(d5)

where the last equality follows from Theorem 3.3. The result now follows from
the equality

RD(Z/nZ) 1 for all n > 2

which follows from the classical fact that any characteristic 0 field extension with
solvable Galois group is solvable in radicals.

Corollary 3.4 follows from the primary cases of simple groups where RD is

currently known exactly (i.e., cyclic groups and d5).9 In general, we have at best

upper bounds, e.g., RD(/t6) < 2 and RDC/G) < 3. Theorem 3.3 indicates the

importance of computing the resolvent degree of finite groups.

Problem 3.5 (RD(G) for G finite simple). Compute the resolvent degree of all

finite simple groups G.

3.2. Versal G -varieties. It is useful to have a model (not always unique) G -

variety to which all other G-varieties can be compared. Such varieties, called

"versai G-varieties", play a crucial role in the theory of essential dimension.

After recalling the definition (cf. [DR1]) and some variations that arise naturally
when studying resolvent degree, we give some examples.

Definition 3.6 (Versal G -variety). A faithful G -variety X is versai if for every
G -invariant Zariski open U C X and every faithful G -variety Y, there exists a

G -equivariant rational map Y —> U

«Klein also proved that RD(PSL2(F7) 1). See (FKW, Proposition 4.2.4| for a contemporary
treatment.
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Our interest in versality comes from the following.

Proposition 3.7. Let X be a versai G-variety. Then

(1) ed(Z -> X/G) ed(G).

(2) RD(3f -» X/G) RD(G).

Proof. The proof for essential dimension is standard; we recall it here as we will
use it. Let X be a versai G-variety. Recall that ed(G) sup{ed(L -* Y/G)}
where the supremum is over all faithful G -varieties Y. Let U c X be a dense

G-invariant Zariski open which admits a G-equivariant dominant map U -> Z
to a faithful G-variety Z with dim(Z) ed(3f -» X/G). By the definition of
versality, there exists a G -equivariant rational map Y —> U. Composing with
U ^ Z, we obtain a G -equivariant rational dominant map Y —> Z, which

implies
ed(L -> Y/G) < dim(Z) ed(jy -> X/G).

Therefore ed(X -> X/G) ed(G).
We now prove the statement for resolvent degree. By definition, RD(Z ->

X/G) < RD(G). It remains to prove that RD(W -> X/G) > RD(L -» Y/G) for

any faithful G -variety Y. Let

Xr--5 ^Xx --*~X/G
be a solution of X -» X/G. Let Ü c Image(W —> X/G) be a Zariski open,
and let U C X be its pre-image under the map X X/G. By the definition of
versality, there exists a G -equivariant map

V -> U

for some dense Zariski open Ley. Since both G -varieties are faithful, this
determines a pullback diagram

V > U

V/G s-U/G

and we can pull back the above solution of X —> X/G to V V/G. Since every
solution in d -variables of X X/ G gives rise to a solution in d -variables of
V -> V/G, and since V —> V/G is birational to Y Y/G, we conclude, from
the definition, that RD(3f -> X/G) > RD(L Y/G)).
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The notion of versai is stronger than we strictly need for resolvent degree.

Definition 3.8 (Solvably-versai, RD-versal). Let G be a finite group. A faithful

G-variety X is:

(1) solvably-versal if, for every G-invariant Zariski open U c X and any faithful
G -variety Y, there exists a rational cover

Y —> Y/G

with k(Y/G) c-> k( Y a solvable extension, and a G-equivariant rational

map
Y xY/G Y -> U;

(2) R D - versai if, for every G-invariant Zariski open U C X and any faithful
G -variety Y, there exists a rational cover

Y —> Y/G

with RD( Y —» Y/G) < RD(A -> X/G) and a G-equivariant rational map

Y xY/G Y -> U.

Note that solvably-versal implies RD-versal; we do not know if the converse

is true or not.

Example 3.9 (Klein). Klein [Kle2] proved a "Normalformsatz" for the group
A5, showing that perhaps after passing to an intermediate degree 2 cover, every
/l5-cover is pulled back from the canonical /f5-cover of P1 fl/A5 P1

• In

our language, this shows that P1 with its standard A5 action is solvably versai.

RD-versal G-varieties realize the resolvent degree of G.

Proposition 3.10. Let G be a finite group, and let X be an RD-versai G-variety.
Then

RD(A -+ X/G) RD(G).

Proof. The proof is similar to that of Proposition 3.7. It suffices to show that

RD(3f -» X/G) > RD(T -» Y/G) for any faithful G-variety Y. Let

Xr-- ~> ^Xi-->- X/G
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be a solution of X -> X/G. Let Ü c Image(3G —> X/G) be a Zariski open,
and let U c X be its pre-image under the map X -> X/G. By the definition of
RD-versality, there exists a rational cover

Y F/G

with RD( Y —» Y/G) < RD(V -» .F/G) and with a G-equivariant map

V -> G

for some dense Zariski open K c Y xY/g Y Since both G-varieties are faithful,
this determines a pullback diagram

V 5- U

V/G ^ U/G

and we can pullback the above solution of X -> X/G to V — V/G. Since every
solution in d-variables of X -* X/G gives rise to a solution in d-variables
of V -> V/G, and since V -> V/G is birational to Y xY/G Y —> Y we

conclude, from the definition, that RD(F -» X/G) > RD( Y xY/G Y —> Y).
By Lemma 2.7,

RD(? xy/G Y —> Y/G) max{RD(F xY/G Y —> Y), RD(F —> F/G)}
< RD(Z X/G).

3.3. Criteria for versality. In this section we give some basic properties of
versality, as well as criteria for detecting it. To start, a G -compression (i.e.,

G-equivariant dominant rational map) of a versai G-variety is versai.

Lemma 3.11 (Compressions of versai are versai). Let X be a faithful G-variety,
and let Y be a versai G-variety. If there exists a G -equivariant dominant rational

map f : Y —> X, then X is versai.

Proof. Let U c X be a G-invariant Zariski open, and let Z be any faithful
G-variety. Then f~l(U) c F is a G-invariant Zariski open, and by the definition
of versality, there exists a G-equivariant rational map Z —> f~l(U). Composing
with /, we obtain a G-equivariant rational map Z —> U as desired.

Versal G-varieties are also versai for subgroups.
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Lemma 3.12 (Versality descends). Let G be a finite group. If X is a versai
G -variety, then X is also a versai H -variety for any subgroup II ç G.

Proof By the definition of versai, we must show that for every //-invariant
Zariski open U C X and every faithful //-variety Y, there exists an H-
equivariant rational map Y —> U. Given U, let U' ç U be the maximal
G-invariant Zariski open contained in U (i.e., U' flgeG S ' U). Consider the

G -variety
G xH Y : G x Y/ ~

where ~ is the equivalence relation given by (g,hy) ~ (gh,y), and the G-action

given by

S'-KS.JO] := [(k'k,v)].

It is straightforward to check that because Y is a faithful //-variety, the variety
G Xf{Y is a faithful G -variety. Because X is versai, there exists a G -equivariant
rational map

(3.1) G xH Y —> U'

One can check explicitly that the map

Y -^Gxh Y

y ^ [(e,y)]

is //-equivariant. Composing this with (3.1), we obtain an //-equivariant rational

map
Y —> U' c U

as required.

Lemma 3.12 has the following consequence.

Lemma 3.13. Let H c G be a subgroup. Then RD(H) < RD(G).

Proof. Let X be a versai G -variety. Then X is a versai H -variety by Lemma 3.12.

By Proposition 3.7 and Lemma 2.7,

RD(G) RD(X -> X/G)
max{RD(A- -> X/H),RD(X/H X/G)}
max{RD(H),RD(X/H -> X/G)}

> RD(//).
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There exist criteria to check whether a given G-variety is versai.

Lemma 3.14 (Versality criterion). Let X be a faithful G-variety. Suppose both

of the fallowing statements hold.

(1) For every faithful, closed G-invariant subvariety Z\ C X, and any closed

(not necessarily faithful) G -invariant subvariety Z2 $ X, there exists a
G -equivariant rational map a: X —> X such that Z\ is not contained in

the indeterminacy locus of a and such that a(Z\) Z2.

(2) For any faithful G-variety Y, there exists a G-equivariant rational map
Y —> X.

Then X is versai.

Proof. Let U c X be a G-invariant Zariski open. Denote by Z2 := X — U.
Let F be a faithful G-variety. By Assumption 2, there exists a G-equivariant
rational map / : Y —> X. Let Z\ := f(Y). By Assumption 1, there exists a

G-equivariant rational map a: X —> X such that the restriction of a to Zi
is defined, and such that a(Zf) f Z2. Then a o f restricts to a G-equivariant
rational map Y —> U as desired.

Example 3.15. Let AG denote the regular representation of G. Then AG is

a versai G-variety. Indeed, Lemma 3.1(b) of [BRI] shows that AG satisfies

Assumption 1 of Lemma 3.14, while Lemma 3.4 of [BRI] shows that AG satisfies

Assumption 2.

3.4. Examples of versai G -varieties. In this section we use the tools from §3.3

to give examples of versai G -varieties. We begin with a result essentially proven
by Buhler-Reichstein in [BRI]; we include a proof for completeness.

Proposition 3.16 (Linear varieties are versai). Let G be a finite group. Let V

be any faithful linear G -variety. Then V is versai.

Proof. Because AG is versai, it suffices to prove that for any proper G -invariant
closed subvariety Zcf, there exists a G -equivariant map / : AG -> V such

that /(Ag) Z. Let v e V — Z be any point such that |G • n| |G|. Define

fv : AG -* V

geG geG

Then fv is a G-equivariant linear embedding, and /(AG) <2 Z as claimed.
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We highlight a specific instance of the above: while Hilbert asked about the

resolvent degree of the permutation representation C7 of S7, Proposition 3.16

implies that that one can equivalently consider any faithful representation of S7.

This gives an equivalent rephrasing of Hilbert's 13th problem, one for each faithful
Sn -representation.

Corollary 3.17. The following statements are true.

(1) Let n > 1. Let V he any faithful representation of S„,n> 2. Then

RD(5„) RD(L V/Sn) RD( Vn -+ Vn).

In particular, RD(P„ —»• Vn) < RlXPn+i —> Vn+\)-

(2) (Universality of RD(S„)) Let X —> X he a generically n-to-\ rational

cover. Then

RD( X —> X) < RD(5„).

Proof. Proposition 3.16 gives the first equality of item 1, and shows that

RD(L ->• V/S„) RDltP -» W/Sn) for any two faithful representations V

and W. In particular, we can take W — A" to be the standard permutation

representation. Since A" -> An/Sn is the normalization of the branched cover

V n -* Pn, the second equality of Item 1 follows from Lemma 2.11. Item 2 now
follows from Lemma 2.9.

Another equivalent restatement of the problem of computing RD( Vn)

comes from the following. Denote by Mo,n the moduli of n distinct ordered

points in P1. More generally, let Cn(Pm) := ((pm)x" — A)/PGLm+1, where

A c (Pm)xn denotes the "fat diagonal", i.e., the locus of «-tuples in which at

least two points coincide.

Corollary 3.18. For n > 5, the moduli of marked, genus 0 curves Mo,n is a

versai Sn -variety. In particular,

RD(,S„) RD(Af0,« Mo,n/Sn).

More generally, C„(Pm) is a versai Sn-variety for all n > max{5,m + 3}.

Proof. There exists a dominant Sn -equivariant rational map A" - --> Mo,n
More generally, consider the m -fold direct sum (A")m of the permutation
representation of Sn. This admits a dominant S1«-equivariant rational map
(An)m —> ((Pm)xn — A)/PGLm+i =: Cn{P'"). The corollary now follows from
Lemma 3.11 and Proposition 3.16 once we verify that the S,t -action on Cn(Pm)

is faithful, but this follows from the assumptions that n > max{5,m + 3}.
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4. Lines on smooth cubic surfaces

Since the problem of finding lines on smooth cubic surfaces connects with
so many other problems, we devote an entire section to it. We also look at this

one example in depth because it demonstrates how resolvent degree can be an

organizing principle that gives a single framework for many classical results.

4.1. The moduli space of smooth cubic surfaces, and its covers. Let %3)3

denote the moduli space of smooth cubic surfaces. This is a 4-dimensional

quasi-projective variety, the quotient of a hypersurface complement (P19 - S)
by the action of PGL4 induced from its action on P3. Let Gr(2,4) denote the

Grassmannian of projective lines in P3. Let

ft3,3(l) := {(S,L) e (P19 — £) x Gr(2,4) : L C S}/PGL4

be the moduli space of smooth cubic surfaces S equipped with a line; here PGL4

acts diagonally. Cayley and Salmon proved that the projection jt : 7f3)3(l) 7f3j3

given by n(S,L) := S is a 27-sheeted covering, and so its monodromy is a

subgroup of S27 However, the monodromy must preserve the intersection pattern
of the 27 lines. Camille Jordan proved (see, e.g., [Dol] or [Har] for a modern

treatment) that the monodromy group of ix : "H3,3(l) -» 7f3j3 is isomorphic to the

Weyl group W{E(). Recall that this is the reflection group given by the Dynkin
diagram:

Here each vertex represents (reflection in the hyperplane perpendicular to) a root,
and W{E() has presentation with a generator sa for each vertex of the diagram,
with relations given by:

• .v3 1 for all a.

• (ßasß)2 =1 if « and ß are not connected by an edge.

• Cv^)3 1 if « and ß are connected by an edge.

W(E6) is a group of order 51840; it contains the unique finite simple group
of order 25920 as an index 2 subgroup; we denote this group by W{E(,)+. Let
7f3>3(27) denote the Galois closure of jt : 7(3,3(1) -> ?f3,3; this is the (connected)
Galois cover of 7(3;3 with deck group W(E(t), corresponding to the kernel of the

monodromy representation 7Ti(?f3;3) -» W{E6). We use the notation H3,3(27)
since this cover corresponds to the moduli space of 28-tuples (S;L i L2i)
of smooth cubic surfaces equipped with 27 lines with a choice of labelling of
the intersection graph of the set of 27 lines.
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Let

(4.1) := {(S; Lx,..., Lr) e (P19 - E) x Gr(2,4)' :

Li CS, Li n Lj 0 V/ ^ j }/PGL4

denote the moduli space of smooth cubic surfaces S with a choice of r < 6

skew (i.e., disjoint) lines on S. We remark that (6) is connected; this
follows for example from the fact that it is isomorphic to the moduli of 6 generic

points in P2 (cf. Section 4.4 below). There is a cover 7(3,3 given by

(S;L 1, Lr) i-> S. This projection gives a (typically non-Galois) finite covering

map 7f^w(r)^7f3,3.
The action of W(Ef,) on 7(3,3(27) is free on a Zariski open. W{E6)

d!tt(Pic(S)), and for any class [L0] of a line we have:

Stab([L0]) s W(DS) (Z/2Z)4 x S5

where the S5 action on (Z/2Z)4 is given by the standard 4-dimensional
irreducible permutation representation of S5. The action of S5 on a marking
is given by permuting the divisor classes of the 5 lines L\,...,L5 disjoint
from L0. Further, W(D5) is generated by this S5 together with a Cremona

transformation. Since the monodromy W(Ef,) acts transitively on the set of lines

of any basepoint cubic, this implies that

(4.2) 7(3,3(1) 7(3,3(27)/ W(D5).

We will see throughout this paper how many classical problems about smooth

cubic surfaces can be rephrased as understanding various (branched) covers of
7(3,3; for problems about lines the covers are intermediate between 7(3,3(27) ->
7(3,3. For now we give one example.

Schäfli's double sixes. One of the more well-studied types of configurations of
lines on a smooth cubic surface S is the so-called (,Schläfli) double six: it consists

of two pairs {ö;} and {hj J of 6 disjoint lines on S with intersection pattern
given (in SchläfTi's original notation):

J ai a2 a-i a4 a5 a6
[

\ in b2 b3 Z>4 b5 b6 j
where any line does not meet any of the lines in the same row or column, but
does meet the other 5 lines. See Figure 2 on Page 312.

The group W(E6) acts transitively on the set of 6-tuples of disjoint lines

on S, with stabilizer the symmetric group S(}. There are thus [W{E(>) : ,S'6]

51840/720 72 choices of such 6-tuples. Each such 6-tuple determines a
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unique double-six, and since any double-six contains 2 such 6-tuples, there are

72/2 36 double-sixes. Denote the moduli of smooth cubic surfaces equipped
with a double-six by

7(3,3(6,6) := {(5, D) : S e 7(3,3 and D is a double-six in S}.

The stabilizer of a double-six is the maximal subgroup S6 x Z/2Z c W{E6)
(cf. [Dol, Proposition 9.4, Theorem 9.5.2]). We can thus make the identification

(4.4) 7(3,3(27)/(S6 x Z/2Z) Hf$"(6)/(S6 x Z/2Z) 7(3,3(6,6)

where the first equality comes from (4.6) below.

4.2. Finding 27 lines from a given line. In this section we consider the following
problem: given a single line on a smooth cubic surface, how hard is it to find more
lines? We will prove that given one line, the problem of finding the other 27 lines

has resolvent degree 1, by which we mean RD(7?3>3(27) -> 7(3,3(1)) 1. This

result is essentially 100 years old. For a nice modern reference, see Dolgachev's
book [Dol], Page 480.

Proposition 4.1 (Finding lines on a cubic surface, given a line). With notation

as above:

RD(7(3,3(27) 7(3,3(1)) 1.

This is in contrast to Harris's Theorem [Har] that 7(3,3(27) -» 7(3,3(1) is not
solvable by radicals.

Proof. We take the argument from the classic [Hilt], page 349. Suppose that we

are given a smooth cubic surface S V(f) and a line to on S. The line t0
is given as a zero set of two linear forms : l0 V(A 1, A2). Since t0 C S this

gives

f AiQi + A2Q2

for quadratic forms Qi,Q2- Consider the pencil of planes

n(Ai,A2) - V(À1A1-X2A2)

through the line 10. Each plane in this pencil intersects S in the union of to and

a conic C(Aj, A2) on S. One can check that the discriminant of each C(Ai, A2) is

a homogeneous polynomial I'd\, A2) of degree 5, and that the general P(Ai, A2)

has 5 distinct roots. Each of these solutions gives a reducible conic on S. Since

S is smooth none of these is a double line.

We thus have found five distinct pairs of distinct lines ti,t'i,\<i <5, and in
fact all 10 of these lines are distinct from each other and from to, giving 11 lines



Resolvent degree, Hilbert's 13th Problem and geometry 339

on S. The important thing for us is to observe that the £, are pairwise disjoint
for 0 < i <5. Since we obtained these with a degree 5 polynomial it follows
that

RD(7/^w(5) -> 7/3,3(1)) < RD(^ -» Vs) 1.

We can repeat the above procedure with £0 replaced by any £, or l\ to find the

remaining 27 lines; that is, to prove

(4.5) RD(7/3,3(27) -* HfSw(5)) < 1

Alternately, Harris proves in [Har] that the monodromy of the cover 7/3,3(27) -+
Hf?<3) is in fact solvable, hence so is the monodromy of 7/3,3(27) —» 7/jk3W(5),

giving (4.5). Lemma 2.7 (on RD of a tower) then implies

RD(7/3,3(27) -+ 7/3,3(1)) < max {RD(7/3,3(27) -> 7/^|w(5)),

RD(7/|kr(5) 7/3,3(0)}

max{l, 1}=1

giving the proposition.

4.3. Finding a single line. The following fundamental problem still remains.

As we will see throughout this paper, it relates to many other problems about

resolvent degree.

Problem 4.2. Determine RD(7/3,3(1) -> 7/3,3).

While there is a vast literature on lines on smooth cubic surfaces, and

while much of it concerns relationships between various intermediate covers

of 7/3,3(27) —> 7/3,3, there are far fewer results on Problem 4.2. The best results

of which we are aware are due to Burkhardt [Bur|, following a suggestion of
Klein (see [Hu, Ch. 4.3.2] for a modern treatment).

Theorem 4.3 (Burkhardt, Klein). Let k be any field of characteristic / 2,3.
Then

RD*(7/3,3(l)-> 7/3,3) <3.

The proof of Theorem 4.3 will use the following proposition, the first part of
which we learned from [DR1, Lemma 6.1].

Proposition 4.4 (Finding the 27 lines is versai). For any G C W( £>,), the

k-variety 7/3,3(27) is a versai G-variety. In particular

RDk(W(E6)) RDfc(7/3,3(27) -* 7/3,3).
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Proof. Let h denote a Cartan subalgebra of any simple Lie k -algebra of type
E6. Let W{E6) act on 1) via the defining representation, and let A(h) denote the

corresponding faithful linear W{E6)-variety. Then by [DR2, Lemma 6.1], there

exists a H7(Lg)-equivariant dominant rational map

A(fj) -> C'6(P2) -> 7f3>3(27).

Applying Proposition 3.16 and Lemma 3.11, the proposition follows.

Proof of Theorem 4.3. Recall that W(E(,) W{E^)+ x Z/2Z. By Theorem 3.3,

RD(JL(£6)) max{RD(ir(£6)+),RD(Z/2Z)} RD(lL(£,6)+).

The group W(E6)+ has an action on P3 defined over Z[a/—3] (see, e.g., [Atl]);
therefore after adjoining 3 to k (RD 1), this action is defined over k. By
Proposition 3.10, it suffices to prove that IP3 is solvably-versal for W(E(f+. Note

that there is an isomorphism Sp^F^/F^ ^ W(E(,)+ and the JL(£6)+-action on
P3 lifts to a faithful linear action of 6,/?4(F3) on A4 defined over Z[V—3].

Given any W(E6)+-variety X, the obstruction to realizing it as a quotient of a

faithful S/?4(F3)-variety is the associated Brauer class in II^t(k(X/ W(E6)+): il2)
However, by Merkurjev's Theorem [Merl], any class in H^t(k(X)w(^E^+ ; /r2)
trivializes over some multi-quadratic extension of k(X/ W(E6)+). We conclude

that there exists a faithful S/?4(F3)-variety X such that X /5/?4(F3) —>

X/W{E6)+ is a generically 2-to-l rational cover. By Proposition 3.16, A4 is a

versai Sp4(F3) variety, and by the definition of versality, there exists an Sp4(F3)-

equivariant rational map X —> A4. Composing with the projection A4 —> P3,

we obtain a W{E6)+ -equivariant rational map X /Ï/TL —> P3. But this shows

that P3 is H/(A6)+-solvably versai as claimed. We conclude

(by Lemma 2.11)

RD(W3f3(l) -> H3;3) RD(7{3,3(27) H3,3)

(by Proposition 4.4) RD(TF( A6))

RD(fL(£6)+)

RD(P3 P3/1V(E6)+) < dim(P3) 3.

4.4. Moduli of 6 points in P2. Let S c (P2)6 denote the subvariety of 6-

tuples of distinct points in P2 that are non-generic, that is, with either 3 colinear

or with all 6 points lying on a conic. Let

C'6(P2) := ((P2)6\£)/PGL3
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be the moduli space of generic 6-tuples in P2. For any (orbit representative of)
(z!,...,z6) g Cg(P2), blowing up P2 at each z,- gives a smooth cubic surface

S(Zl,...,z6) equipped with a 6-tuple (Li L6) of 6 skew lines corresponding
to the exceptional divisors. Every smooth cubic surface arises in this way, and

indeed it is classical that the map

f : C'6(P2) ->

defined by \j/{z\,... ,z6) := (S(Zu..^Z6y, Li,..., L6) is birational, where 7-^|k|w(6)

is defined in 4.1. It is classical that 6 skew lines Li,...,L6 on a smooth cubic
surface S determine via explicit formulas the other 21 lines on S ; see, e.g.,
§4 of [Hu], The ordering on the L,- determines an ordering on the set of all

27 lines, from which we deduce that there is an isomorphism

(4.6) r : 4 7(3,3(27).

Composition thus gives an isomorphism

r o xf, : C'6(P2) 4 7(3,3(27).

The permutation action of S6 on (P2)6 leaves invariant S and induces a well-
defined action of Se on Cg(P2). As explained in, e.g., [Sek, §3], this action
extends (via adding a birational automorphism induced by an explicit Cremona

transformation) to an action by birational automorphisms of W(E6) on Cg(P2)
for which the isomorphism r o ^ is W(C6)-equi variant. We remark that the

W{E6) action on Cg(P2) is not regular.
As a corollary to Proposition 4.4 and Theorem 4.3, we have the following.

Corollary 4,5. Let k be a field of characteristic =4 2,3. For any G C W(E6),
the k-variety Cg(P2) is a versai G-variety. In particular,

RD(C6(P2) -> c;(p2)/W(£6)) RD(W(£6)) < 3.

4.5. Pentahedral form. Pentahedral form is a classical normal form for smooth

cubic surfaces. We now consider this form from the point of view of resolvent

degree.

For any fixed [a0 : • • • : a4] £ P4 the equations

U{)Xft ai X? + a2X? 4- a^X? a^X^ — 0
(4.7)

Xq + X\ + Xi + Xj + X\ 0

determine a cubic surface in P3. Any permutation of the gives an isomorphic
cubic surface. We thus have a family P4/S5 of cubic surfaces. The elementary
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symmetric functions at <j5 in the a, give coordinates on IP4/Ss. The open
subset

V:= {[cn :: o5] : a5 ^ 0} CP4/S5

is the family of smooth cubic surfaces admitting a {proper) pentahedral form,
and the classifying map r : V -> 773,3 is an open embedding (see, e.g., [EJ,

Lemma 3.5]). The hyperplane complement

4

V := P4 — 0} P4 xp4/5s V
i=0

is the space of smooth cubic surfaces in proper pentahedral form. We can pull
back the cover T73,3(27) 773,3 along the map

V -* V 773,3

to obtain a cover (27) -> V

Proposition 4.6. Pentahedral form is an accessory irrationality: the cover
V (27) -* V has Galois group W{E6). Further, the total space V (27) has two
connected components, each component is preserved by the index two subgroup
W( E(,)+ c W(E(t), and the components are permuted under the action of the full
group W(E6).

Proof. The cover

H3,3(21)/W(E6)+ ^ 773,3

corresponds to adjoining a square-root of the discriminant of the cubic. Note that

the discriminant of the cubic equals the discriminant of each of its pentahedral
forms (cf. [Dol, §9.4.5]). As a consequence, the map V -> 773,3 factors through
the cover

V 773,3(27)/ W{Eè)+.

The map V —> 773,3(27)/ W{E6)+ is a Galois 45-cover of its image. On the

other hand, because W{E(,) only has proper, nontrivial quotients of order 2; in

particular A5 is not such a quotient. We conclude that V — 773,3(27)/B/(£6)+
and 773,3(27) —> 773,3(27)/ W(E6)+ share no intermediate covers, and thus

"773,3(27) X-H3.3(27)/W(E6)+ V ^ V

is a connected Galois W{E6)+ cover. From the above, each of the two components
of V (27) is isomorphic to this connected \V( E(,)+ cover, with the full group
W{E(,) interchanging the two components.
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4.6. Hexahedral form. The following is taken from Example 3.7 of [EJ], Let
H ^ P4 be the hyperplane in P5 given by üq-\ I-«5 0. The group S6 acts

on H with quotient isomorphic to the weighted projective space P(2,3,4.5,6).
The key thing is a sequence of maps (using our notation as above):

(4.8) 7(3,3(27) X II X H/S6 X 7(3,3

where t\ is an unramified 2-sheeted cover, t3 is an unramified 36-sheeted cover,
and t2 is a generically 720-to-l branched cover. Note that the fact that t\ is

2-sheeted, so that RD(7(3,3(27) -»//) 1, corresponds to the classical fact that,

given a smooth cubic surface S in hexahedral form, one can write down explicitly
(as a linear function in the coefficients of S a formula for 15 of the lines on S

(see, e.g., [Dol], Section 9.4). One can obtain the remaining 12 lines by adjoining
a square root. By the classification of maximal subgroups in W(Ee) (see [Dol,
Theorem 9.5.2]), the stabilizer of an unordered hexahedral form is isomorphic to

Se x Z/2Z. As a consequence, the moduli of unordered hexahedral forms H/S6

is isomorphic over 7(3,3 to the moduli of cubics equipped with a double-six:

H/S6 7(3,3(6,6)

7(3,3

Moreover,

RD(7f3,3(27) -> 7(3,3) max{RD(// H/S6), RD(H/S6 -> 7(3>3)}

<max{2,RD(///S6^ 7(3,3)}

where the last inequality follows from

(by Proposition 3.16 and Lemma 3.11) RD(// -* H/Se) RD(S6)

(by Hamilton's bound) < 2.

5. Bitangents to plane quartics

The story of 28 bitangents on a smooth plane quartic is analogous to that for
the 27 lines on a smooth cubic surface, and indeed the two are directly related,

as we will see in §5.3 below.

5.1. The moduli space of smooth planar quartics, and its covers. Let 7(4,2

denote the moduli space of smooth quartic curves in P2. This is a 6-dimensional
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quasi-projective variety, the quotient of a hypersurface complement (P14 — X)
by the action of PGL3 induced from its action on P2. Let Gr(2,3) denote the

Grassmannian of projective lines in P2. Jacobi proved in 1850 that any smooth

plane quartic C has precisely 28 bitangents; that is, lines T c P2 that are

tangent to C at two points (counted with multiplicity). Let

7/4,2(1) := {(C,L)e(P14-S)xGr(2,3):L bitangent to C}/PGL3

be the moduli space of smooth plane quartics equipped with a bitangent; here

PGL3 acts diagonally. The map (C, L) 1—> C is a 28-sheeted covering space. Let

7/4,2(28) denote the Galois closure of n : 7/4,2(1) -* 7/4,2; this is a (connected)
Galois cover of 7/4,2. We use the notation 7/4,2(28) since this cover corresponds

to the moduli space of 29-tuples (C; L\,..., L2g) of smooth plane quartics
equipped with 28 lines with a choice of labelling of the intersection graph of
the set of 28 lines.

The deck group of the Galois cover 7/4,2(28) -*• 7/4,2 is the same as the

monodromy group of the cover 7/4,2(1) 7/4,2. Ibis group is isomorphic to
the unique simple group of order 1,451,520, which we denote W(Ei)+. There

exists a split injection W(E-,)+ =-> W(E7), the Weyl group of type E7. Recall

that JL(£7) is the reflection group with Dynkin diagram:

Ei

It is given by order 2 generators sa, one for each vertex, satisfying the same

relations as W(E6) given above. W(Ej) has order 2,903,040, and is a direct

product of Z/2Z with W(E!)+. The action of W{Ej)+ on 7/4,2(28) is free on

a Zariski open. W(Ei)+ 4w?(Pic(C)[2]), and for any class [L0] of a line we
have:

Stab([L0]) W(E6)

This action is most easily seen as follows (cf. [DO, Chapter IX.2]). The moduli

7/4,2(28) is the target of a generically 2-to-l dominant rational map

C7(P2) 7/4,2(28).

Concretely, given 7 points {xi,... x7} c P2 in general position, form the degree
2 Del Pezzo surface V(x\ x7) by blowing up P2 at these points. The anti-
canonical map

(5.1) V -> P2.

realizes V as a 2-fold branched cover, branched over a quartic curve C, and

takes every exceptional curve on V to a bitangent of C. By Proposition 1 of
[DO, Chapter IX.2], this gives a 2-fold covering map
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(5.2) U -+ H4,2(28)

where U c C7(P2) is the locus of points in general position, and the map sends

V with its exceptional curves to C with its 28 bitangents. The Weyl group W(E7)
acts on C7(P2) (via the Coble representation) and this action factors through the

projection
W(E-j) ^ Z/2Z x W(E7)+ W{E7)+.

The map (5.2) is equivariant for this action (see [DO, Chapter IX], esp. p. 194,

for a verification of this equivariance). Under the map (5.2), the stabilizer

of a bitangent lifts to the stabilizer of a marked point on C7(P2), i.e., to

w{e6) c w{e7)+ c w(e7).
Just as for lines on cubics, we will see throughout this paper how many

classical problems about smooth quartic curves can be rephrased as understanding
various (branched) covers of %4j2 ; for problems about bitangents the covers are

intermediate between 7f4j2(28) -> H4.2 We now give several examples.

Aronhold sets. One of the more well-studied types of configurations of bitangents

on a smooth plane quartic curve C is the so-called Aronhold set. Recall that

a collection of n > 3 bitangents on a smooth plane quartic is asyzygetic (resp.

syzygetic) if the collection of 2n points of contact of the bitangents with the

quartic are not (resp. are) contained in a conic.

Definition 5.1 (Aronhold set of bitangents). An Aronhold set A on a smooth

plane quartic C is an asyzygetic, unordered set of seven bitangents {7j,..., T7}

on C. An Aronhold basis is an Aronhold set with an ordering of its elements.

Let H4;2(A) denote the moduli of smooth plane quartics equipped with an

Aronhold basis, and let H4,2(A) denote the moduli of smooth plane quartics

equipped with an Aronhold set. Note that the forget-the-ordering map is a Galois

S7 -cover

7f4j2(-4 —>

Aronhold sets have been studied for over a century (for recent treatments, see, e.g.,
[DO] or [Dol, Chapter 6.1.2]). One of the reasons is that an Aronhold basis on C

determines the other 21 bitangents to C, i.e., we have an W{E7)+ -equivariant
isomorphism

n4,2{A)^U4,2(28).

Perhaps even more surprising, an Aronhold basis in fact determines the equation
for C itself [Leh]. The group W(E7)+ acts simply transitively on the set of
Aronhold bases, and thus acts transitively on the set of Aronhold sets, with



346 B. Farb and J. Wolfson

stabilizer the symmetric group S7. There are thus [W(E7)+ : S7] 288 choices

of Aronhold sets. The complexity of finding an Aronhold basis, given an Aronhold
set, as measured by resolvent degree, is equivalent to Hilbert's 13th problem, as

we show in Theorem 8.3.

Steiner Complexes. A second well-studied type of configuration of bitangents

on a smooth quartic curve is the Steiner complex (cf. [Hilt, Chapter XIX.3] and

[Dol, Chapter 6.1.2]).

Definition 5.2 (Steiner complex of bitangents). A Steiner complex of bitangents

on a smooth plane quartic C is an unordered collection of six unordered pairs
of bitangents {(a\, ßi),..., (a6, ß6)} such that any two pairs give a syzygetic
collection of bitangents.

Any two bitangents determine a Steiner complex, and any one of the six pairs of
a Steiner complex determine the same complex, so there are (228)/6 378/6 63

Steiner complexes. Denote the moduli of smooth plane quartics equipped with a

Steiner complex by

7(4,2(S) := {(C, S) : C e 7(4,2 and S is a Steiner complex for C}.

The group W(E7)+ acts transitively on the set of Steiner complexes, and the

stabilizer of a Steiner complex is isomorphic to W{D^) (Z/2Z)x5 x S6, where

the action of S6 is via its standard 5-dimensional permutation representation. We

can thus make the identification

(5.3) 7(4,2(5) 7(4,2(28)/ W(D6) 7(4,2( A )/ W(D6).

where the second equality comes from the fact that an Aronhold basis determines

the remaining 21 lines.

Cayley Octads. A third configuration of classical interest is the Cayley octad

(cf. [Dol, Chapter 6.3.2]).

Definition 5.3. A Cayley octad is a collection of 8 distinct unordered points in
P3 that arises as a complete intersection of 3 quadrics. Denote the moduli space

of Cayley octads by Cay.

There is a close relationship between Cayley octads and smooth plane quartics,
which is summed up in the [Dol, Chapter 6.3] (especially Corollary 6.3.12). In

particular, the moduli of plane quartics equipped with an Aronhold set 7(4,2 (-4)

admits an 8-to-l covering map to the moduli space of Cayley octads, which is in
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turn birational to the moduli space of smooth plane quartics equipped with an

even 6 -characteristic:

7*4,2(A) ^8:1 Cay ~ 7f4,2(0ev)-

Moreover, the group W(E-j)+ acts transitively on the set of Cayley octads,

respectively even 0 -characteristics, and the stabilizer of an octad, respectively
even 9 -characteristic, is SK.

5.2. The resolvent degree of finding bitangents to plane quartics. In this
subsection we consider the resolvent degree of the problem of finding bitangents

on smooth plane quartics.

Proposition 5.4 (Finding 28 bitangents, given 2). With the notation as above:

RD(H4,2(28) 7(4,2(2)) 1.

The proof of Proposition 5.4 that we now give should feel similar to the proof
of Proposition 4.1, and indeed we formalize this similarity as a precise statement

in §5.3. We include the proof here for its beauty and historical interest.

Proof. Now, since the f are distinct, any two intersect in a single point. Let

2) := {(C; 74,72) e 774,2(2) : Tx n 72 ^C}.
This is a Zariski open subset of 7f4>2(2). It is enough to prove the theorem for
the pullback cover 7f4 2(28) T~L\ 2(2). Tie advantage of H'4 2(2) is that it gives
us 4 points of contact, 2 each from T\ Fl C and T2 D C. We can then perform
a classical construction, which we take from the 1920 book [Hilt], which posits
(see p. 334 of [Hilt]):

Through the four points of contact of two bitangents of a non-singular
quartic pass five conics each of which passes through the points of
contact of two more bitangents.

More precisely, let (C;7i,72) e 7f'42(2) be given. We consider P2 with
coordinates [x : y : z]. By picking representatives in the PGL3 orbit of
(C;Ti,T2), we can assume that T\ and 72 are given by the equations x — 0

and y — 0, respectively. The assumption that C has a bitangent given by x 0

and a bitangent given by y 0 puts the equation of C in a very special form,
namely:

(5.4) C := {[x : y : z] e P2 : xy(U +2kV + t62xy) — (V + txy)2 0}

for some t, where U 0 and V 0 are conics. Consider the condition that

U + 2kV + t2xy factors as a product of linear forms p(x,y,z) and q(x,y,z).
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One can check that this condition is a degree 5 polynomial in t. For such t the

equation (5.4) for the quartic C then becomes

xyp(x, y, z)q(x, y, z) — W2 0

where W V + txy. It is then clear that the lines given by p 0 and q — 0

are both bitangent to C. Further, the conic W 0 passes through the eight
points of contact of the four bitangents x 0, y 0, p 0,q 0. We have

thus proven that

(5.5) RD(H'4;2(4) H'4>2(2)) < RD( V 5 -> V5) 1

where 7f42(4) is the pullback to 7f42(2) of the cover 7f4,2(4) -» 7(4,2(2).

Although we will not need it, we remark that there are 5 distinct roots of the

degree 5 polynomial determining such t, and so this gives us 5 additional pairs
of bitangents to C, for a total of 2 + 5 • 2 12 bitangents.

Harris [Har] proves the following: given any three bitangents whose points
of contact lie on a conic, or any four whose points of contact do not, we can

solve for the remaining ones in radicals; further, no smaller sets suffice. This in

particular gives that the cover 4f4 2(28) -> ?f42(4) is solvable by radicals, and

so has resolvent degree equal to 1. Combining this with (5.5) thus gives

RD(4f4,2(28) -* 7(4,2(2)) 1

as desired.

Proposition 5.4 naturally suggests the following fundamental problem.

Problem 5.5 (Finding bitangents on smooth quartics). Compute the following:

(1) RD(7(4>2(28) -» 7(4>2(1)).

(2) RD(7f4;2(l)^7f4,2).

In the next section, we relate this to the problem of finding lines on cubic
surfaces, and in Section 8, we put this problem in the context of Hilbert's 13th

problem and Hilbert's Octic Conjecture.

5.3. Relating lines on cubic surfaces to bitangents on plane quartics. In this
subsection we relate the resolvent degrees of two classical problems: finding a

line on a smooth cubic surface and finding a bitangent on a smooth quartic curve
in P2. We then relate these to the resolvent degrees of other problems.
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Theorem 5.6. For any subgroup G C W(E$) C W(F-j)+,

RD(G) RD(H3,3(27) -> H3,3/G) RD(H4>2(28) Ha,2/G).

In particular:

(1) RD(W(D5)) RD(H3;3(27) -* H3,3( 1)) RD(H4,2(28) -> W4>2(2)) 1.

(2) RD(H/(£6)) RD(^3,3(27) ^ H3,3) RD(H4,2(28) -> H4;2( 1)) < 3.

Similarly, for any other subgroup G C W{ E7)+,

RD(G) RD(H4>2(28) - H4.1tG)

In particular:

(1) RD(S7) RD(H4>2(28) Ha,2(A)) < 3.

(2) RD(S8) RD(H4>2(28) -> H4,2(9ev)) < 4.

(3) RD(W(£7)+) RD(H4,2(28) -» ft4>2).

We will deduce Theorem 5.6 from the following, which should be compared
with Proposition 4.4 above.

Proposition 5.7 (Versality of the bitangents problem). For any G c W{E-j)+,
the k-variety 77,4i2(28) is a versai G-variety.

Proof. We recall a construction due to Dolgachev-Ortland [DO, Chapter IX],
which in its essentials dates to Coble. We claim there exists a sequence of
W/(£'7)-equivariant dominant rational maps

(5.6) A(fj) P(h) C7(P2) -> 7^4,2(28)

where A(fj) denotes the variety given by a Cartan subalgebra of a simple Lie group
of type Et, with its canonical W(E7)-action. By Proposition 3.16, A(fj) is a versai

W{E-j) variety, and in fact a versai G-variety for all G c W{E-j). By Lemma
3.11, all the varieties in (5.6) dominated by A(h) are also versai G-varieties for
all G c W{Ej) which act faithfully on them. Since the action of W(E-]) on all

but A(fj) factors through the projection W(E-j) ^ Z/2Z x W{E7)+ —» W{E-j)+
(cf. [DR2, Remark 7.2]), we conclude the result.

It remains to construct the diagram (5.6). The rational map

C7(P2) -> Ha,2(28)

was constructed above as (5.2). The map

A(fj) -> P(f))
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is just the projectivization, and is thus manifestly BT/?7)-equi variant. It remains

to construct the map
P(W C7(P2)

We again follow [DO, Chapter IX]. We begin by identifying P(fj) with the set of
ordered points {xi,... ,x7] in the non-singular locus of a fixed cuspidal cubic, up
to projective equivalence (cf. Pinkham [Pin]). Since there are 21 cuspidal cubics

through a general collection of 7 points in P2, forgetting the cubic gives the

above 21-sheeted map. This concludes the construction of (5.6) and the proof.

Proof of Theorem 5.6. By Proposition 5.7, the variety 7/4,2(28) is versai for

any G c W(Ef)+. By Proposition 4.4, the variety 7/3,3(27) is versai for any
G C W(E6) c WT/s7)+. Proposition 3.7 therefore implies that for any G C W(E6)

RD(G) RD(7/3,3(27) 7/3,3(27)/G) RD(7/4,2(28) -* 7/4>2(28)/G)

and that for any subgroup G c W(E-j)+ not contained in W(E&),

RD(G) RD(7/4,2(28) -> 7/4,2(28)/G).

The special cases above now follow from the discussions of the quotients of
7/3,3(27) and 7/4,2(28) of classical interest in Sections 4.1 and 5.1.

The bound

RD(W(D5)) RD(7/3,3(27) -> 7/3,3(l)) RD(7/4,2(28) - 7/4,2(2)) 1

now follows alternately from Theorem 3.3, Proposition 4.1, or Proposition 5.4.

The bound

RD(W(£6)) RD(7/3,3(27) -> 7/3,3) RD(7/4.2(28) -> 7/4>2(l)) < 3

follows from Theorem 4.3. The bounds

RD(S7) RD(7/4,2(28) -> 7/4,2(A)) < 3,

RD(Sg) RD(7/4,2(28) -> 7/4,2(0ev)) < 4

follow from Corollary 3.17 1, and the Bring-Hamilton bounds RD( V1 —> Vj) < 3

and RD(P8 Vs) < 4.

We now use a classical construction to give a more explicit proof of the first

equality of Theorem 5.6.

The classical construction. Let S be a smooth cubic surface containing lines

L\ L27. A choice of a point p e S — determines via projection a

morphism

7tp : Bl^S) P2

from the blowup Bl^jS) to the plane P2. This setup has the following remarkable

properties:
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(1) jt,, is a 2-sheeted branched cover, branched over a smooth quartic curve

Cp CP2.

(2) The 27 images izp(Li), 1 < i <27 are 27 of the 28 bitangents of Cp,
with the 28th bitangent to Cp being the image under Ttp of the exceptional
divisor in B1P(S).

(3) For every smooth quartic curve C in P2 there exists S and p e S as above

so that C is the branch locus of np, as above.

See Figure 1 on Page 310.

Modular interpretation. We can interpret this classical construction in terms of
Del Pezzo surfaces of degree 2 and 3, and thus of maps of moduli spaces and

their covers.

Consider the universal family

S s- ^3,3

71

\

7-1-3,3

of smooth cubic surfaces. Note that ((3,3 can also be thought of as the moduli

space of pairs {(S, p) : S e H3,3, p e S} and the projection n(S, p) S.
We now give a second presentation of 7/3,3. Recall that

7/3,3(27) Cg(P2)

Adding the data of a point on a cubic, we get birational maps

C7(P2) Z70w(6) ^ ^3,3(27)

where 6) (resp. fT3j3 (27) denotes the space of cubic surfaces equipped
with an ordered set of 6 skew lines (resp. an ordered set of 27 lines) and a

point on the surface. These isomorphisms are equivariant with respect to the

W{E6) c W(Ej) action on C7(P2) and the IT(f?6) actions on ff|k|w(6) (resp.

£73i3(27)). In particular there is an open embedding

C7(P2)/JF(£6) C7Y3,3

onto the cubics equipped with a point not lying on any of the 27 lines.

On the other hand, as discussed above, we have a generically 2-to-l W(E-j)-
equivariant dominant map

C7(P2) -> 7(4,2(28).
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Therefore, for any G C W(E6), we obtain a pullback diagram in which the

horizontal maps are generically 2-to-l rational covers

«3,3 (27) «4,2(28)

«3,3(27)/G---«4,2(28)/G

This diagram shows that, at the cost of adjoining a square root, any explicit
solution for «4,2(28) ->• «4,2(28)/G determines one for «3,3(27) -* «3,3(27)/G,
and vice versa.

It remains to relate this to solutions of

«3,3(27) -> 7-^3,3(27)/G.

One direction is trivial: because we have a pullback diagram in which all maps
are dominant

«3,3(27) -«3,3(27)

«3,3 (27)/G — «3,3 (27)/G

any solution to «3,3(27) «3,3(27)/G immediately pulls back to give one for

«3,3(27) -» «3,3(27)/G. For the other direction, given an explicit tower solving

«3,3(27) -> «3,3(27)/G

(5.7)

AV--

«3,3(27)

«3,3 (27)/G

Let Z c «3,3(27)/G be the closure of the complement of the image of in

«3,3(27)/G. Because —>«3,3(27)/G is dominant, Z is a proper subvariety.
Fix a line L C P3 and let t/ c «3,3(27)/G be the Zariski open consisting

of cubic surfaces which intersect L transversely. Define

« L ;= {(5, p):S eU c «3,3(27)/G, p e 5 (T L}

By Bezout's Theorem, the projection

ù L^U
is a 3-to-l dominant map. Because Z c «3,3(27)/G is a proper closed subvariety,
for a generic choice of LcP3, the embedding



Resolvent degree, Hilbert's 13th Problem and geometry 353

ù L C ^3,3 (27)/G

is not contained in Z. We can therefore pull back the solution (5.7) along this

embedding to get a tower solving

u L X«3i3(27)/G 7*3,3 (27) -> U L

We conclude from Lemma 2.7 and Corollary 3.17 2 that

RD(7*3,3(27) -» 7*3,3(27)/G) < max{RD(*7L x„3 3(27)/G 7*3,3(27) -> CL),

RD(GL -> C)}
< max{RD(W3;3(27) -> **3,3(27)/G), 1}

RD(7f3,3(27) ^3;3(27)/G).

Remark 5.8. The construction above using Bezout's theorem suggests a general
method. We develop this further in Section 6.2 below.

The proof of Theorem 5.6 also implies the following.

Corollary 5.9 (RD for Double-Sixes and Steiner Complexes). The resolvent degree

offinding an ordered sixer given a double-six equals the resolvent degree offinding
an Aronhold basis given a Steiner complex equals the resolvent degree of S(,,

i.e.,

RD(S6) RD(7*^w(6) 7*3,3(6,6)) RD(7*4,2M) -> 7*4,2(5)).

Proof. By Theorem 5.6,

RD(S2 x S6) RD(7*s3kf(6) -+ 7*3,3(6,6))

and, because 7*4,2(.4) 7*4,2(28) as W(E-j)+ -varieties, Theorem 5.6 also gives

RD(W(D6)) RD(7*4,2M) -* 7*4,2(5)).

Because W{D(,) {Jj/IZ)*5 x S6, Theorem 3.3 gives

RD(W(D6)) max) 1. RD(56)} RD(S2 x S6) RD(56).

6. The resolvent degree of some enumerative problems

Consider an enumerative problem M —> M as in the introduction. As
mentioned there, a typical first goal is to prove that this is a branched cover. One
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then tries to find its degree. The third step is to compute the Galois group of (the

normal closure of) the covering. Computing RD( M —> M) can be interpreted
as computing the number of parameters needed to specify a point in M given a

point of M. This seems to us like a fundamental problem. We worked through the

explicit examples of lines on a smooth cubic surface and bitangents on a smooth

quartic in Sections 4 and 5. In this section we present a few more examples.

6.1. Tangency problems for plane curves. Steiner's 5 conics problem. A
classical problem of Steiner asks how many conics in P2 are tangent to 5 given
conics. After many incorrect answers and a long, rich history, the problem was

answered around 40 years ago; see, e.g., [EH] and the references contained therein.

The answer is 3264. But how to find these conics given the original 5, given by

the coefficients of their defining equations?
Harris proves in [Har, IV] that this problem is not solvable by radicals, as

follows. Let W s P5 denote the linear system of conics in P2, and let W0

denote the Zariski open subset of smooth (i.e., non-degenerate) conics. Let

Y := {(CT,..., C5, C) e W5 x W0 : C is tangent to each C, }.

Consider the map TT : Y -* W5 be tt(Ci, C5, C) := (C,,..., C5). Then it is a

3264-sheeted branched cover. Harris (see §IV of [Har]) computes the monodromy

group of this cover to be the full symmetric group S32ca As this group is not

solvable, Harris deduces that there is no formula in radicals for the coefficients

of C in terms of the coefficients of the C,.

Problem 6.1 (Refinements of Steiner's problem). Determine the monodromy of
the natural branched covers of W5 lying between Y and W5. Determine which

if any are solvable by radicals. For these, determine explicit formulas.

Problem 6.2 (Resolvent degree of the 5 conics problem). Compute RD(E
W5).

There are many generalizations of Steiner's Problem, for many of which the

associated monodromy group has been computed; see, e.g., [EH, HS]. It would
be interesting to work out bounds on the resolvent degree for these problems.

Curves through specified points. There are many more such enumerative

problems. For example, we have the following. Let Vd C (P2)3d~l/S^-i be the

parameter space of (3d — 1)-tuples of distinct points in p2 in general position.
A dimension count gives that the number rid of degree d rational curves that

pass through 3d — 1 such points in P2 is finite. It was known classically that
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il2 1,«3 12 and n4 620. In the early 1990's the following recursive

formula for nd was given by Kontsevich-Manin and Ruan-Tian (see, e.g., |EH]
and the references contained therein):

=«i«,,"'1"4 >)) -

Let Xd : — PGL2 \Rat(/(P1, P2)/PGL3 denote the moduli space of degree d

rational curves. Let

Yd := {(/?,, Pyd_x, Cr,..., Cnd) : pj 6 Ck V./, k}cVd*Xn/.

Denote by 7id : Yd -> Vd the natural projection. Then nd is an nd -sheeted

branched cover.

Problem 6.3. Compute the monodromy of 7td, as well as of the intermediate

covers. Compute RD(rrrf).

Among many other variations, we mention the following.

Problem 6.4. All general degree n curves through \n{n + 3) —1 fixed points pass

through 2(« — 1 )(n — 2) other fixed points (see, e.g., p. 191 of [Hilt]). Compute
RD for the problem of finding one of the ~(n — 1 )(n —2) other points, as well

as its monodromy.

6.2. Finding a point on a projective subvariety. In relating different problems
about varieties in projective space, it will sometimes be useful to pick a basepoint

on a variety in a way that varies algebraically over a parameter space. The following
proposition, which we isolate because it might be useful in other contexts, states

that to compute RD for any algebraic problem for degree d varieties of a fixed
dimension in P", one can add the data of a basepoint at the cost of finding a

root of a degree d polynomial.

Proposition 6.5 (Finding a point on a subvariety of P"). Let X be any variety
over k, and let

S s- X x P"

X
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be any family of r -dimensional, degree d varieties in P" such that S —» X is

a dominant map. Let

(6.1) Y--^X
I I

I

Y Y

S--Ï-X
be any pullback diagram with vertical maps being rational covers. Then

RD(L — > S) <RD(X — > X) < max{RD(L —> S),RD{Sd)}.

Proof. The first inequality follows from Lemma 2.5. We now prove the second

inequality. Fix an n — r -dimensional linear subspace L c P". Let U C X be

the Zariski open consisting of all x e X such that the variety Sx intersects L

transversely. Define

Ui := (U x L) n 5.

By Bezout's theorem, the map U\ -» U given by projection is a generically
d -to-1 rational cover. Therefore, by Lemma 2.9,

RD(t/j -* U) < RD(Vd -+ Vd) RD(^).

By construction, we have a commuting triangle

S

Ui ^ *
Form the pullback

Ui xs Y ^ Y
I

I

I I

Y Y

Ui ^ S

By construction,
U1 xs Y —> Ui -* X

is a tower solving X —> X. The definition of resolvent degree and Lemmas 2.5

and 2.7 imply that

RD(X — > X) < RD(t/! xs Y --> X)
< max^D^ Y —> f/O.RDjtA -> X)}
< max{RD(y —> S),RD(Td -> Vd)}

as claimed.
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6.3. Resolvent degree and Bezout's theorem. Recall that 7fr-2 denotes the

moduli space of smooth degree r curves in P2. Fix r,s> 1. Bezout's Theorem

gives that for each pair of curves C, C c P2 of degrees r and s, the intersection

CflC has rs points, where each p e C fl C' is counted with the intersection

multiplicity IP(C,C'). Let

U(r,s),2 ((p^"1 - Er) X (pCt2)"1 - E,)j/PGL3

denote the moduli of pairs of smooth plane curves (C, C') with deg(C) r,
deg(C') s (where £r, and T,s denote the loci of singular curves). Let Ur>s

denote the Zariski open

Ur,s := {(C, C') : IP(C, C') 1 VpeCfl C'} c U^s),2

and consider the covering

Ur,s :={(C,C',p):i)eCnC'}cl/r,sxP2
n.1

Ur,s

given by jt(C, C', p) := (C, C'). Note that n~l (C, C') CflC' c P2. Bezout's
Theorem implies that n : U ryS —> UrtS is an rs -sheeted cover. It is known that
the monodromy of this cover is the full symmetric group Srs ; see, for example,
[HS, Corollary 1]. Thus there is a formula in radicals for the intersection of two

curves of degrees r,s < 2, but there is no such formula when rs > 4. It is

natural to ask for the minimal number RD( U r,s —> Ur,jS) of parameters for any
formula for an intersection point of two smooth curves, given the coefficients

defining those curves. By the computation of the monodromy, we have

(6.2) RD( U r,s -* Ur,s) < RD(Srj).

Problem 6.6. For which r and s does equality hold in (6.2)?

6.4. Finding flexpoints. Let C be a degree d > 2 plane curve. For a generic

point p e C, the tangent line tp to C at p intersects C with multiplicity
mp{C tp) 2. Recall that p is a flex point of C if mp(C lp) > 3; it is

a simple flex if mp(C tp) — 3. It is known that any degree d curve C has

3d{d —2) flex points, counted with multiplicity. Recall that Tidp denotes the

moduli space of smooth degree d curves on P2. Let Hd,2(flex) c Hd.2 x P2 be

the moduli space of pairs (C, p) where p e C is a flex point. The projection
map ?C/,2(flex) -> Hd,2 given by (C, p) p is a 3d(d — 2)-sheeted covering
when restricted to the Zariski open in %d,2 consisting of those degree d curves
C all of whose flex points are simple.
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The monodromy of 7(3,2(flex) —>• Tfo,2 is solvable (see [Har, II.2]), so that

RD(7(3,2(flex) -> 7(3,2) 1.

In contrast, Harris proves in II.3 of [Har] that for d > 4, the monodromy of
77rf;2(flex) -» did,2 is S3d(d-2)> which is not solvable if d > 4. While Harris
concludes from this that there is no formula in radicals for the flex points of a

general degree d > 4 smooth plane curve, the basic question remains as to how

complicated any formula not-in-radicals actually is.

Problem 6.7 (Finding (lexpoints). Compute the resolvent degree for the problem
of finding a flexpoint on a smooth degree d > 4 plane curve; that is, compute
RD(7frf>2(flex) -> 7fji2).

It is a classical fact that for a degree d curve C, the flexpoints of C are

precisely the intersection points of C with its associated Hessian curve He,
which has degree 3 (d — 2). However, Problem 6.7 is quite different than the

situation considered in §6.3. Indeed, while the map

did,2 ~yH UdMd-2)

C I—> (C, He)

fits into a pullback square

did,2(flex) s- Ud,3(d-2) »

did,2 Ud,3(d-2)

the codimension of //(7f^,2) C (Jd,3(d-2) is always positive and grows quadrati-
cally in d.

7. The resolvent degree of the roots of a polynomial

While the problem of simplifying the formulas needed to solve a general

polynomial has been central to the mathematical tradition since the Babylonians,
the study of the resolvent degree of polynomials essentially originates with work
of Tschirnhaus [Tsch] in the 17 th century. Tschirnhaus introduced the Tschirnhaus

transformation, which remains essentially the only method for providing general

upper bounds on RD( V n -* Vn)- We review Tschirnhaus transformations from
a geometric standpoint below, and then we treat several of the classical upper
bounds from this perspective.
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7.1. Tschirnhaus transformations and classical solutions of polynomials.

Elementary perspective. Consider the general degree n polynomial

p(x) := xn + a\xn~l +• + «„ =0,

with roots x\ xn. A Tschirnhaus transformation T(bo ,bn-\) (for some

bo ,bn-1) sends the roots x,- to

T(bo,...,bn-i)(xt) := b0x"~l + hxx"~2 H + bn-

The Tschirnhaus transformation of the polynomial p(x) is defined by

T(b0,...,b„-i)(p)(x) := Y[(x-T{ho £n-i)(x/)).
i

Because the assignment x,- i-> T(b0 ,bn-\){xi) is symmetric in the roots,
the coefficients of T(b0 ,bn-\)(p) are polynomials in the a; and the bj.
Accordingly, by solving polynomials in the bj whose coefficients are polynomials
in the a,-, we can find special Tschirnhaus transformations which convert our

original polynomial p(x) into a polynomial whose coefficients satisfy special

conditions, e.g., some collection of the coefficients are zero.

Note that, given the roots of T(b0,... ,bn-\)(p), we can recover the roots of
p by a rational transformation. See [Hu, Lemma 4.2.1] for a clear treatment.

As covariants. Tschirnhaus transformations can also be defined as Sn -equivariant

maps
T : A" -o- A"

In the setting above, we have an auxiliary affine space parametrizing Tschirnhaus

transformations

Ay- := {(b0, i bn—i)}

and a map
A7* —> A\gSn(An, A")

from the affine space parametrizing Tschirnhaus transformations to the space of
maps of Sn -varieties A" —A"

Geometric perspective. Equivalently, we have an Sn -equivariant "evaluation"

map
A" x A'f A"

where Sn acts trivially on the Aj factor, and via the permutation representation

on each A". Passing to the quotients, we obtain a commuting square
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A" x knT A"

?„xA"r^P„
To bound the resolvent degree of V „ —» Vn via a Tschirnhaus transformation,
one now specifies

(1) a Zariski closed Sn -invariant subvariety V C A", and

(2) a rational cover U —> Vn along with a section

e-l(V)
Y

y
y

s \ •

u---^vn
Given these data, one obtains

RD{Vn-* Vn) < max{RD(t/ —> Vn),dim(\/)}.

Remark 7.1. Standard examples of V are given by

i

Vi-i := =0} c A",
7 1

where the rsj are the elementary symmetric functions. Finding U —> Vn with a

map U —> £_1(Fi...,) over Vn is just to find a Tschirnhaus transformation which
sets the first i coefficients of the general degree n polynomial to 0.

We now illustrate this procedure in several classical examples.

7.2. The Bring-Hamilton 4-parameter reduction. In 1786 Bring [Bri] proved
the following, which was independently discovered by Hamilton [Ham],

Theorem 7.2 (Bring-Hamilton 4-parameter reduction). For any n > 5 :

RD(Vn^Vn)<n-4.

From the above perspective, Bring's proof is as follows.

Proof. First, restrict to the space of quartic Tschirnhaus transformations, i.e.

T(b0,... ,b4)(xi) b0xf H 1- b4.
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Next, observe that the fiberwise projectivization of s~x(V\) -* Vn is a trivial
P3 bundle, since the condition that the first coefficient vanish is linear in the

bj, and this 3-plane bundle admits a rational section. Therefore, the fiberwise

projectivization of e~1(l/12) Vn is a bundle of quadric surfaces in P3. Denote

by %2,3 the moduli of quadric surfaces and let Ti2^(L) C %2,3 x Gr(2,4) be

the moduli of quadric surfaces equipped with a line, so that the two connected

components of T~L2^(L) (corresponding to the two rulings of the quadric) each

give a P1-bundle over 7f2,3 • We have a map

By the classical theory of quadratic forms (for a detailed contemporary treatment,

see, e.g., [Wol, Lemma 5.2]), after passing to a branched cover U\ —>• Vn of
degree 24 (i.e., by adjoining 4 square roots of polynomials in the coefficients),
we can diagonalize the associated quadratic form, i.e.,

tor rational hyperplanes L, c P^. Then {L0 + V—Ti-i 0, L2 + \f—îL3 0}
defines a line on the quadric. In other words, there exists a lift of the map

By intersecting the family of cubics s
1

(K3) with this line, we obtain a map

Vn -> H2,3

p I y £~1(Vi2)\p

U1 —> %2,3

n2,3(v)

V.2,3

uI^V2
u \-+ L(u) n s 1{V2)\U

Forming the pullback

U2 ^V3

u1—>v3
we obtain a branched cover U2 Vn and a section

£ 1{V\23)
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By construction,

RD(C/2 -* Vn) max{RD(t/2 -* t/0,RD(Ut V„)}
< max{RD(P3 -> V3), l} 1.

Therefore

RD(Vn -> Vn) < max{RD(V=).RD(P3 ^3),RD(K123 A«"3)}

where the final space A"-3 is the moduli space of all monic degree n polynomials
of the form

x" + a4xn~4 + h an-\X + an 0.

Restricting to locus U C A"-3 where an-\ /0/a„, we can define a linear

Tschirnhaus transformation

TV \ an—1
T(xi) := Xi

an

to set the last two coefficients to be equal. This defines a pullback diagram

T
T^123|c/ ^ Rl23,(n-l)=n

U * A"-4

where A"-4 denotes the space of all polynomials of the form

x" + b4xn~4 H h bn-ix + bn-1 0.

We conclude that, for n > 5,

RD(P„ -> Vn) < max{RD(V^).RD(P3 -* P3), RD(R123>(„_1)=„ -> A""4)}
< n — 4

as desired.

As a consequence of the Bring-Hamilton theorem, we obtain the upper bounds

in Hilbert's Sextic and Octic Conjectures Hilbert's and 13th Problem.

Corollary 7.3. RD( V 6 -+ V6) RD(56) <2, RD(P7 -» V7) RD(S7) < 3,

and RD( V s —> V&) < 4.
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7.3. Brauer's bounds. Hamilton [Ham] was the first to show that

lim n - RD( V „ -> Vn) oo.
n—^oo

More precisely, he showed the existence of a function // : N -> N, such that for
n > H(r), n — RD{V n ^Pn) >r, and he computed the initial values of H :

r 4 5 6 7 8 9

H(r) 5 11 47 923 409,619 83,763,206,255

By the mid-20th century, Hamilton's work appears to have been forgotten.
Segre [Segl], building on Hilbert's work on the degree 9 equation, proved that

RD( V n ->• Pn) 5 n — 6 for n > 157. He further conjectured that

lim n — RD( V n —> Pn) — oo\
/I—>• OO

that is, he conjectured precisely what Hamilton had shown over a century
earlier. Shortly after, in 1945, Brauer [Braul] and Segre each reproved this

statement, but without giving effective bounds. Three decades later, Brauer [Brau2]
proved the following theorem, which provides the best general upper bounds on

RDflP „ —> Vn) to date.

Theorem 7.4 (Brauer [Brau2]). Let n > 3. For any r > 2

RD( V n —> Vn) <n — r for all n > (r — 1)1 + 1.

We include a streamlined version of Brauer's proof of Theorem 7.4 for
completeness.

Proof. We prove this by induction on r. The base case r 1 follows from the

Babylonians: RD(n) < n — 1 for all n > 2, via a linear translation of the roots.
For the inductive step, consider the full space of Tschirnhaus transformations

iPy.-1. Observe that
ë"1(Ki-> Vn

is a bundle of (n — r + 1)-dimensional degree (r — 1)! subvarieties of P£-1.
By construction, there is an isomorphism of varieties over ë_1(F1...(r_1)) :

V n XV„ ®
1 (^l-(r-l)) £

1
4^1 .(r —1)) xA"-('~ O V n\\n-r-l

where c V„ denotes the space of all monic polynomials with the first

(r - 1) coefficients vanishing. Therefore

RD(v„ xVii r1(K1...(l._1)) -> ë-^Fi...^!))) < RD( V n |An-(r-„ -> A"~(r_1)).
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Proposition 6.5 then implies

RD(V„ Vn) < max|RD^„ xVn ë-1 (Ki...(r_i)) -* ë_1 (Ki...(r_i))),

RDCPp.-!)! -> p(r_1)!)|

< max{RD(P„|A„-(r-„ -> A"-(r-1>),RD(P(r_1)! -+V{r-!).)}

An analogous linear Tschirnhaus transformation to that in Bring and Hilbert shows

RD( V n |A„-(r-i) A"~(r_1)) <n-r.
The inductive hypothesis then gives

RD(P(r_1)! -* V(r-i)i) < (r - 1)! - (r - 1) < n - r,

completing the proof of the induction step.

Remark 7.5. Note that Brauer's proof does not make use of the Bring-
Hamilton idea. Moreover, Hilbert [Hil2] sketched an approach using lines on
cubic surfaces to show that RD(9) < 4. Brauer needs n > 25 in order to
conclude RD( V n —> V„) < n — 5. In [Wol], an extension of Hilbert's argument
leads to a substantial improvement over Brauer's bounds for general n.

8. The equivalence of Hilbert's conjectures to classical geometry
problems

As with many Hilbert problems, the specific statement of Hilbert's Sextic

Conjecture, 13th Problem and Octic Conjecture (see Problem 1.5) turns out to be

much broader and more widely connected to other problems than one might at

first glance guess. The goal of this section is to use the theory we have developed

so far to prove the equivalence of each of these problems with many other natural

problems of both geometric and arithmetic natures. We give each statement in

English form, and name the corresponding problem in terms of moduli spaces
when we have already named them explicitly.

We organize things into five groups of examples, according to the group that

is acting. The five classes of examples are ordered in complexity via:

RD(fi/(£6))
RD(S6) < < RD(1E(£7))

RD(57) < RD(S8)
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8.1. -varieties and Hilbert's Sextic Conjecture. We start with the Sextic

Conjecture.

Theorem 8.1 (RD of Sß varieties). The following statements are equivalent:

(1) Hilhert's Sextic Conjecture is true: RD( V c, —> Vf) 2.

(2) RD(56) 2.

(3) RIX V —> V/Sf) 2 for any faithful, linear Sß-variety V.

(4) RD(Ad0,6 -> Mo,6/S6) 2.

(5) RD 2 for the problem of finding a fixed point for the Z/3Z action on

a genus 4 curve of the form y3 P(x), where Fix) is a. square-free

polynomial of degree 6 :

RD(C3;6 —> £3,0) 2.

(6) RD 2 for the problem offinding a fixed point for the hyperelliptic involution

on a genus 2 curve:

RD(X2(S) -* M2) 2.

(7) RD of finding the 27 lines on a cubic, given a double-six:

RD(773,3(27)^773;3(6,6)) 2.

(8) RD offinding the 27 lines on a smooth cubic surface S given the unordered

hexahedral form of S :

RD(T73,3(27) H/Sf) 2.

In fact, the resolvent degrees of all of the above problems coincide.

Proof We prove the theorem via chains of equivalences.

Equivalence of 1, 2, 3, and 4. The equivalence of the first four follows from

Corollary 3.17 1 together with Corollary 3.18.

Equivalence of 4, 5. Consider the moduli space C3,6 of isomorphism classes of
algebraic curves of the form y3 l'(x) where P has is a square-free polynomial
of degree 6. These are genus 4 curves equipped with a Z/3Z action, the quotient

giving a branched cover £4 —> P1 branched over 6 points, each of order 3.

Let C3,6 denote the moduli of curves in C3,6 equipped with an ordering of the

Z/3Z-fixed points. The forgetful map
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63,6 ~ ^3,6

is a Galois S6 -cover. By mapping the fixed points to P1 under the Z/3Z-quotient,
we obtain the commutative diagram

(8.1 C3;6 * Mo,6

C3.,6 Mofi/Se

in which the horizontal arrows are birational, equivariant with respect to the Se

actions, and the bottom row is the quotient of the top row by the S6 action.

The stabilizer of a fixed point is S5 c Se, and thus 63,6 -»• 63,6 is the Galois
closure of the cover parametrizing curves in C3;6 with a single choice of fixed

point. Together with Lemma 2.11, this proves the equivalence of 4, and 5.

Equivalence of 4 and 6. The Segre cubic threefold X3 is the threefold in P5

given by

^3 := I[*o : • • • : *s] e P5 : X! x> 0 ^2 xi }•
i=0 i=0 '

The permutation action of Se on P5 leaves invariant X3, permuting its 10 nodes.

It's classically known that X3 M0,6 as S6 -varieties.

Hunt proves in [Hu, Theorem 3.3.11] that the dual variety to X3 is the so-called

Igusa quartic fo, which is the moduli space of 6 points on a conic in P2. The

two varieties X3 and J4 are S(, -equivariantly birational. The Igusa quartic I4 is

the Satake compactification of the moduli space M2( A of hyperelliptic curves
of genus 2 with a marking of the 6 branch points. The group S6 acts by

permuting these marked points. We thus obtain a commutative diagram in which
all horizontal arrows are birational equivalences

(8.2) Mo,e —2 X4 ^M2(A)

M0,e/Se folSe ^ M2

Thus each of the rational covers in (8.2) have equal resolvent degree.

Equivalence of 2, 7 and 8. As explained in (4.4), the moduli space of pairs
(S, D) where S e and D is a double-six in S can be identified with

H3,3(21)/Se. Thus the problem of finding all 27 lines on a smooth cubic surface
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given a double-six is RD(7/3,3(27) —» Tl-ip(21)/Sß). By Proposition 4.4, 7/3,3(27)
is versai for any G C W{Eß). Therefore, by Proposition 3.7,

RD(7/3,3(27) 7/3,3(27)/Sß) RD(56),

proving the equivalence of 2 and 7

Now recall from §4.8 that the moduli space of unordered hexahedral forms

for smooth cubic surfaces fits in to the sequence of branched covers (see (4.8)) :

7/3,3(27) XhX H/Sß X 7/3,3

where t\ is an unramified 2-sheeted cover, t3 is an unramified 36-sheeted cover,
and ?2 is a generically 720-to-1 branched cover. The composite is a Galois
branched cover, with deck group S2x Sß c W(E6), i.e.

H/S6 7/3,3/(^2 x S6)

Proposition 4.4 therefore implies

RD(7Z3,3(27) -> H/Sß) RD(S2 x S6) RD(S6),

proving the equivalence of 8 and 2.

8.2. W{Eß)-varieties and lines on a smooth cubic surface. In this section

we summarize the equality of the resolvent degree of different W(Eß)-varieties

proven above.

Theorem 8.2 (RD of W{Eß) varieties). The following are equal:

1. RD(W(£6)).
2. RD(K — V/ W(Eß)) for V any faithful representation of W{Eß).

3. RD of finding all 27 lines on a smooth cubic surface:

RD(7/3,3(27) 7/3,3).

4. RD of finding a line on a smooth cubic surface:

RD(7/3J3(1) -»• 7/3,3).

5. RD offinding 28 bitangents on a smooth plane quartic, given one of them:

RD(7/4,2(28) 7/4,2(1)).

Further; all of the above are at most 3.

Proof. We prove the theorem in chains of equivalences.
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Equivalence of 1, 2, 3 and 4. This follows from the proof of Theorem 4.3.

Moreover, from Theorem 4.3, we obtain the upper bound of 3.

Equivalence of 3 and 5. This is the statement of Theorem 5.6 above.

8.3. S7 -varieties and Hilbert's 13th Problem. We now prove the equivalence
of Hilbert's 13th problem with various other problems. Recall that Cn(Pm) denotes

the moduli space of ordered n -tuples of distinct points in Pm modulo the action

of PGLm+1.

Theorem 8.3 (RD of Sj varieties). The following are equivalent:

(1) Hilbert's 13th problem: RD( V 7 —> Vf) 3.

(2) RD( V —> V/S-j 3) for any faithful linear representation V of S-j.

(3) RD(S7) 3.

(4) RD(C7(P") —C7(Pn)/Sf 3 for n < 4; in particular

RD(A40,7 -> Mop/Sf — 3.

(5) RD 3 for the problem offinding the 28 bitangents on a smooth quartic C,
given an Aronhold set on C :

RD(ft4,2(28) -> U4,2(A)) 3.

In fact, the resolvent degrees of all of the above problems coincide.

Proof Equivalence of 1, 2, 3 and 4. This follows from Corollary 3.17 1 together
with Corollary 3.18.

Equivalence of 3 and 5. The equivalence of 3 and 5 follows from Theorem 5.6.

8.4. S»-varieties and Hilbert's Octic Conjecture. We now prove the equivalence

of Hilbert's Octic Conjecture to several problems about plane quartics and

genus 3 curves.

Theorem 8.4 (RD of iSg -varieties). The following are equivalent:

1. Hilbert's Octic Conjecture: RD( V 8 —> Vf 4.

2. RD(K —» V/5'x 4) for any faithful linear representation V of Sg.

3. RD(Sg) 4.
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4. RD(C8(P") -> Cg(F")/S%) 4, for n S 5; in particular

RD(.A4O,8 MO,S/58) 4.

5. RD 4 for the problem of finding the 28 bitangents on a smooth quartic
C, given an even 9 -characteristic:

RD(^4,2(28) H4,2(9ev)) 4,

6. RD 4 for the problem of finding an Aronhold set on a smooth plane

quartic C given an even 9 -characteristic:

RD(H4,2(A) ->H4,2(9ev)) 4,

7. RD 4 for the problem of finding the 28 bitangents on a quartic, given a

Cayley octad:

RD(ft4>2(28) -> Cay) 4.

In fact, the resolvent degrees of all of the above problems coincide.

Proof. The equivalence of (1), (2) and (3) follows from Corollary 347 1.

For the equivalence of (3), (4), and (5), observe that there exists a diagram
of VK(£7)+-equivariant maps

(8.3) A(h) POO C7(P2) -> n4,2{28)

Indeed, the sequence

Aft) P(f}) -> C7(P2) -> 7f4,2(28)

was constructed as (5.6) in the proof of Proposition 5.7. Because W(E-i)+ is

simple, all the varieties in (8.3) are faithful W(E1)+ -varieties. By Proposition
3.16 and Lemma 3.11, we conclude that all of these varieties are versai G -varieties
for any G c W{E-,)+, in particular for G Sg. The equivalence of (3), (4),
and (5) now follows from Proposition 3.7. The equivalence of (5) and (6) follows
from Lemma 2.11 and the fact that

H4,2(28) -* H4,2(0ev)

is a Galois closure of the cover

H4,2(A) H4,2(9ev).

Finally, the equivalence of (3) and (7) follows from the classical fact that there

is a birational map
774,2(28)/S8 ~ Cay

from the S& quotient of the moduli of smooth plane quartics with an ordering
of their 28 bitangents to the moduli of Cayley octads.
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8.5. W(E7) and bitangents to a planar quartic. In this section we prove the

equality of the resolvent degree of different W(E7)+ -varieties.

Theorem 8.5 (RD of W(E7) and bitangents to a planar quartic). The following
are equal:

1. RD(W/(£7)).

2. RD(fK(£7)+)

3. RD( V —» V/G) for G W(E7)+, W(E7) and V any faithful representation

of G.

4. RD(C7(P2) -> C1(V2)/W(E1)+).

5. RD(7f4,2(28) -* TUa)-

Proof As noted above, there is an isomorphism

W(E7) s W(E7)+ X Z/2Z;

Theorem 3.3 implies that

RD(ff(£7)) max{RD(Z/2Z),RD(ff(£'7)+)} RD(lT(£7)+).

In the proof of Theorem 8.4, we constructed a diagram (8.3) of varieties which

are versai for every G c W{E7)+, in particular for G W(E7)+. By Proposition
3.7, we conclude that

RD(A -> X/W(E7)+) RD(IT(£'7)+)

for all X in the diagram (8.3). The theorem now follows.
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Versal covers for subgroups of W(E-j)+ and covers related to bitangents
on plane quartics

A(fj7) - - P(f>7) - - - C7(P2) - -V 7^4,2(28)

W(D j) W(DS)

2:1

27:1 27:1

^3,3 —2- > ^4,2(1) n4,2(0ev)

W(D6)

W3,3(l)- --774,2(2) Sg\ n4,2(A) H4,2(S)

The diagram above shows the relation between many covers of classical interest

of the moduli space 77,4i2 of smooth plane quartics.
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