Zeitschrift: Horizons : le magazine suisse de la recherche scientifique

Herausgeber: Fonds National Suisse de la Recherche Scientifique

Band: 28 (2016)

Heft: 110

Artikel: Les promesses des technologies quantiques

Autor: Saraga, Daniel

DOI: https://doi.org/10.5169/seals-772063

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les promesses des technologies quantiques

Basées sur les propriétés étonnantes du monde microscopique, de nouvelles approches développent des systèmes de cryptage inviolables et rêvent d'ordinateurs surpuissants.

Texte: Daniel Saraga Infographie: onlab, Thibaud Tissot

Gravitation

Basés sur la nature ondulatoire de la matière, des interféromètres atomiques peuvent détecter d'infimes changements dans le champ gravitationnel. Applications: gyroscopes pour navigation inertielle ou relevés géologiques.

Horloge

Des montres recourant à des qubits intriqués sont déjà plus précises que les horloges atomiques classiques utilisées dans les satellites GPS ou définissant la durée officielle d'une seconde.

Microscopie

Un dispositif d'imagerie utilisant des photons intriqués pourrait améliorer la microscopie en faible luminosité.

Capteur magnétique

Un défaut du cristal de diamant agit comme un atome artificiel sensible à des champs magnétiques extrêmement faibles, utile pour l'imagerie médicale ou la prospection pétrolière. Ce capteur pourrait remplacer les SQID, une technologie quantique ne fonctionnant qu'à –170°C.

Chiffrement

Le cryptage quantique a été sundes distances de plus de 100 kilomètres. La Chine a lancé un satellite en août 2016 afin de tester le chiffrement quantique via satellite.

Communication Sécurise

Trois nouvelles technologies

√W Détection quantique

La nature ondulatoire de la matière est très sensible à l'environnement. Mesurer la rapidité avec laquelle elle disparaît (la décohérence) permet de quantifier des signaux extrêmement faibles.

(((•))) Communication quantique

Des photons (des particules de lumière) intriqués peuvent être utilisés pour le cryptage. Un émetteur et un récepteur créent et partagent instantanément une succession aléatoire de bits (011011101011...) utilisables comme clé pour chiffrer un message. Ce dernier est transmis de manière conventionnelle, mais seul le récepteur, qui détient l'unique copie de la clé, peut le décoder.

Ordinateurs quantiques

L'information stockée sous forme de bits quantiques (qubit) est très fragile. L'intrication et le parallélisme quantiques permettent en principe de résoudre plus rapidement certains problèmes que les ordinateurs classiques.

Internet quantique

La transmission longue distance de qubits pourrait sous-tendre un réseau Internet sécurisé. Compenser les pertes de signal exigerait d'inventer des répéteurs quantiques, et de meilleurs détecteurs et sources de photons uniques seraient nécessaires pour augmenter la bande passante.

Une Suisse quantique

Doté d'un budget de 115 millions de francs pour la période 2011-2018, le PRN «QSIT – Science et technologie quantiques» rassemble cinq universités et IBM Zurich.

L'Université de Genève et sa start-up ID Quantique sont des leaders mondiaux en cryptographie quantique.

L'Université de Bâle est pionnière en matière d'ordinateurs quantiques à base de semi-conducteurs et de détection à l'échelle atomique.

Des chercheurs de l'ETH Zurich développent des ordinateurs quantiques, corrigent des failles en cryptographie et sont des experts de la technologie de D-Wave.

Une machine universelle
Un véritable calculateur
quantique pourrait en plus résoudre des problèmes algébriques
utiles pour décoder les systèmes de
chiffrement actuels) et rechercher
les bases de données. Il exigerait
des millions de qubits adressables individuellement.

PONTO

Simulateurs quantiques

Un ordinateur quantique basique pourra simuler parfaitement d'autres systèmes moléculaires en chimie et science des matériaux, une tâche impossible actuellement. Des «quantum annealers» pourraient résoudre des problèmes d'optimisation (comme trouver le meilleur itinéraire ou horaire).

ment bien isolés de leur environnement

Information quantique
De l'information digitale peut être stockée dans
des bits quantiques (qubits), définis par exemple
par le sens de rotation d'un électron ou les niveaux

De très petits objets tels qu'électrons, atomes ou

photons affichent un comportement quantique dont

on peut tirer parti, à condition qu'ils restent extrême-

Superposition

d'énergie d'un atome.

Des étranges

propriétés

Ondes et particules

Un qubit peut représenter à la fois un 0 et un 1 en même temps, avec des rapports arbitraires.

Parallélisme

Plusieurs qubits peuvent être manipulés en même

Intricatio

Des qubits intriqués partagent un lien intrinsèque: mesurer l'un affecte automatiquement l'autre, peu importe leur éloignement.

Premiers pas

Les meilleurs appareils de laboratoire peuvent contrôler une douzaine de qubits seulement. L'entreprise D-Wave loue des machines avec 1152 qubits, mais sans avoir pu démontrer son utilité.