Le calcul de l'adaptation des réseaux trigonométriques

Autor(en): Ansermet, A.

Objekttyp: Article

Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und

Kulturtechnik = Revue technique suisse des mensurations et

améliorations foncières

Band (Jahr): 36 (1938)

Heft 6

PDF erstellt am: **11.09.2024**

Persistenter Link: https://doi.org/10.5169/seals-197306

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Zum Schluß seien noch 2 Beispiele angeführt:

1. Liftversuch vom 9. Febr. 1938 in der Eidg. Techn. Hochschule.

```
links
                                                               rechts
   = + 17.6°
                                  Ablesungen unten
                                                      + 1.0
                                                               + 1.0
B_0 =
         733 mm
                                              oben
                                                     -6.0
                                                              + 8.0
h = 14.0, Reduktion infolge Ableseparallaxe (Seite 115) 0.2; h ist also
Statoskophöhenstufe \Delta H = 1.065 (1.60 + 12.94) = 15.5 \text{ m} (nach
Formel 9)
                                         H = 1.38 \cdot 15.5 = 21.4 m
                                          Sollhöhe
                                                            21.35 m
```

2. Flugstreifen Thun-Belp, 2. Sept. 1937

 $t \text{ Boden} + 24^{\circ} H = 4600 \text{ m}$ nach Formel 9:

t Luft
$$0^{\circ}$$
 $B_0 = 441 \text{ mm}$ $\Delta H = 1.0 (1.60 + 21.52) = 23.12 \text{ m}$

Genaue Berechnung (7):

$$\underline{B_1} = \frac{B_0}{1.0002} - 1.184 = \underline{439.728 \, \mathrm{mm}}$$

$$\log B_0 : 2.64444$$

$$\log B_1 : \underline{2.64319}$$

$$\log 0.00125 : 7.09691 - 10$$

$$\log K' : 4.26584$$

$$\log (1 + \alpha t) : \underline{0.00000}$$

$$\Delta H = 23.055 \, \mathrm{m}$$

$$\Delta H = 23.12 \, \mathrm{m} \cdot \mathrm{sgn\"{e}bert}$$

 $\Delta H = 23.12$ m genähert

0.07 Abweichung

Nr. links rechts
$$h$$
 H
1 + 4.5 - 0.9 - 5.4 - 12.4 \pm 0.0 m
2 + 3.4 + 0.1 - 3.3 - 7.6 + 4.8 m
3 + 3.9 - 0.2 - 4.1 - 9.4 + 3.0 m

und so weiter. Infolge der Kleinheit der h werden die Ablesereduktionen vernachlässigt.

Le calcul de l'adaptation des réseaux trigonométriques.

Par A. Ansermet.

Lors du calcul d'un réseau topographique ou géodésique le cas se présente fréquemment où plusieurs sommets nouveaux coincident avec des points déjà connus; la comparaison des résultats révèle alors des discordances entre les anciennes coordonnées et les nouvelles. Il s'agit de procéder à une adaptation des résultats de façon à assigner si possible à chaque point des coordonnées bien déterminées. Ce problème dit de «l'adaptation des réseaux » présente des aspects forts divers; il est actuellement encore contreversé parce que sa nature est complexe. Le calcul s'effectuera très différemment s'il s'agit d'une triangulation géodésique ou d'une triangulation photographique, radiale ou spatiale. Les discordances entre les coordonnées des points communs peuvent être très faibles ou relativement fortes; l'allure de ces discordances peut être régulière ou très irrégulière. De nombreux facteurs entrent ici en jeu: la précision de mesures angulaires ou linéaires, le plan des calculs, la propagation des erreurs dans un réseau plus ou moins compliqué; ces divers éléments échappent à une analyse et à une évaluation quelque peu sûre.

Rappelons succintement les bases mathématiques du problème: si le nombre des points communs est égal à deux le calcul est parfaitement déterminé; il suffit de procéder à un changement d'axes de coordonnées (translation et rotation) avec modification d'échelle. Dans l'espace le calcul est analogue mais outre les deux points il faut connaître encore l'altitude d'un troisième point commun. L'adaptation s'effectue sans déformation du réseau car l'échelle n'est qu'un rapport de similitude.

La présente note est consacrée bien entendu au cas où le nombre de points communs dépasse ce qui est strictement indispensable sans qu'on puisse assimiler le calcul à une compensation; le réseau à adapter est déjà compensé.

Les solutions envisagées en général revêtent les deux formes suivantes:

- 1º Adaptation sans déformation en réduisant autant que possible les discordances entre les coordonnées.
- 2º Transformation géométrique du réseau; elimination complète des discordances.

La première solution présente l'inconvénient de laisser subsister des discordances; la seconde donne lieu à des déformations et à des calculs qui deviennent rapidement inextricables lorsque le nombre de points communs est quelque peu élevé; il faut alors fractionner le canevas en mailles plus ou moins serrées. Aucune solution n'est absolument exempte d'arbitraire malgré certains camouflages habiles dont il sera question plus loin.

Avant d'aborder le problème nous admettrons, comme dans les calculs de compensation, qu'une adaptation « provisoire » a permis de réduire les discordances; ces dernières pourront être assimilées à des différentielles dans les formules. Quelquefois les discordances sont d'emblée suffisamment faibles; une adaptation provisoire est superflue.

Nous avons distingué ci-dessus entre l'adaptation et la transformation bien que le premier de ces termes ait une portée générale; on évite ainsi une certaine confusion quant à la terminologie, confusion dont ne sont pas exempts certains mémoires.

Considérons d'abord deux réseaux dans un plan, le nombre de points communs étant égal à n. Pour chacun de ces points il faut distinguer un triple système de coordonnées rectangulaires:

les coordonnées primitives X, Y» provisoires X'Y'» adaptées $\overline{X}'\overline{Y}'$

Ces dernières valeurs sont donc obtenues après avoir fait subir au système X'Y' deux translations, une rotation et une modification d'échelle. Quant aux valeurs provisoires il ne faut pas les assimiler à celles en usage dans les calculs de compensation; ces coordonnées X'Y' définissent un réseau déjà compensé mais incomplètement adapté.

Les discordances $(X-\overline{X}')$ et $(Y-\overline{Y}')$ ne pouvant s'éliminer dès que n>2 on rend minimum les sommes de leurs carrés $[(X-\overline{X}')^2]$ et $[(Y-\overline{Y})'^2]$.

Les quatre inconnues du problème sont les translations $dX_{\mathcal{S}}$ et $dY_{\mathcal{S}}$, la rotation $d\omega$ et la variation d'échelle dm ce qui fait que pour chacun des n points nous aurons un système de 2 équations:

$$X - \overline{X}' = X - X' - dX_S - (X' - X_S') dm + (Y' - Y_S') d\omega$$

$$Y - \overline{Y}' = Y - Y' - dY_S - (Y' - Y_S') dm - (X' - X_S') d\omega$$

les coordonnées $X_{\mathcal{S}}'$ $Y_{\mathcal{S}}'$ étant celles du centre de gravité du réseau (X'Y')

$$X_{s'} = \frac{[X']}{n} \qquad Y_{s'} = \frac{[Y']}{n}$$

on sait que ce centre jouit de la propriété d'être indépendant, en position, des rotations et changements d'échelle. C'est à la fois un centre de similitude et de rotation.

Quant aux deux groupes de n équations aux discordances ils se prêtent à l'élimination préalable des inconnues dX_S et dY_S

$$dX_S = \frac{[X - X']}{n} \qquad dY_S = \frac{[Y - Y']}{n}$$

ce qui ramène à des équations « réduites ». Le nombre des équations normales est réduit à deux; on élimine d'abord dm:

$$dm = \frac{[(X' - X_{S'}) (X - X') + (Y' - Y_{S'}) (Y - Y')]}{[(X' - X_{S'})^2 + (Y' - Y_{S'})^2]}$$

pour arriver à l'équation finale:

$$[(X' - X_S')^2 + (Y' - Y_S')^2] \ d\omega + [(X' - X_S') \ (Y - Y') - (Y' - Y_S') \ (X - X')] = 0$$

où $d\omega$ est obtenu en radians.

Tous les éléments de ces formules à l'exception des discordances peuvent être pris graphiquement sur le canevas si l'échelle de ce dernier est suffisante. En fait le calcul est rapide. C'est la solution bien connue S. Finsterwalder-v. Gruber qui est résumée ci-dessus. (Voir Ferienkurs in Photogrammétrie, p. 37–45, par O. v. Gruber.) L'adaptation d'un réseau spatial se calcule par des formules analogues.

(Fortsetzung folgt.)

Ludwig Schwyzer +,

Grundbuchgeometer-Gewerbeschullehrer in Zürich.

Eine stattliche Anzahl Berufskollegen der Sektion Zürich-Schaffhausen des S.G.V. trifft sich jeden Freitag nach Feierabend in geselliger Zusammenkunft in Zürich. Seit vielen Jahren konnte dieser Kreis von Freunden in ungetrübter, heiterer Stimmung die Berufs-, Standes- und