Besondere Formeln für das Maschinenrechnen : einfacher Vorwärts- und Rückwärtseinschnitt, Schnittpunkt zweier Geraden

Autor(en): Bertschmann, S.

Objekttyp: Article

Zeitschrift: Schweizerische Zeitschrift für Vermessungswesen und

Kulturtechnik = Revue technique suisse des mensurations et

améliorations foncières

Band (Jahr): 38 (1940)

Heft 4

PDF erstellt am: **11.09.2024**

Persistenter Link: https://doi.org/10.5169/seals-198514

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

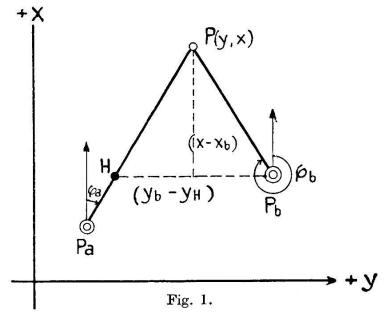
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

Die gesetzlichen Maßnahmen für die Erhaltung und Nachführung der Triangulation I.-IV. Ordnung und der Nivellementsresultate sind bereits in der Verordnung von 1931 enthalten; seither sind durch die Weisungen des Eidg. Justiz- und Polizeidepartementes vom 14. März 1932 weitere gesetzliche Grundlagen geschaffen worden, um das erstellte Werk zu sichern und zu erhalten. Dank der verständnisvollen Zusammenarbeit des Kantons-Oberförsters Dr. M. Oechslin und der eidg. Behörden werden diese Weisungen streng eingehalten. Es wird aber an dieser Stelle überdies der Wunsch an die ganze urnerische Bevölkerung und an alle Besucher der Urner Alpen ausgesprochen, Gefährdung und Zerstörung trigonometrischer und nivellitischer Punkte dem Oberforstamt in Altdorf oder der eidg. Landestopographie sofort zu melden, um die Erhaltung dieses neuen Werkes mitsichern zu helfen. H. Zölly.


Besondere Formeln für das Maschinenrechnen.

Einfacher Vorwärts- und Rückwärtseinschnitt, Schnittpunkt zweier Geraden.

Von S. Bertschmann.

I. Berechnung der rechtwinkligen Koordinaten eines durch einfaches Einschneiden bestimmten Punktes.

Auf den Punkten P_a , P_b , deren Koordinaten y_a x_a , y_b x_b gegeben sind, seien zur Bestimmung der Koordinaten y x des Punktes P die zur Abszissenachse der Koordinaten orientierten Richtungen φ_a , φ_b berechnet. Unter Einführung eines Hilfspunktes H auf der Geraden P_a P mit $x_H = x_b$ ergibt sich alsdann folgendes:

$$y_{H} - y_{a} = \operatorname{tg} \varphi_{a} (x_{H} - x_{a}) = \operatorname{tg} \varphi_{a} (x_{b} - x_{a})$$
(1)

$$y - y_{H} = \operatorname{tg} \varphi_{a} (x - x_{H}) = \operatorname{tg} \varphi_{a} (x - x_{b})$$

$$y_{b} - y = \operatorname{tg} \varphi_{b} (x_{b} - x) = -\operatorname{tg} \varphi_{b} (x - x_{b})$$
addieren!

$$y_{b} - y_{H} = (\operatorname{tg} \varphi_{a} - \operatorname{tg} \varphi_{b}) (x - x_{b})$$
(2)

$$\operatorname{tg} \varphi_{a} = \frac{y - y_{a}}{x - x_{a}} \operatorname{tg} \varphi_{b} = \frac{y - y_{b}}{x - x_{b}}$$

$$y - y_{b} = -\operatorname{tg} \varphi_{b} (x_{b} - x)$$
(3)

Die Formeln 1-3 werden nach folgender Anordnung auf einer Einzel-Rechenmaschine ausgewertet:

$egin{array}{c} ext{Produktenreihe} \ ext{(Resultatwerk)} \ ext{\it PR} \end{array}$	Einstellreihe ER	Kurbelreihe (Zählwerk) <i>KR</i>	Bemerkungen
^у а (у _Н −у _а) ^ү Ун	tg $arphi_a$	$\begin{pmatrix} x_a \\ (x_b-x_a) \\ x_b \end{pmatrix}$	y_a in PR , x_a in KR , tg φ_a in ER einstellen, Kurbel drehen, bis in KR x_b erscheint. Formel (1) ist damit ausgewertet, in PR haben wir y_H .
$egin{pmatrix} (y_b-y_H) \ y_b \end{pmatrix}$	$\operatorname{tg} \varphi_a - \operatorname{tg} \varphi_b$	(x-x _b)	$(\operatorname{tg} \varphi_a - \operatorname{tg} \varphi_b)$ in ER einstellen, Kurbel drehen bis in PR y_b erscheint. Formel (2) ist damit ausgewertet, in KR haben wir das gesuchte x .
(y−y _b) ** ** ** ** ** ** ** ** **	− tg φ_b	(x_b-x) x_b	— $\operatorname{tg} \varphi_b$ in ER einstellen, Kurbel drehen bis in $KR x_b$ erscheint. Formel (3) ist damit ausgewertet, in PR haben wir das gesuchte y .

Für positive Werte von $\operatorname{tg} \varphi_a$, $\operatorname{tg} \varphi_a - \operatorname{tg} \varphi_b$, $-\operatorname{tg} \varphi_b$ wird die Maschine auf Zurechnung (Multiplikation), bei negativen Werten aber auf Abrechnung (Division) geschaltet. Im allgemeinen wird man in ein und demselben Quadranten zu rechnen haben. Für den Rechnungsgang können alsdann die Vorzeichen der Koordinatenwerte unberücksichtigt bleiben, sie sind dem Schlußergebnis entsprechend vorzusetzen. Erstreckt sich der Rechnungsgang über verschiedene Quadranten, so hat man bei negativen Koordinatenwerten mit den dekadischen Ergänzungen zu

operieren. Das erschwert die Arbeit. Werden die Koordinatenwerte xy vertauscht, also x in PR und y in KR eingestellt, so sind an Stelle der Tangenswerte für die Richtungswinkel die Kotangenswerte zu setzen.

7	•	
KI	121	oiel
	LUL	,,,,,

$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	2906
	6179

Für den Rechnungsgang ergeben sich folgende Zahlenbilder, wobei nur x und y der Maschine zu entnehmen und zu notieren sind:

Umschalt- hebel auf	PR	ER	$KR_{_{\odot}}$
(\overline{D})	(—) 43755.36000000 42079.36579410	0000.63273	(+) 17698.950 ¥ 20347.780
(\overline{D})	39668.14187151	0003.06179	21135.301
(\overline{D})	41581.07763177	0002.42906	20347.780

II. Berechnung der rechtwinkligen Koordinaten eines durch einfaches Rückwärtseinschneiden bestimmten Punktes.

Zur Bestimmung der Koordinaten y x eines Punktes P seien auf diesem Punkte die Richtungen nach den mit ihren Koordinaten y_a x_a , y_b x_b , y_m x_m gegebenen Punkte P_a , P_b , P_m beobachtet und aus den daraus hergeleiteten Winkeln α und β die orientierten Richtungen φ_a^Q , φ_b^Q , φ_m^Q , φ_a , φ_b abgeleitet, z. T. erst im Verlaufe der Rechnung. Wir haben

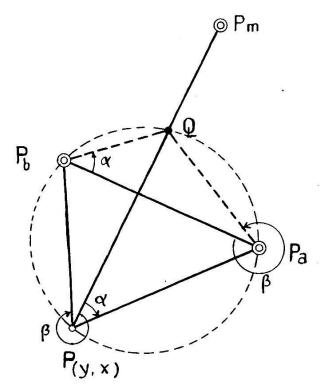


Fig. 2.

Damit berechnen wir nach dem vorgeschilderten Verfahren des einfachen Vorwärtseinschnittes die Koordinaten des Collins'schen Hilfspunktes Q. Für den zu bestimmenden Punkt P erhalten wir alsdann

$$ext{tg } arphi_m^Q = rac{y_Q - y_m}{x_Q - x_m}$$
 $arphi_a = arphi_m^Q + lpha$ $arphi_b = arphi_m^Q + eta$

womit die Koordinaten yx des Punktes P durch einen zweiten Vorwärtseinschnitt berechnet werden.

Wir kennen bereits die Technik der "Rechenmaschinengeometrie", so daß wir ohne Formelentwicklung die Anordnung des Rechnungsganges hinschreiben können.

PR	ER	KR	Bemerkungen
y_a y_{H_1} \downarrow y_b y_Q y_{H_2} \downarrow y_b	$egin{array}{c} egin{array}{c} egin{array}$	x_a \downarrow x_b x_b \downarrow x_b \downarrow x_b \downarrow x_Q \downarrow	$egin{aligned} ext{tg } arphi_m^Q, & ext{tg } arphi_b & ext{und} \ ext{tg } arphi_m^Q - & ext{tg } arphi_b \ & ext{berechnen} \end{aligned}$
у _а у у _ь	$\deg arphi_a$ $ ext{tg } arphi_b$	x_a \downarrow x \downarrow x_b	Probe

Beispiel

y_a y_b	_51729.30 _50947.34	$egin{array}{c} x_a \ x_b \end{array}$	-38394.39 -36870.44	β	27°35′15″ ₃ 301 39 04. ₃		— 1.10333
y_m	-51471.79	x_m	—37847.01	$arphi_a^b$	27 09 46.7		132011'15.
y_Q	-50936.51	x_Q	-38332.16	$arphi_a^Q$	85030'42".4	φ_{a}	159 46 30.4
y_Q-y_m	+ 535.28	x_Q - x_m	- 485.15	$arphi_b^Q$	179 34 31.4	φ_b	73 50 19.4
y	-52161.16	x	-37222.20	$\operatorname{tg} arphi_b^Q$	- 0.00741	$\operatorname{tg} \varphi_b$	+ 3.45073
		$\operatorname{tg} \varphi_a$	- 0.36842	$\operatorname{tg} arphi_a^Q$	+12.73969	$\operatorname{tg} arphi_m^Q$	— 1.10333
	(-52161.16)		(-37222.20)	1	+12.74710	Δ	4.55406

Zahlenbilder in der Rechenmaschine

U auf	PR	ER	KR
(M) (M) (M) (M) (D) (D)	$() 51729.30000000$ 32314.64942450 \downarrow 50947.34043650 50936.50909130 \downarrow 45892.50803570 \downarrow 50947.34158142 52161.16346476	0012.73969 0012.74710 0000.00741 0003.45073 0004.55406 0003.45073	$(-) 38394.390$ $\downarrow 36870.440$ 38332.160 $\downarrow 36870.440$ $\downarrow 38332.160$ 37222.198 $ $
Probe	51729.30000000 52161.15897664 50947.33709330	0000.36842 0003.45073	38394.390 ↓ 37222.198 ↓ 36870.440

Es sind nur $y_Q \, x_Q$ und $y \, x$ der Maschine zu entnehmen und aufzuschreiben.

III. Berechnung der rechtwinkligen Koordinaten des Durchschnittspunktes zweier gerader Linien.

Gegeben sind die beiden Geraden P_a-P_b und P_c-P_d durch die Koordinaten der sie bestimmenden Punkte. Es ist

$$\frac{y_b - y_a}{x_b - x_a} = \lambda \qquad \frac{y_d - y_c}{x_d - x_c} = \mu$$

Der Rechnungsgang ist alsdann folgender:

PR	ER	KR	Bemerkungen
y_{a}		x_a	
y_H	λ	$\overset{ullet}{x_c}$	
y_c	$\lambda - \mu$	x_s	9
y_s	$-\mu$	$\stackrel{ ightarrow}{x_c}$	
Уь	`	x_b	
y_s	λ	$\overset{ullet}{x_s}$	Probe
Уd	μ	$\overset{ullet}{x_d}$	

Beispiel

y_{α} Δy	+250.86 22.66	x_a	$+\ 1657.00 \\ +\ 56.74$	$\lambda = -0.3993$
Δy	22.00	1	+ 50.74	$\lambda = -0.3993$
y_b	+ 228.20	x_b	+ 1713.74)
y_c	$+\ 236.92$	x_c	$+\ 1656.74$	$\lambda - \mu = -2.8986$
Δy	+ 33.44	Δx	+ 13.38	$\mu = +2.4993$
y_d	+270.36	Уd	+ 1670.12	
y_s	+249.03	x_s	+ 1661.59	

Zahlenbilder in der Rechenmaschine

U auf	PR	ER	KR
(D) (D) (D)	$(+)\ 000250.8600000$ 000250.9638180 \downarrow 000236.9201010 000249.0292095	00000.3993 00002.8986 00002.4993	(+) 01657.000 01656.740 01661.585 01656.740
(D) (M)	000228.2000000 000249.0254915 000270.3570170	00000.3993 00002.4993	$01713.740 \\ \downarrow \\ 01661.585 \\ \downarrow \\ 01670.120$

Literatur: Koll-Eggert, Geodätische Rechnungen. A. Morpurgo, Die Fluchtmethode.

Schnittpunkt zweier Geraden.

Unter obigem Titel hat in der am 9. Januar 1940 erschienenen Ausgabe der "Zeitschrift für Vermessungswesen und Kulturtechnik" der Stadtgeometer von Zürich, Herr S. Bertschmann, ein durch die Fachliteratur mannigfaltig beleuchtetes Problem unter dem Gesichtswinkel der direkten Koordinatenberechnung des Schnittpunktes zweier Geraden aus Flächenproportionen theoretisch und praktisch neuartig behandelt.

Das Studium der angeführten neuen Berechnungsart gab dem Unterzeichneten Veranlassung, nach einem Formular der Schnittpunktsberechnung zu suchen, das die direkte Ermittlung der Koordinatenwerte des Schnittpunktes nach dem Prinzip der Flächenproportionen ermöglichen soll.

Nachdem die Flächenberechnung aus Koordinaten mittelst automatischer Differenzenbildung durch die Rechenmaschine (Artikel von Herrn Ing. H. J. Vosseler, Jahrgang 1936, S. 156), insbesondere bei der Verwendung elektrischer Rechenmaschinen, eine bedeutend raschere Flächenermittlung ermöglicht, zeigt der Formularentwurf (Fig. 1), wie auch die Koordinatenwerte eines Schnittpunktes direkt ohne jegliche