Über die Fehler der Scheitelspannungs-Messung vermittelst röhrengleichgerichtetem Kondensatorstrom

Autor(en): König, Hans

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 2 (1929)

Heft VI

PDF erstellt am: 13.09.2024

Persistenter Link: https://doi.org/10.5169/seals-109453

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Über die Fehler der Scheitelspannungs-Messung vermittelst röhrengleichgerichtetem Kondensatorstrom¹)

von Hans König.

(1. X 1929.)

Zusammenfassung: Den Werten für die Scheitelspannung bei Messung derselben mit röhrengleichgerichtetem Kondensatorstrom haften gewisse, oft beträchtliche Fehler an. Es wird gezeigt, dass der von dem Gleichrichter herrührende Anteil an den Fehlern soweit eliminiert werden kann, dass das Verfahren zu genauester Messung an mässig verzerrten, sowie technisch genauer Messung an stark verzerrten Spannungen über 100 V verwendbar ist. Ferner wird für technische Genauigkeit eine Abart des Verfahrens angegeben, bei der die Frequenzmessung umgangen wird.

Einleitung und Problemstellung.

Bei ihren Untersuchungen über die Kugelfunkenstrecke bedienten sich CHUBB und FORTESCUE (1) einer Vergleichsmethode, die in folgendem besteht: Sorgt man dafür, dass der in Fig. 1a

Entwicklung des CH-Verfahrens.

durch C fliessende Strom in der einen Richtung durch das Galvanometer G, in der andern Richtung mit Hilfe eines mit der auf ihren Scheitelwert hin zu untersuchenden Wechselspannung esynchron laufenden Kontaktes SK an G vorbei geleitet wird, wobei die Umlenkung im Augenblick des Nulldurchganges des Stromes bzw. des Scheiteldurchganges der Spannung zu erfolgen

¹) Dissertation Bern 1929 (für den Druck leicht gekürzte Fassung). Siehe auch kurze vorläufige Mitteilung H. P. A. II, 152, 1929.

23a

hat, so entspricht der Ausschlag an G dem pulsierenden Gleichstrom

$$I = v \cdot \int_{(e=S_{-})}^{(e=S_{+})} C \cdot \frac{de}{dt} dt = v \cdot C (S_{+} - S_{-})$$

 $(\nu = \text{Frequenz})$. In der Folge soll stets die praktisch gerechtfertigte Annahme getroffen werden, dass die Spannungswellen symmetrisch, d. h. von geradzahligen Harmonischen frei seien. Die negative Halbwelle ist dann der positiven um $\tau/_2$ verschobenen und an der Achse gespiegelten Halbwelle gleich. Dann gibt es nur einen Scheitelwert $S_+ = -S_- = S$, also

$$S = \frac{I}{2\nu C}.$$
 (1)

Das Elegante an diesem Verfahren ist die Umwandlung der Scheitelspannungsmessung in eine Gleichstrommessung.

Von WHITEHEAD und GORTON (2) wurde der Synchronkontakt durch zwei parallel geschaltete, entgegengesetzt arbeitende Quecksilberdampfgleichrichter und letztere später von CHUBB (3) durch Elektronenröhren (R_1 und R_2 in Fig. 1b) ersetzt. Schliesslich erhielt das Verfahren durch die Firma E. Haefely (HESS, WELTER) (4) (4b) eine den Bedürfnissen der Prüffeldpraxis angepasste Form. Neben besonderer Durchbildung des Messkondensators (4a) und der Wechselstromheizung weist die Schaltung eine Hilfsspannung ΔE (von einigen Volt) auf (Fig. 1b), welche einen Nullstrom im Kreise $R_1R_2 \Delta E G$ (daran erkenntlich, dass auch bei e = 0 G einen Ausschlag zeigt) unterdrückt und damit die Arbeitsgebiete der beiden Röhren vollständig trennt. In dieser Form wollen wir das Messverfahren in der Folge als Chubb-Haefely-Verfahren, abgekürzt CH-Verfahren, bezeichnen.

Es ist klar, dass der Ersatz des mechanischen Kommutators durch die elektrischen Ventile die Handlichkeit des Verfahrens ausserordentlich erhöht, zugleich aber die Einführung einer komplizierten Fehlerquelle bedeutet. Ihrem Studium und ihrer Behebung bei technischen Frequenzen bis zu Spannungen von 150 kV ist die vorliegende Arbeit gewidmet.

In den Arbeiten (3) (5), welche sich mit derselben Frage befassen, ist die Genauigkeit der Prüfung durch die Wahl der Kugelfunkenstrecke als Normalmethode auf bestenfalls $2^{0}/_{00}$ beschränkt; die Abweichungen zwischen den Resultaten der beiden Methoden sind wenig grösser als diese Fehlergrenze. Die praktische Eignung des Verfahrens ist jedenfalls damit sichergestellt. Interessant ist der Kunstgriff, mit welchem CHUBB und FORTESCUE (1) den Einfluss der Schaltkapazität K_0 des Gleichrichters (Erklärung dieser Grösse siehe I. Teil) ausschalteten. Schutzring des Messkondensators, Hülle von Messleitung und Gleichrichter waren leitend verbunden und über einen Widerstand (R') an Erde gelegt, wobei (C' = Kapazität des Hochpols gegen den Schutzring, R = (konstanter) Widerstand des Gleichrichters) R'C' = RC gewählt wurde. Die Ladeströme durch K_0 waren demnach stets gleich Null.

Die Patentschrift (4b) zieht Fehler infolge ΔE und K_0 in Erwägung und enthält einige zum Teil unrichtige Vorschläge zur teilweisen Behebung derselben.¹)

Es fehlt, wie aus obigem hervorgeht, keineswegs an Versuchen, die Fehler des Gleichrichters zu bekämpfen. Da mir jedoch keiner der Vorschläge den Kern des Problems zu treffen scheint, wird hier die Frage erneut aufgeworfen, die (angenäherte) Theorie der Fehler der Gleichrichtung aufgestellt und mit Hilfe einer sehr genauen Prüfmethode auf ihre Richtigkeit hin untersucht.

Eine Zusammenstellung der möglichen Fehlerquellen findet sich am Anfang des II. Teils.

Es sei noch erwähnt, dass das CH-Verfahren bisher nur bei Hochspannung Verwendung fand. Ferner wird in allen Arbeiten dessen Unbrauchbarkeit bei Kurven mit Zwischenscheiteln (abgekürzt ZS) betont und auf die Notwendigkeit einer gelegentlichen Nachkontrolle der Kurvenform mit dem Oszillographen hingewiesen. Es wird sich herausstellen, dass beide Beschränkungen weitgehend aufgehoben werden können.

I. Teil. Theorie des CH-Verfahrens.

Wir betrachten die Theorie zunächst nur soweit sie sich auf die idealisierte Schaltung von Fig. 2 bezieht. Die dort gezeichneten Ventile sind widerstandsfrei gedacht; dem endlichen und konstanten Widerstand in der Durchlassrichtung sei durch RRechnung getragen. Die mit den Polen H und F nicht metallisch

¹) Dem Verfasser kam nachträglich eine Arbeit von WHITEHEAD und JSSHIKI (11) zu Gesicht, in welcher dasselbe Ziel verfolgt wird. Hier wird bereits ΔE zur Unterdrückung des Nullstromes eingeführt. Die in vorliegender Arbeit dargelegte Verwendbarkeit von ΔE und K_0 zur weitgehenden Beseitigung der Fehler scheint von den Autoren überschen worden zu sein. Im wesentlichen wird nur der oben erwähnte Kunstgriff herangezogen; die Fehler infolge ΔE werden dadurch nicht beseitigt. (Hochspannung. Prüfmethode: Ersatz des Röhrengleichrichters durch einen mechanischen. Erreichte Übereinstimmung: auf 2% of mit der 2S nicht gelöst.)

verbundenen Teile der Apparatur, das sind die Messleitung M, die Heizung der einen und die Anodenleitung der andern Röhre (in der Figur durch eine gestrichelte Linie umschlossen), weisen eine Schaltkapazität K_0 gegen die Umgebung auf, die, wenn man alle Schutzhüllen erdet, zum Gleichrichter parallel liegt. Durch

Fig. 2. Idealisierte erweiterte CH-Schaltung.

Zuschalten von ΔK werde sie auf K ($= K_0 + \Delta K$) erhöht. Analytisch wäre unser Problem dasjenige eines Systems von gewöhnlichen linearen Differentialgleichungen 1. Ordnung mit stückweise konstanten Koeffizienten. Von diesem Umstand werden wir Gebrauch machen, zunächst aber anschaulich graphisch vorgehen.

1. Spezialfall: R = 0, E = 0, K beliebig.

a) Keine ZS. Dieser Fall wurde in der Einleitung besprochen.

b) Fig. 3a. Die Spannungskurve weise ZS, die Stromkurve dementsprechend mehr als zwei Nulldurchgänge auf. Hier zeigt

Fig. 3a. Spezialfall 1b.

sich nun, wie CHUBB (3) schon bemerkte, der prinzipielle Unterschied zwischen mechanischer und elektrischer Gleichrichtung. Der mechanischen Kontaktgebung von t_1 bis t_2 entspricht eine Summierung der Flächen, die die Stromkurve mit der Achse einschliesst, unter Berücksichtigung des Vorzeichens, d. h. Ausschlag Aproportional $F = F_1 - F_2 + F_3$. Die Röhren aber schicken alle auf einer Seite der Achse liegenden Impulse durch das Galvanometer, d. h. $A^0 \sim F_1 + F_3 + F_5 = F + 2F_2$, weil nach Voraussetzung (Symmetrie) $F_5 = F_2$ ist. Die Summation erstreckt sich also auf alle im gleichen Sinn durchlaufenen Teile der Spannungskurve. Dieser Fehlerquelle stand man, wie eingangs erwähnt wurde, bisher machtlos gegenüber. Richtige Ausnutzung der Hilfsspannung E schafft leicht Abhilfe, wie die Fälle 2) und 3) zeigen.

2. Spezialfall:
$$R = 0, K = 0, E \pm 0.$$

Wir wollen die dem Messtrom proportionale Grösse A es kann z. B. die Ablesung an einem Galvanometer oder an einem Widerstandskasten sein — in Funktion von E in der graphischen Darstellung als U-Kurve (Unterdrückungskurve) bezeichnen, entsprechend der Verringerung von A bei Vergrösserung von E.

Fig. 4. Spezialfall 2a, keine ZS.

a) Fig. 4. Bezeichnungen wie Fig. 2. Keine ZS, Kurvenform im übrigen beliebig. Wir schalten beispielsweise im Augenblick $t_0: e = 0$ ein. Bis t_1 ist i = 0, springt dann, da das rechte Ventil jetzt arbeitet, auf den normalen Wert

$$i_1 = C \cdot \left| \frac{de}{dt} \right|_1.$$

In der Sperrzeit t_2 bis t_3 verläuft die e_K -Kurve kongruent zur *e*-Kurve. Von t_3 bis t_4 arbeitet das linke Ventil, d. h. ein der Spannungsdifferenz 2*S*-*E* entsprechender Stromstoss durchfliesst das Galvanometer. Der Zustand zur Zeit $t_6 = t_1 + \tau$ ist gleich demjenigen zur Zeit t_1 . Der stationäre Zustand ist in t_1 demnach schon erreicht.

Die Figur stützt sich auf die Voraussetzung $0 \le E \le S$. Für $S \le E \le 2S$ würde bei gleichen Anfangsbedingungen der stationäre Zustand erst in der dritten Viertelsperiode erreicht. Das Resultat, wonach nur 2S-E zur Messung gelangt, ist aber dasselbe. Für $E \ge 2S$ ist offenbar A = 0.

Wir halten fest: Für K = 0, R = 0 ist die U-Kurve, unabhängig von der Kurvenform, eine Gerade:

$$A = A_0 \left(1 - \frac{E}{2S} \right). \tag{2}$$

b) Kurven mit ZS. Wie ein Blick auf Fig. 3b zeigt, wird jetzt von jedem einzelnen in *einem* Sinn (fallend oder steigend) durch-

Fig. 5. U-Kurven bei $\Delta S \pm 0$.

laufenen Spannungsintervall der Anteil E weggelassen, weshalb die Gleichung der U-Kurve die Form annimmt (vergl. Fig. 5):

$$A = {}_{\mathbf{1}}A_{\mathbf{0}} - A_{\mathbf{0}} \cdot \frac{3E}{2S}.$$

Dies solange E kleiner als die Zwischenscheitelweite ΔS . Ist aber $E \geq \Delta S$, so tritt letztere ausser Tätigkeit, und es gilt von

$$A' = {}_1A_0 - A_0 \frac{3\varDelta S}{2S}$$

an Formel 2), wonach

$$A = A' - A_0 \frac{E - \Delta S}{2 S}.$$

Ist allgemein n die Zahl der ZS-Paare pro Halbperiode, bzw. 2n + 1 die Zahl der für E = 0 pro Periode durch das Galvanometer gehenden Stromstösse, so ist die U-Kurve stückweise dargestellt durch

$$A = {}_{n}A_{0} - A_{0} \frac{(2n+1)E}{2S} \qquad n = \dots 3, 2, 1, 0.$$

Nun darf mit Rücksicht auf die Röhren, welche die volle Spannung E auszuhalten haben, letztere nicht über ein gewisses Mass gesteigert werden. Bei Hochspannung mit ZS-Weiten von einigen 1000 V wird das Mittel also unwirksam. Betrachten wir nun den Einfluss von K.

3. Specialfall: $R = 0, K \neq 0, E \neq 0$.

a) Keine ZS. Die Potentialveränderungen von M (Fig. 2) folgen nunmehr denjenigen von H nicht mehr kongruent, sondern nach dem Gesetz der kapazitiven Spannungsteilung. Der Verlust an Gesamtspannung steigt also von E auf $E \cdot \frac{C+K}{C}$, demnach wird

$$A = A_{0} \left[1 - \frac{E}{2S} \left(1 + \frac{K}{C} \right) \right].$$
(3)

Anders dargestellt: Es fliesst einfach der zur Ladung von Kauf E nötige Teil der Gesamtladung am Messinstrument vorbei:

$$2 SC\left(1 - \frac{E}{2S}\right) - E K = 2 SC\left[1 - \frac{E}{2S}\left(1 + \frac{K}{C}\right)\right].$$

Formel (3) sagt uns in Ergänzung zu (2): Die U-Kurven (3) bilden ein Geradenbüschel mit Scheitel ($E = 0, A = A_0$). Die bei festem C zu K gehörige U-Kurve U_K trifft die E-Achse in

$$E_{K} = \frac{2S}{1 + \frac{K}{c}} = \frac{E_{0}}{1 + \frac{K}{c}}.$$
 (4)

Man erkennt in der experimentellen sBestimmung dieses Schnittpunktes ohne weiteres die Möglichkeit, die Scheitelspannung ohne Kenntnis der absoluten Bedeutung von A bzw. A_0 zu bestimmen. Wir wollen in Zukunft diese Art der Handhabung des CH-Verfahrens das CH-Verfahren 2. Art nennen, im Gegensatz zum CH-Verfahren 1. Art, bei welchem in Verbindung mit einer Frequenzmessung aus dem zu (E = 0, R = 0, K = 0) gehörigen Messwert die Scheitelspannung nach Formel (1) berechnet wird. (Formeln für den praktischen Gebrauch sind im IV. Teil zusammengestellt.)

b) Kurven mit ZS, Fig. 5. Das leicht einzusehende Resultat lautet speziell für n = 1 und eine ZS-Weite ΔS :

$$A = {}_{\mathbf{1}}A_{\mathbf{0}} - A_{\mathbf{0}} \frac{3E}{2S} \left(1 + \frac{K}{C} \right) \text{für } 0 < E < E_{K}' : {}_{\mathbf{1}}A_{\mathbf{0}} > A > A',$$

$$A = A_{\mathbf{0}} \left[1 - \frac{E}{2S} \left(1 + \frac{K}{C} \right) \right] \text{für } E_{K}' < E < \overline{E_{K}} : A' > A > 0.$$
⁽⁵⁾

Die Schnittpunkte entsprechender Gerader liegen auf der Achsenparallelen A = A' und haben die Abszissen

$$E'_{K} = \frac{\Delta S}{1 + \frac{K}{C}}.$$
(5a)

Ein vorläufiger Vergleich der Fig. 5 mit den Fig. 11 und 16 zeigt, dass obige den Röhrenwiderstand vernachlässigende Ausführungen schon weitgehend den Tatsachen gerecht werden und ermutigt zur Fortsetzung unserer Betrachtungen.

4. Allgemeiner Fall: $R \neq 0$, $K \neq 0$.

a) Zunächst sei E = 0. Hier beschränken wir uns zum ersten Male auf *sinus*förmige Wechselspannung, dargestellt durch

$$\mathfrak{E} = |\mathfrak{E}| \cdot e^{j \, \omega t}, \quad \omega = 2 \, \pi \, r, \quad j = \sqrt{-1}.$$

Da der Gleichrichter dem Strom den konstanten Widerstand Rentgegensetzt, ist die symbolische Rechnungsweise zulässig. Man findet leicht für den Strom \mathfrak{J}_R im Gleichrichter (K nicht dazu gerechnet)

$$\mathfrak{J}_{R} = \mathfrak{J}_{R=0} \cdot \frac{1}{1 + j\omega \left(C + K\right)R} \tag{6}$$

gegenüber $\mathfrak{J}_{R=0} = \mathfrak{E} \cdot j\omega C$ in den Fällen 1) bis 3). Ferner

$$\frac{|\mathfrak{J}_R|}{|\mathfrak{J}_{R=0}|} = \frac{1}{\sqrt{1+\omega^2 R^2 (C+K)^2}} = 1 - \frac{1}{2} \left(\omega^2 R^2 (C+K)^2\right) + \cdots \quad (6a)$$

Die Erniedrigung der Messwerte bei E = 0 erfolgt, wie als Vorzug der Methode hervorgehoben werden muss, quadratisch mit der Fehlergrösse $\omega R (C + K)$. Die Ventile arbeiten hier als Durchlassventile, und nicht wie beim Sharp'schen Verfahren $(6)^1$) als Überlaufventile.

b) $E \ddagger 0$. Die Behandlung der Fälle 1) bis 3) (R = 0) war infolge des Fehlens von Ausgleichsvorgängen endlicher Dauer relativ einfach. Der Einschaltvorgang war nach einer endlichen Anzahl Perioden abgelaufen; Unstetigkeiten des Stromes waren die Regel. Anders für $R \ddagger 0$. Jeder Eingriff in das System, sei es das Schalten, sei es das durch $E (\ddagger 0)$ bedingte sprunghafte Ändern der Ventilwiderstände, hat Ausgleichsvorgänge zur Folge, welche, was den Strom i_R im Gleichrichter anbelangt, als Lösungen der homogenen Gleichung

$$\frac{d_a i_R}{dt} (C+K) R +_a i_R = 0$$

gegeben sind durch

$$_{a}i_{R} = \operatorname{Konst.} \cdot e^{-\frac{t}{(C+K)R^{2}}}$$
. (7)

Ihre Wirkung lässt sich ganz allgemein folgendermassen bestimmen: Die Grössen vor und nach einem solchen Unstetigkeitspunkt seien durch angehängtes — und + gekennzeichnet. Wenn wir vom Einschaltprozess absehen, dürfen wir *e* als stetige, mit stetiger erster Ableitung versehene Funktion ansehen.

Wegen

$$\frac{i}{C}\Big|_{\mp} + \frac{di_R}{dt}\Big|_{\mp} = \frac{de}{dt}\Big|_{\mp} ^{3} \text{) und } i \neq \infty$$

ist $\frac{di_R}{dt} \neq \infty$ also sicher: $i_R = stetig$. Das heisst aber: $\frac{i}{R} = \frac{i}{R} + = 0$, da während der Sperzeit, deren Endpunkte ja unsere Unstetigkeiten sind, $i_R = 0$, also entweder $\frac{i}{R} + = 0$ oder $\frac{i}{R} = 0$ ist.

Aus $i = i_R + i_K$ wird demnach a) $i_{/+} - i_{/-} = i_{K/+} - i_{K/-}$. Andererseits gilt

$$\begin{split} \frac{i}{C} \bigg|_{-} + \frac{i_{K}}{K} \bigg|_{-} &= \frac{de}{dt} \bigg|_{+} = \frac{de}{dt} \bigg|_{+} = \frac{i}{C} \bigg|_{+} + \frac{i_{K}}{K} \bigg|_{+}, \\ \text{folglich} \quad \frac{i_{/+} - i_{/-}}{C} = - \frac{i_{K/+} - i_{K/-}}{K} = 0, \text{ und, wegen } a): \quad i_{K/+} - i_{K/-} = i_{/+} - i_{/-} = 0. \end{split}$$

¹) Dieses besteht bekanntlich in der Aufladung eines Elektrometers mit Parallelkondensator über *eine* Röhre.

- ²) Innerer Widerstand der Spannungsquelle = 0 vorausgesetzt.
- ³) Entweder das obere oder das untere Vorzeichen.

In Worten: Alle drei Teilströme sind stetige Funktionen, die Integrale

$$e_{\kappa} = \frac{1}{K} \int i_{\kappa} dt \text{ und } e_{c} = \frac{1}{C} \int i dt$$
(8)

demnach stetige, mit stetigen ersten Ableitungen versehene Funktionen der Zeit. Wie aus Fig. 4 ersichtlich, ist nun zu Beginn der Sperrzeit diese Bedingung bereits für R = 0 erfüllt. Eines besonderen Ausgleichsvorganges bedarf es da nicht. Solche treten demnach jeweils nur am Ende der Sperrzeit auf. Da sie nach

Fig. 6. Fall: $R \pm 0$, $E \pm 0$, K = 0.

spätestens einer halben Periode unterbrochen werden, besteht der ganze Gleichrichtungsvorgang mit Gegenbatterie aus einer ununterbrochenen Kette von unvollendeten Ausgleichsvorgängen. Bedenkt man, dass in Wirklichkeit an Stelle des konstanten ein stetig veränderlicher Röhrenwiderstand und an Stelle des einen eine stetige unendliche Folge von Ausgleichsvorgängen treten, so ermisst man leicht die Kompliziertheit der Röhrengleichrichtung.

Die oben geschilderten Verhältnisse seien zunächst am Spezialfall K = 0 noch weiter ausgeführt. Fig. 6 zeigt drei Sinuskurven, die den drei Spannungen $e_{,0}e_{C}$ und $_{0}e_{K}$ für E = 0 entsprechen. Da der uns hier nicht weiter interessierende Einschaltvorgang streng genommen unendlich lange dauert, könnte die graphische Behandlung des stationären Zustandes exakt nur auf Grund einer Berechnung erfolgen. Wir wollen statt dessen, was sich nachträglich als annähernd richtig herausstellen wird, vom Zustand A: $e_C = {}_0e_C - E, e_K = E, i_{E=0} = 0$ als von einem stationär möglichen ausgehen. ${}_0e_K$ ist zugleich ein Mass für den Strom $i_{E=0}$. Der Verlauf ist: e_K kongruent e bis B, nach (8) mit gleicher Tangente über B hinausgehend. Wenn man, wie in Fig. 6, $E \ll S$ wählt, so ist der Ausgleichsvorgang bei C annähernd abgeklungen. Die gleichen Überlegungen führen uns weiter zum Zustand A. Von diesem lässt sich aber dasselbe wie von C behaupten, wodurch sich die anfängliche Annahme rechtfertigt.

Fig. 7 zeigt zwei Scharen von Stromimpulsen, berechnet für

Fig. 7. Stromhalbwellen für $R \neq 0$.

 $\omega CR = 0,19$ und $\omega CR = 0,57$. Man erkennt das rasche Wachsen des Einflusses von R daran, dass bei $\omega CR = 0,57$ bereits für E < S der Ausgangsvorgang nicht mehr vollständig abläuft, während es für $\omega CR = 0,19$ noch bei E nahe gleich 2S praktisch der Fall ist. Oszillographische Aufnahmen haben diese Darlegungen bestätigt.

Die Konstruktion des allgemeinen Falles $(R \neq 0, K \neq 0, E \neq 0)$ ergibt sich nunmehr durch eine Verbindung der bei den Spezialfällen $(R = 0, K \neq 0)$ und $(R \neq 0, K = 0)$ aufgestellten Gesichtspunkte. Von den fünf Sinuslinien in Fig. 8 stellen drei die Spannungen $e, {}_{0}e_{C}, {}_{0}e_{K} = R \cdot {}_{0}i_{R}$ für E = 0 dar. Um im selben Masstab auch den Teilstrom ${}_{0}i_{K}$ und den Gesamtstrom ${}_{0}i$ (beide für E = 0) in derselben Figur unterbringen zu können, sind beide als fiktive Spannungsabfälle ${}_{0}i_{K} \cdot R$ und ${}_{0}i \cdot R$ aufgezeichnet worden. Die drei Widerstände \Re (zwischen H und F), \mathfrak{r} (zwischen M und F) und \mathfrak{r}_{C} (zwischen H und M) definieren drei Phasenwinkel

Fig. 8. Allgemeiner Fall.

Zweckmässig werden an ihrer Stelle die Fehlwinkel

$$a = \operatorname{arctg} \omega R K$$

$$\delta = \operatorname{arctg} \omega R (C + K)$$

$$\beta = \measuredangle (\Re/\mathbf{r}_{c}) = \delta - a$$
(9)

eingeführt. Als Ausgangspunkt wählen wir in Fig. 8 versuchsweise den Zustand $A: {}_{0}i_{R} = 0$. Uns interessiert i_{R} , also e_{K} . Zur Bestimmung der Länge der Sperrzeit dienen die Kurve // e (parallel zur Kurve e) und die Hilfsgerade h. Bezeichnen wir noch mit ε die Phasendifferenz zwischen Öffnung des Messventils und Scheiteldurchgang der Gesamtspannung, so sagt die Figur, dass

$$S \cdot \cos \delta = E\left(1 + \frac{K}{C}\right) + S \cdot \cos \varepsilon, \; e_{\max} = |\mathbf{\mathfrak{E}}| = S \; ,$$

also

$$\varepsilon = \arccos\left[\cos\delta - \frac{E}{S}\left(1 + \frac{K}{C}\right)\right] \text{ sei.}$$
(10)

Der nunmehr einsetzende Ausgleichsvorgang ist nach (7) gegeben durch

$$R \cdot {}_{a}i_{R} = C \cdot e^{-\frac{t-t_{B}}{R(C+K)}}, \qquad (10a)$$

wobei C aus Fig. 8 zu

$$\overline{BB'} = R \cdot {}_{0}i_{R}|_{t=t_{B}} = R \cdot |\mathfrak{I}_{R}| \cdot \sin(\varepsilon - \delta)$$
(10b)

folgt. Die e_K -Kurve schneidet die t-Achse bei B mit stetiger Tangente, nähert sich der ${}_0e_K$ -Kurve immer mehr und hat sie, wie wir für die Konstruktion wieder annehmen wollen, bei Cpraktisch erreicht. Von C bis D ist e_K durch e und das kapazitive Teilungsgesetz, von D bis A durch $E + i_R \cdot R$ gegeben. In A erfolgt der Anschluss wieder mit stetiger Tangente.

Im Hinblick auf die möglichen praktischen Verwendungsarten des CH-Verfahrens müssen wir nun den

Einfluss des Widerstandes auf die U-Kurven

untersuchen. Es sei wiederum A_0 ein relativer Sollwert für E = K = R = 0.

Dann ist nach (6a) und (9):

$$A_{E=0} = \frac{A_0}{\sqrt{1 + \mathrm{tg}^2 \,\delta}} \,. \tag{10c}$$

Nun ist nach Fig. 8

$$\frac{A}{A_{E=0}} = \frac{\int_{t_{B}}^{t_{C}} dt}{\int_{t_{A}}^{t_{C}} dt} = \frac{\int_{t_{B}}^{t_{C}} i_{R} \cdot dt - \int_{a}^{t_{C}} i_{R} \cdot dt}{\int_{t_{A}}^{t_{C}} i_{R} dt} = \frac{\frac{t_{B}}{\int_{a}^{t} i_{R}} \cdot dt - \int_{a}^{t_{C}} i_{R} \cdot dt}{\int_{t_{A}}^{t_{C}} i_{R} \cdot dt}.$$

Wir berechnen das Zählerintegral unter der Annahme, dass der Ausgleichsvorgang vollständig abläuft. Wird demgemäss im

 $\mathbf{24}$

zweiten Integral die obere Grenze durch ∞ ersetzt, so folgt unter Berücksichtigung von (10a) und (10b):

$$\begin{aligned} \text{Z\ddot{a}hler} &= \int_{t_B}^{t_A + \tau/2} |\mathfrak{I}_R| \sin \omega \left(t - t_A\right) dt - \int_{t_B}^{\infty} |\mathfrak{I}_R| \sin \left(\varepsilon - \delta\right) \cdot e^{-\frac{\left(t - t_B\right)}{R\left(C + K\right)}} \cdot dt \\ &= \dots = \frac{|\mathfrak{I}_R|}{\omega} \left[1 + \frac{\cos \varepsilon}{\cos \delta}\right]. \end{aligned}$$

Andererseits ist

$$\int_{t_A}^{t_C} i_R dt = \int_{0}^{\pi} \frac{|\mathfrak{I}_R|}{\omega} \cdot \sin \varphi \cdot d\varphi = \frac{2|\mathfrak{I}_R|}{\omega}$$

Also nach (10c)

$$A = \frac{A_0}{2\sqrt{1 + \mathrm{tg}^2\,\delta}} \left[1 + \frac{\cos\varepsilon}{\cos\delta} \right] = \frac{A_0}{2} \left[\cos\delta + \cos\varepsilon \right].$$

Hieraus folgt nach Elimination von δ und ε mit Hilfe von (9) und (10)

$$A = A_0 \left[\frac{1}{\sqrt{1 + \omega^2 R^2 (C + K)^2}} - \frac{E}{2S} \left(1 + \frac{K}{C} \right) \right].$$
(11)

In Worten: Für mässige Zeitkonstante R(C+K) und nicht zu grosse Gegenspannungen E wird die zu R gehörige U-Kurve U_R

Fig. 9. U-Kurven $R \neq 0$.

durch den Widerstand R gegenüber $U_{R=0}$ parallel nach unten verschoben (siehe in Fig. 9 den ausgezogenen Teil der U_R). Sofern dies hier nur für Sinusform abgeleitete Resultat auch für nicht sinusförmige Spannungskurven Gültigkeit besitzt, ist es für die Möglichkeit der messtechnischen Verwertung der U-Kurven von entscheidender Bedeutung.

Mit wachsendem E, wo der Ausgleichsvorgang nicht mehr vollständig abläuft und sich nicht mehr mit dem vollen Betrag vom

 $\operatorname{Impuls}_{t_{R}} \int_{0}^{C} i_{R} \cdot dt \text{ subtrahiert, wird } A > A_{0} \Big[\cos \delta - \frac{E}{2S} \Big(1 + \frac{K}{C} \Big) \Big] ,$

und U_R trifft die *E*-Achse, wie man leicht einsieht, wie $U_{R=0}$ bei

$$\overline{E}_{K} = \frac{2S}{1 + \frac{K}{C}}.$$

Die Ausführungen lassen erkennen, dass sich die experimentelle Prüfung in erster Linie mit zwei Fragen befassen muss:

- 1. Definieren die experimentell aufgenommenen Büschel hinreichend genau einen einzigen Schnittpunkt, also ein experimentelles A_0 , und welches ist sein Verhältnis zum wahren Wert A_w , wie man ihn bei gleichen äusseren Bedingungen mit fehlerfrei arbeitendem Gleichrichter erhalten würde?¹)
- 2. Sind die in der Formel für das relative Gefälle der U-Kurven

$$\frac{1}{A_0} \cdot \frac{\partial A}{\partial E} = -\frac{1}{2S} \left(1 + \frac{K}{C} \right)$$
(11a)

steckenden Gesetzmässigkeiten (betr. Konstanz und Betrag des Gefälles der U-Kurven) hinreichend erfüllt, um nach dem CH-Verfahren 2. Art eine frequenzunabhängige Messung von S zu ermöglichen?

II. Teil: Prüfung des CH-Verfahrens.

Die Aufgabe besteht streng genommen in einem Vergleich des CH-Verfahrens mit einer *unabhängigen* Normalmethode. Es sollen aber in dieser Arbeit die Kirchhoff'schen Gesetze und damit Formel (1) *als richtig vorausgesetzt* werden. Dies berechtigt zur Ersetzung der Untersuchung der Gesamtfehler durch eine Analyse der Teilfehlerquellen, die nachstehend kurz aufgezählt seien.

Die Entstehung von Fehlern infolge Falschmessung der in (1) vorkommenden Grössen C, I und ν bedarf keiner weiteren Ausführung.

Ausserhalb des Gleichrichters ist als wesentliche Fehlerursache nur noch schlechte Definition von C zu nennen; sie liegt vor,

¹) Man beachte die veränderte Bedeutung von A_0 ! Die Rolle des bisherigen A_0 übernimmt jetzt A_w .

a) wenn der Messkondensator nicht genügend geschützt ist, oder wenn die in Fig. 2 mit M metallisch verbundenen Teile desselben eine zum Messkondensator parallel geschaltete Kapazität gegen H aufweisen, und

b) wenn C nicht verlustfrei und frequenzunabhängig ist.

Die Fehler des Gleichrichters (einschliesslich K) sind im I. Teil erst hinsichtlich E, K und R = konstant besprochen worden. Ausser den dort angegebenen Einflüssen sind spezifische durch die Krümmung der Röhrencharakteristiken bedingte Störungen zu erwarten, die, wie hier vorweggenommen sei, sich einerseits im eigentümlichen, aber recht gut verständlichen Verhalten des Nullpunktes von E, andererseits im teilweisen Versagen der für

Fig. 10. Prüfschaltung.

konstanten Röhrenwiderstand aufgestellten Beziehungen äussern. Als weitere Teilfehlerquellen des Gleichrichters sind zu nennen: Isolationsfehler, Verluste und Frequenzabhängigkeit von K, Wechselstromheizung statt Gleichstromheizung,

Isolationsfehler parallel zu den Röhren,

Induktivität des Galvanometers,

Elektrische Beeinflussung der mit der Erdklemme metallisch verbundenen Teile des Gleichrichters.

Für die Untersuchung dieser Fehlerquellen ist zu bedenken, dass der oben erwähnte Verzicht zur Wahl der ursprünglichen CHUBB-FORTESCUE'schen Methode als Vergleichsmethode berechtigt. Auf dieser Basis scheint mir die höchste Genauigkeit auf folgende Weise zu erreichen sein: Zwei CH-Apparaturen werden, wie Fig. 10 zeigt, unter Ersetzung der Galvanometer durch Messwiderstände ρ über ein Gleichstrom-Nullinstrument N gegen einander geschaltet. Man erhält so eine Wechselstrombrücke mit Gleichstromkompensation und -Empfindlichkeit¹) Die normale, d. h. durch Formel (1) gegebene Abhängigkeit von v und S fällt offenbar heraus. Die Abgleichung hängt von diesen Grössen nur insofern ab, als die Fehler des Gleichrichters selbst wieder Funktionen hiervon sind, wie (11) zeigt. Ist, wie z. B. bei den beim Verfahren 2. Art nötigen Messungen, das Glied mit E von der Grössenordnung 1, so fallen natürlich Spannungsschwankungen bei der Abgleichung in vollem Mass störend ins Gewicht.

Die Handhabung der Prüfmethode werde anhand des Beispiels von Fig. 11 näher erläutert. Zum Verständnis dieser Figur

¹) Es leuchtet ein, dass das Anwendungsgebiet dieser Brückenschaltung über den hier besprochenen Aufgabenkreis erheblich hinausgeht. Sie erlaubt Messungen an kleinen Kapazitäten bei Niederfrequenz mit Strömen von $10^{-6} A$, wo das Vibrationsgalvanometer ohne Verstärker versagt. Die vom gleichgerichteten Strom durchflossenen Teile der Apparatur sind gegenüber kapazitiven Beeinflussungen sehr unempfindlich und brauchen im allgemeinen nicht statisch geschützt zu werden. Fehlwinkel von Kondensatoren können auf diese Art nicht gemessen werden. bedarf es jedoch zunächst einiger Festsetzungen über die graphische Verwertung des Beobachtungsmaterials.

Wir besitzen keine Formel, die im allgemeinen Fall ((11) gilt nur für Sinusform!) eine Umrechnung auf "R = 0" gestattet, und auch wenn man sie hätte, würde man in praxi die Messergebnisse doch stets zunächst durch Näherungsformel (3) darzustellen versuchen. Aus diesem doppelten Grund wurde im vorigen Teil A_0 (E = 0) mit dem Scheitel des experimentell bestimmten Büschels identifiziert. Abszissenmass in Fig. 11 ist die zugeschaltete, am Instrument abgelesene Hilfsspannung ΔE (vergl. Fig. 10); die nach (3) wirksame Spannung E ist

$$E = E_0 \left(R, C, K, I \dots \right) + \Delta E, \tag{12}$$

wobei E_0 die Eigenhilfsspannung des Gleichrichters bedeutet. Der Punkt A_0 (E = 0) liegt stets in dem durch den Nullstrom entstellten Gebiet des U-Kurvenbüschels (in Fig. 11 ist der Verlauf für eine Kurve gestrichelt angedeutet) und kann nur durch Extrapolation bestimmt werden. Als Minimalspannung zur Erreichung des geradlinigen Teils der U-Kurven wurde $\Delta E = 2$ V gewählt.

Als Grössen A für den Strom im Röhrengleichrichter rechts (*RGr*) können offenbar die Widerstandswerte ϱ_i (bei konstantem ϱ_r) dienen. Als Ausgangspunkt wählen wir

$${}^{\prime}\varrho_{i} = {}^{\prime}A \ (AE = 2 \text{ V}, K = K_{0}, R = R_{0}, C' = 20\,000 \ \mu\mu F...) = 1000\,\Omega.$$
 (13)

Der Einfluss von Veränderungen der unabhängigen Variablen (bei konstantem C und annähernd konstantem S und v) auf Aist nun an ϱ_i unmittelbar in Promillen abzulesen. Variation von ΔE und K durch Zuschalten von ΔK gibt das Büschel d (Fig. 11). Die Variation des Messtromes durch Veränderung von C gibt uns zunächst nicht das Gewünschte; wir wollen ja nicht die normale Abhängigkeit von C gemäss (1), sondern nur die Abweichungen hiervon kennen lernen. Daher werde A definiert durch ϱ_i/c . Hiernach ist also $\frac{\varrho_i}{C} \cdot C'$ der uns interessierende Widerstand. Seine Abhängigkeit von C im betrachteten Beispiel ist ebenfalls in Fig. 11 dargestellt. Dieser Kurve werden nun die durch Kreuze bezeichneten Bezugspunkte für die andern Büschel entnommen.

Das Verhältnis von 'A zum wahren Wert A_w erhält man durch Umlegen von U (Fig. 10) auf den Synchronkontakt SK (näheres über den Gang einer Präzisionsmessung folgt unten). Die Grösse

$$g_w = \frac{A_w - A}{A} \tag{14a}$$

wollen wir fortan *wahre Grundkorrektion* nennen¹). Führen wir andererseits die aus Messungen mit dem CH-Verfahren allein bestimmbare *experimentelle Grundkorrektion*

$$g_e = \frac{A_0 - A}{A} \tag{14b}$$

ein, so ist offenbar

$$f = g_e - g_w = \frac{A_0 - A_w}{A} \tag{15}$$

das, was man sinngemäss als eigentlichen Fehler des Röhrengleichrichters bezeichnen muss und dessen Grösse, bzw. Kleinheit über die Brauchbarkeit der grundkorrigierten Messergebnisse entscheidet.

Lohnt sich die genaue Kompensation aus irgendwelchen Gründen nicht, so ist A mit den Ausschlägen des Galvanometers Gzu identifizieren. Dann aber müssen S und ν konstant gehalten werden.

Die Prüfung von (11a) betreffend das Gefälle der U-Kurven kann, im Gegensatz zu bisher, nur unter Zugrundelegung eines bekannten S erfolgen. Die hierzu notwendigen Scheitelfaktormessungen wurden mit einer Joubertschen Scheibe ausgeführt, weil sich die Frequenzmessung hierbei erübrigt.

Verwendete Stromquellen und Apparate.

Um ein Urteil über die erreichbare Genauigkeit der Prüfung zu ermöglichen, seien nachstehend von den zur Verwendung gelangten die wichtigsten Geräte aufgeführt.

Stromquellen:

- $M_{\rm I}$: Eichgruppe von Boas, 1 kVA, bestehend aus Gleichstrommotor, 3-Phasen-Spannungsmaschine (200 V) und Strommaschine mit drehbarem Stator. Benutzt in Verbindung mit einem Transformator bis 6000 V.
- $M_{\rm II}$: Gleichstrom-Drehstrom-Umformergruppe Oerlikon, 10 kVA, dreiteilig wie $M_{\rm I}$, 300 V, betrieben mit Batterie von 430 Ah, liefert in Verbindung mit
 - IR: Induktionsregler 240 V/0—240 V und Tr (siehe unten) Spannungen bis 150 kV.
- $M_{\rm III}$: Einphasengenerator Oerlikon, 50 kVA, 240 oder 480 V, mit sehr sinusförmiger Spannungskurve (vergl. KF (9) in Fig. 13), getrieben von Synchronmotor (35 kVA) für

¹) Grundkorrektion deshalb, weil sie bei *jeder* Absolutmessung, sei es nach der 1. oder 2. Art des Verfahrens, angebracht werden muss.

Netzanschluss (40 \sim). Liefert in Verbindung mit TrSpannungen bis 150 kV.

Tr: Lufttransformator von Haefely, 240 bzw. 480 V/150 kV mit Schubwicklungen.

Messgeräte:

 $C_{\Pi I}$:

 C_{I} und C_{II} : Geschützte Zylinder-Luftkondensatoren für 100 bzw. 220 kV. Beide wurden in der Wechselstrombrücke auf einen genau bekannten, geschützten Hochohmwiderstand nach ORLICH und SCHULTZE (7) (1,6 Megohm Manganin, dauernd für 15 mA) zurückgeführt.

> $C_{\rm I} = 25,28 \ \mu\mu F \pm 0,7 \ {}^{0}\!/_{00} \ {
> m und} \ C_{\rm II} = 60,24 \ \mu\mu F \pm 0,5 {}^{0}\!/_{00}.$ Funkenstrecken-Kondensator nach HESS (4a). Fig. 27.

Seine Beeinflussbarkeit findet im letzten Teil Erwähnung. Die Mehrzahl der Messungen mit Hochspannung wurde zwei Stockwerke über dem Hochspannungsraum ausgeführt. Von den Kondensatoren führen kupferdrahtumsponnene Kabel und weiter geerdete Bergmannrohre die Kondensatorströme zum Messplatz. Bei den nachstehend erwähnten Versuchen unter 6000 V befinden sich Spannungsquelle und Kondensatoren wenige Meter neben den beiden völlig ungeschützt auf Holztischen aufgestellten Gleichrichtern RGl und RGr (Fig. 10).

Für Relativmessungen bis 6000 V dienten weiter ungeschützte Luft-Plattenkondensatoren bis 330 $\mu\mu F$. Unterhalb 1000 V gelangten Präzisionsluftkondensatoren von MEYERLING und SPIND-LER & HOYER, unterhalb 200 V Präzisionsglimmerkondensatoren von SIEMENS & HALSKE zur Verwendung. Diese sind nach bewährten Methoden mit den Kapazitätsnormalen des Amtes verglichen worden und sind,

wenn $> 10^4 \ \mu\mu F$, auf 0,5 $^{0}/_{00}$ wenn $> 10^3 \ \mu\mu F$, auf 1 $^{0}/_{00}$ genau bekannt.

Der Grund, weshalb für zuverlässige Messungen nur weitgehend winkelfehlerfreie Kondensatoren zu brauchen sind, wird im III. Teil eingehend besprochen werden.

Bei Niederspannung, wo Kapazitäten von der Grössenordnung von $10^4 \,\mu\mu F$ Verwendung finden, fiel die Beziehung der 'A auf einander sehr genau aus und gestattete, die für verschiedene 'A (verschiedene C) mit dem SK bestimmten g_w auf ihre innere Übereinstimmung zu prüfen, bzw. die mit dem SK erreichbare in Tab. 1 angegebene Genauigkeit festzusetzen.

Die Einstellung von ΔE erfolgte mit einem Voltmeter von WESTON auf 1% genau. Zur Messung der Effektiv-Spannungen diente ein häufig mit Gleichstrom nachgeprüftes dynamometrisches Voltmeter von HARTMANN & BRAUN, zur Einstellung der Frequenz zwei geeichte Zungenfrequenzmesser. G in Fig. 10 ist ein Zeigergalvanometer von SIEMENS & HALSKE mit Spitzenlagerung, $1^{\circ} = 0.39.10^{-6} A$, 260 Ω , mit Shunt: $1^{\circ} = 1/2/5/10/\ldots 10^{-6} A$. ϱ_{ι} und ϱ_{r} sind auf $0.2^{\circ}/_{00}$ richtig abgeglichene 4-Dekadenwiderstände $(10 \times 100, \ldots 10 \times 0.1 \Omega)$.

Bei allen Messungen über 200 V waren die Gleichrichter durch parallel gelegte Edelgassicherungen geschützt.

Die Ventilröhren: Die Eigenhilfsspannung E_0 und damit die Grundkorrektion sind von der Wahl des Röhrenpaares abhängig und müssen daher für jedes solche besonders bestimmt werden, die im folgenden Teil mitgeteilten Resultate beziehen sich auf Gleichstromheizung und auf die benutzten Röhren R_1 und R_2 . Die Auswahl der Röhren erfordert keine besondere Sorgfalt; immerhin verdienen solche mit möglichst eckig und steil ansteigender Charakteristik den Vorzug.

Zur Abschätzung des Einflusses der Ersetzung einer Röhre durch eine andere vom gleichen Typ kann folgendes empirische Resultat dienen: Es sind z. B. für R_1 und R_2 (beide RE 144 (Telefunken), $i_s = 20$ mA, Gitter und Anode verbunden, oberhalb 0,1 mA ca. 3000 Ohm Ventilwiderstand) die Differenzcharakteristiken, d. h. die Differenzen der Röhrenspannungen in Funktion des Stromes, bei beliebiger Heizung unterhalb des Sättigungsgebietes angenähert versetzte Gerade, also äquivalent einem konstanten Widerstand δR_0 mit Vorspannung δE . Der beobachtete Einfluss von δE entspricht recht gut dem aus (3) berechenbaren.

Joubert'sche Scheibe und Synchronkontakt: Der Antrieb erfolgt durch einen besondern Gleichstrommotor nicht zu geringer Leistung mit Schleifringen, denen die synchronisierende Wechselspannung zugeführt wird. Die Wechselenergie wird bei $M_{\rm I}$ und $M_{\rm II}$, um zusätzliche Verzerrung der Kurvenform zu vermeiden, dem andern Generator entnommen.

Die Joubert'sche Scheibe besteht aus Messing, die Kontaktlamelle aus Kupfer. Als Bürstenmaterial hat sich Silber bewährt.

Die Konstruktion des Synchronkontaktes ist aus Fig. 12 ersichtlich. Schleifringe und Kollektorlamellen wurden auf ein entsprechend vorgearbeitetes Stabilitstück satt aufgepasst und mit diesem zusammen abgeschmirgelt. Die Numerierung der Bürsten in Fig. 12 lässt erkennen, wie der elektrische Anschluss an die Apparatur erfolgte. Die vier Kontaktflächen I—IV haben die Bogenlängen:

Ī	II	III	IV
360°	180^{o}	ca. 185°	3600

Da sowohl alle Bürsten äquatorial, als auch Bürsten 1 und 4 achsial verschiebbar sind, so dass sie auf I und IV zu liegen kommen, kann man die Kontaktdauern 12 und 34 dem Zweck entsprechend wählen. Der Übergangswiderstand muss möglichst klein sein. Anfressung der Lamellen durch die Bürsten muss aus diesem Grunde vermieden werden. Es hat sich schliesslich folgendes Vorgehen bewährt: Die Silberbürsten wurden mit unternormalem Auflagedruck einige Stunden eingeschliffen, wobei der Kollektor stets mit säurefreiem Fett kräftig eingefettet war. Auch später wurde darauf geachtet, dass die Kontaktflächen nie ganz trocken waren. Die besondere Konstruktion gestattet es, während der Messung

Fig. 12. Konstruktion des Synchronkontaktes.

ohne Bildung von schädlichen Nebenschlüssen mit dem leicht gefetteten Finger die Flächen zu bestreichen, was die Übergangswiderstände um ein weiteres herabsetzt. Bei solcher Behandlung arbeitete der SK zufriedenstellend.

Schwankende Übergangswiderstände, schlechte Stellung der Bürsten und Unregelmässigkeiten im Gang des Motors bedingen schwankende, zu niedrige Messwerte. Fehlerquellen, die die Angaben im Sinne der Erhöhung beeinflussen könnten, sind mir nicht bekannt (vergl. hierzu: Gang der Messungen). In der Tat waren die höchsten Werte zugleich die konstantesten; auf sie bezieht sich Tab. 1.

Т	8	b	e	11	e	1	
۰	~	~	-		v		•

Höchste m	it mech. Glei	chrichter errei	chte Genauigkeit.
bei ca. 3 V	$\begin{array}{c} 20 \text{ V} \\ 1 \stackrel{-}{\longrightarrow} 2^{0/2} \end{array}$	100 V 0.5 $-$ 1%	über 1000 V $0.5^{9/cc}$ (0.29/cc ¹))

¹) ausnahmsweise.

- 379 ---

Oberhalb 20 V wurden diese Angaben aus der Streuung der guten Messwerte abgeschätzt, unterhalb 20 V durch Vergleichsmessungen mit der hier viel genauer arbeitenden Joubert'schen Scheibe bestimmt. Zwischen 20 und 150 V gaben ferner die früher erwähnten g_w -Bestimmungen bei verschiedenem C einen guten Anhaltspunkt dafür. Tabelle 1 gilt nur für flache oder mässig zugespitzte Kurven. Bei spitzen Kurven war diese Genauigkeit nicht ganz erreichbar.

Erwähnt sei, dass SCHIMPF (8) erstmals Niederspannungen von ca. 100 V nach der Chubb'schen Methode mit SK gemessen hat. Die Konstruktion seines Kommutators weicht von der vorstehend beschriebenen ab.

Vorarbeiten.

Verwendete Spannungsformen. Hierzu Fig. 13. Das CH-Verfahren beansprucht, von der Kurvenform (KF) unabhängige Resultate zu liefern. Zur Prüfung wurden von Sinusform schwach und stark abweichende Wellenformen herangezogen. Eine spitzere Form als KF (3) stand leider nicht zur Verfügung. Es wurden geliefert:

KF(1), KF(7), KF(9) bezüglich von M_{I}, M_{II} (mit IR und Tr), M_{III} (mit Tr) im Leerlauf,

KF (2) bis KF (5) von M_{I} mit verschiedenartiger Belastung oder Verkettung der drei Phasen, insbesondere KF(3) mit Hilfe eines übersättigten Transformators,

KF(8) und KF(10) durch Verzerrung von KF(7) bzw. KF(9) mit Hilfe einer stark gesättigten Drossel.

KF (6) ist mit oben beschriebenem SK zerhackte Gleichspannung.

In den Oszillogrammen für KF(7) bis KF(10) wurde neben der Hochspannung e_{II} auch die Primärspannung e_{I} aufgenommen. Bei der Aufsuchung spitzer Formen (mit meist hohem Scheitelfaktor) leisteten Glimmlampen gute Dienste.

Scheitelfaktormessungen mit der Joubert'schen Scheibe. Die zu messende Spannung wurde geteilt und der Scheitelwert kompensiert (S), andererseits effektiv gemessen (V). Der Scheitelfaktor ist dann der Quotient von S und V. Als Teiler dienten bei Niederspannung Präzisionswiderstände von Wolff, bei Hochspannung bis 25 kV der früher erwähnte Hochohmwiderstand und bis 150 kV $C_{\rm II}$ in Verbindung mit einem Präzisions-Glimmerkondensator. Erreichte Genauigkeit: $\frac{1}{2}^{0}/_{00}$. KF (1) wurde auch auf die Symmetrie hin untersucht: S_{\pm} und S_{-} sind bis auf $\pm 0.3^{0}/_{00}$ gleich.

Fig. 13. Verwendete oszillogr. aufgenommene Kurvenformen.

Gang der Messungen und Fehler der Prüfmethode.

Es bleibe nicht unerwähnt, dass bei den Vorversuchen u. a. ein abnormal starker Einfluss der Kompensationsspannung ΔE beobachtet wurde. Da sich diese Erscheinung später nicht mehr zeigte und untersuchen liess, kann ihre Ursache nicht angegeben werden.

Zu der Schaltung von Fig. 10 sei folgendes bemerkt: Im allgemeinen ist die Stromform in ϱ_l von derjenigen in ϱ_r verschieden; N ist nach Abgleichung noch von einem Wechselstrom durchflossen. Das Superpositionsprinzip, d. h. die Regel, wonach die Messung der Gleichkomponente unabhängig von der überlagerten Wechselkomponente erfolgt, gilt nun für einen Kreis variablen ohmschen Widerstandes, wie er hier vorliegt, nicht. Wie man leicht überlegt, sind die Fehler um so kleiner, je grösser der Widerstand des Kompensationszweiges im Verhältnis zum innern Widerstand der Stromquelle ist. Deshalb wurde die Empfindlichkeit überschüssig gross gewählt (5.10⁻⁹ A/mm) und hierauf mit einigen 10000 Ω Vorwiderstand herabgesetzt.

Es hat keinen Sinn, bei den Messungen mit dem SK eine Genauigkeit, wie sie in Tab. 1 angegeben ist, anzustreben, wenn es nicht gelingt, die systematischen Fehler weitgehend auszuschalten. In dieser Hinsicht konnte die Arbeit von SCHIMPF (8) als Wegleitung dienen. Dieser Autor stellt fest, dass bei Messungen bei Hochspannung durch kapazitive Beeinflussung der empfindlichen Teile der Apparatur durch die Niedervoltseite (Generator, Voltmeter, SK) und die Hochvoltseite die Resultate um mehrere Prozent gefälscht werden können. Das l. c. S. 79 beschriebene Eliminationsverfahren befriedigt natürlich nicht. In vorliegender Arbeit werden die Einflüsse sowohl klein gehalten, als auch eliminiert. Die besten Vergleichsmessungen erfolgten folgendermassen (s. Fig. 10):

1. Verbindung zwischen M und SK gelöst, U auf RG, abgeglichen; Einstellung an ϱ_i : 'A.

2. SK an M angeschlossen, U belassen; der Gleichrichtermotor läuft als Gleichstrommotor annähernd synchron mit der zu messenden Spannung. Die Schwebungen im Ausschlag des Nullinstrumentes rühren von kapazitiver Beeinflussung des SKdurch den Motor her. Durch die geerdete Scheidewand zwischen SK und Motor konnte der Einfluss auf $< 1/2 \cdot 10^{-7} A$ reduziert werden. Der nunmehr ruhige Ausschlag gestattet Abgleichung \overline{A} . 3. Motor synchronisiert: Abgleichung bleibt: \overline{A} . Es ist (nach (3))

$$\overline{A} = A + s - rac{E \cdot k}{2 \, S \, C} \, .$$

s ist die kapazitive Beeinflussung der Verbindungsleitung von M und SK und des letzteren durch die Hochvoltseite (durch geeignete Leitungsführung unter $1.10^{-7} A$ gehalten); das dritte Glied wird aus der Erdkapazität k des SK berechnet.

4. U umgelegt auf SK, Schalter Sch geöffnet; nach Abgleichung \overline{A} , wobei $\overline{A} = A_w + s$. Daher ist die wahre Grundkorrektion

$$g_{w} = \frac{A_{w} - A}{A} = \left(\overline{A} - \overline{A} - \frac{Ek}{2SC}\right) \cdot \frac{1}{A}.$$

Öffnet man bei Messung 4. den Schalter Sch nicht, so treibt ΔE in den Augenblicken gleichzeitigen Arbeitens beider Bürstenpaare einen kräftigen Gegenstrom durch G. Es leuchtet ein, dass diese Erscheinung zu einer sehr genauen Einstellung der Bürsten herangezogen werden kann.

III. Teil. Messergebnisse und Deutung der Fehler des CH-Verfahrens.

Die Prüfung erstreckte sich, wie eingangs erwähnt wurde, nur auf technische Frequenzen; die Mehrzahl der Messungen bezieht sich auf die Periodenzahl 50. Die Grössenordnung der Ströme liegt zwischen $10^{-6} A$ und $10^{-2} A$.

Wenn hier auf die Prüfung des Verfahrens bei Niederspannung besonderer Nachdruck gelegt wird, so geschieht dies aus mehreren Gründen. Nicht nur sind die Fehler bzw. ihre Kleinheit bei NSwissenschaftlich interessanter und beweisen die Überlegenheit über das Sharp'sche Überlaufverfahren, nicht nur gestattet die bei NS grössere Auswahl an Kurvenformen ein tieferes Eindringen in seine besonderen Eigenschaften, die bewusste Einführung von K zur Unterdrückung von Zwischenscheiteln bei HS oder bei Messungen nach dem Verfahren 2. Art bedeutet schliesslich nichts anderes als den Anschluss des Röhrengleichrichters an einen Kapazitätsteiler, also die teilweise Umwandlung in eine Niederspannungsmethode.

Aus Raummangel seien nachstehend nur die messtechnisch oder theoretisch bedeutsamen Ergebnisse und auch diese nur in bescheidenem Umfang durch Mitteilung von Zahlen und Figuren belegt. Die gegebenen Figuren und Tabellen lassen demgemäss nur eine teilweise Nachprüfung der im Text aufgestellten Behauptungen zu. Selbstverständlich ist bei der Angabe von Genauigkeiten einer ev. beschränkten Reproduzierbarkeit Rechnung getragen.

1. Die Grundkorrektionen g_e und g_w .

Die mit dem Verfahren sowohl 1. wie 2. Art erreichbare Genauigkeit ist in erster Linie bestimmt durch den Grad der Definiertheit von E_0 bzw. der aus (3) folgenden Grundkorrektion

$$g_e = \frac{A_0 - A}{A} = \frac{\frac{E}{2S} \left(1 + \frac{K_0}{C} \right)}{1 - \frac{E}{2S} \left(1 + \frac{K_0}{C} \right)}, \quad (14 \,\mathrm{c})$$

worin $E = E_0 + 2$ V bedeutet. Das Experiment (Beispiel: Fig. 11;

,,100 V" bedeutet: 100 V effektiv) zeigt, dass bei mässig verzerrter (KF(1)(2) und (4)) und beliebig flacher (KF(6)) Spannungskurve für Spannungen > 50 V ein gut definierter Büschelscheitel B existiert. Die Messungen an KF(1) wurden bis hinunter zu 3 V $(2 S \approx 9 V)$ ausgedehnt. Das in Fig. 14 enthaltene Ergebnis für 3 V scheint überraschend, wenn man bedenkt, dass die Röhren im untersten, ungünstigsten Teil der Charakteristik arbeiten und der Spannungsabfall an ihnen z. B. für $C = 0,02 \ \mu F$ ca. $\frac{1}{10}$ von 2 S beträgt. Bei stark verzerrten, spitzen Kurven, die leider nicht ohne ZS zur Verfügung standen (KF(3)), ist die Definition von B weniger gut; nach Fig. 16 muss auch bei kleinem C mit

einer Unsicherheit von $1 \div 2^{0}/_{00}$ gerechnet werden. Beim Büschel ,,6000 V'' (Fig. 15) ist g_e fast auf $0,1^{0}/_{00}$ genau angebbar.

Im folgenden sei B als hinreichend genau bestimmbar vorausgesetzt.

Die Wahrscheinlichkeit, dass A_0 mit A_w übereinstimmt, ist um so grösser, je unabhängiger A_0 bei sonst gleichen Bedingungen (KF, V, ...) vom Messtrom, also von C, ist. Diese Unabhängigkeit ist nun bei guten (KF(1), Fig. 11) mässig spitzen (KF(2)) und beliebig flachen Kurven (KF(6)) für Spannungen um 100 V innerhalb eines ansehnlichen, im einzelnen von der KF abhängigen Bereich von C festzustellen. Diese Bereiche, innerhalb welcher es also einen Sinn hat, von einem korrigierten Messwert schlechtweg zu sprechen, sind in Kolonne 3 von Tab. 2 angegeben. Bei 100 V KF (1) z. B. liegt die Annahme, dass die Werte

$$A_0 = 1016.3 \pm 0.3$$
 bzw. $g_e (C = 0.02 \ \mu F) = (16.3 \pm 0.3)^0 /_{00}$

	1	2	3	4	5
	$S/\sqrt{2}$	V (eff.)	$C\cdot 10^9 F$	$g_{\epsilon} (0,02 \ \mu \ F) {}^{0/_{00}}$	f
KF (1) 50 \sim	156	150	$\div 20$	12,7	1/2 0/00
	130	125		14,4	
	104	100	$2 \div 20$	16,3	$\frac{1}{2} \div 1^{0}/_{00}$
	78	75		21	
	52	50	\leq 5 \div 15	29,5	$1 \div 2^{0}/_{00}$
	39	37,5		39	
×	26	25	$\leq 10 \div 20$	52	¹ / ₃ ⁰ / ₀
	18,8	18		66	
	13	12,5	$\leq 10 \div 40$	89	¹ / ₂ ⁰ / ₀
8	6,2	6	$10 \div 80$	205	1º/0
	3,1	3	$5 \div 30$		$3 \div 4^{0/0}$
KF (4) 50~	104	114	$\leq 5 \div \geq 20$	13	$1/_2 \div 1^0/_{00}$
	50	54		24	1º/00
KF (6) 50~	4 9		$\div > 20$	19	wahrsch. $< 1/2^0/_{00}$
KF (3) 50~	101	57	(<2)		$(2^{0}/_{00} \text{ bei } C = 2)$
KF (5) 50 \sim	17,5	20	< 10	-	$(1/2^0/0$ bei $C = 10)$

abene 2.	Fab	elle	2.
----------	------------	------	----

mit den entsprechenden wahren Werten identisch seien, auf der Hand. Der SK liefert aber den Vergleichswert

$$g_w = 15,5 \pm 0,70/_{00},$$

also

$$f_{100 \text{ V}} = \frac{1}{2} \div \frac{10}{90}$$

Deutlicher ist der Unterschied bei $3 \vee KF(1)$, Fig. 14:

$$A_0 = 101 \pm \frac{1}{2}, \ A_w = 97 \div 98.$$

Die Werte f finden sich in Kolonne 5; Kolonne 4 enthält g_e für $C = 0.02 \ \mu F$, ein Kapazitätswert, der, wie man aus der Tabelle ersieht, für Messungen um 100 V an mässig verzerrten Kurven recht geeignet ist.

Unzuverlässiges Arbeiten des SK würde sich bei den niedrigsten Spannungen zeigen. Die Messungen sind dort zwar mühsam, stimmen aber mit der Berechnung nach (1) noch bei 3 V auf 1% überein. Als Nebenresultat sei, in Ergänzung der Untersuchung von Schimpf (8), festgehalten, dass nach der Chubb'schen Methode

25

Spannungen von 5 V an recht zuverlässig gemessen werden können.

Hinsichtlich der Abhängigkeit der Grössen g_e und f von der Kurvenform sagt uns Tab. 2, dass S an flachen Kurven viel genauer bestimmt werden kann als an spitzen, dass ferner gegen flache Kurven hin g_w stark von der Scheitelform abhängt (vergl. die f-Werte für $S/\sqrt{2} \approx 50$ an KF(1), (4) und (6)). Der Umstand, dass trotz dieser Abhängigkeit A_0 für verschiedene KF für Spannungen über 50 V in einem beträchtlichen Bereich von C mit A_w nahe übereinstimmt, legt die Vermutung nahe, dass die Bestimmung des Büschelscheitels den natürlichen Weg zur Elimination der Fehler darstellt.

Wenn für die spitzen Formen KF (3) und (5) ein Unabhängigkeitsbereich für A_0 (C) existiert, so liegt er jedenfalls unterhalb 5000 $\mu\mu F$ (siehe Fig. 16); die Messkapazität muss also bei spitzen Kurven viel *kleiner* gewählt werden als bei flachen. f bleibt dann in erträglichen Grenzen. Gegen spitze Kurven hin ist g_w von der KF ziemlich unabhängig, wie Vergleich von Fig. 11 und 16 für $C = 2000 \ \mu\mu F$ zeigt.

Die Resultate der entsprechenden Messungen an ZS-freien Hochspannungskurven (bis 150 kV) können dahin zusammengefasst werden, dass f bei nicht abnormen Versuchsbedingungen meistens verschwindend ($< 1^{0}/_{00}$) ist. Wie man aus den Versuchsbedingungen einen Schluss auf die Grössenordnung von f ziehen kann, werden wir später sehen. Als Beispiel diene Fig. 15: KF (1), 6000 V. Als Scheitel des Büschels ist hier der Schnittpunkt von U_{0}, U_{5} und U_{10} zu betrachten, welche zu $\Delta K = 0$, 5, $10.10^{-9} F$ gehören. Es ist $A_{0} = 1000, 3 \pm 0, 1$. Mit dem SK konnte nun $A_{w} - A_{0} = 0, 1 \div 0, 2 \pm 0, 2$

(vergl. Tab. 1) nachgewiesen werden. f ist also innerhalb der sehr kleinen Fehlergrenze von $0,2^{0}/_{00}$! Wir dürfen zusammenfassend behaupten: Der eigentliche Fehler f ist, bei geeigneter Wahl von C, auch bei erheblicher Verzerrung der KF bei Spannungen $S/\sqrt{2}$ von 100 V an sehr klein; bei mässig verzerrter Kurve ist von 1000 V an die Röhren-Gleichrichtung der mechanischen auch in quantitativer Hinsicht überlegen.

2. Der Widerstandsfehler (WF).

Zum Verständnis der Grösse *f* bedarf es zunächst der Besprechung des "Widerstandsfehlers", womit abgekürzt der Einfluss des Ventilwiderstandes auf die Lage der *U*-Kurven bezeichnet sei. Es wird später in anderm Zusammenhang festgestellt werden, dass die im I. Teil aufgestellte Regel, wonach der Einfluss des Widerstandsfehlers für kleines E von E unabhängig ist, ausgenommen bei KF (6), sich weitgehend bewährt. Gestützt hierauf und auf die ebenfalls später nachgewiesene stückweise Geradlinigkeit der U-Kurven sei versucht, das Beobachtungsmaterial wiederzugeben durch die Formeln (16)

$$A = A_{w} \left[1 + w \left(C + K, C, K, R, v, KF \dots \right) - \frac{E_{w} \left(I \dots \right)}{2 S_{w}} \left(1 + \frac{K}{C} \right) \right],$$

$$R = R_{0} \left(I, \dots \right) + \Delta R, \quad E_{w} = E_{0} \left(C, K, \dots \right) + \Delta E. \quad (17)$$

Führt man noch die Bezeichnung $w_0 = w(K_0, R_0 \dots)$ ein, so folgt aus Fig. 17 näherungsweise

$$f - w_0 = \left(E_0 - \frac{E_0}{w}\right) \cdot \frac{1}{2S} \left(1 + \frac{K_0}{C}\right). \tag{18}$$

Gemäss Fig. 17 bedeutet der Index w: "auf Widerstandsfehler

korrigiert". Mit der Einführung der Grössen R_0 und E_0 , von denen wir ja nicht wissen, was sie sind, ist bereits angedeutet, dass das Beobachtungsmaterial gedeutet werden soll als herrührend von einem Gleichrichter mit äquivalenter idealer Charakteristik $[E_0/R_0]$ (in Fig. 18a gestrichelt). Das besondere Verhalten des Röhrengleichrichters wird sich dann darin äussern, dass $[E_0/R_0]$ von den Betriebsbedingungen, in erster Linie von der Ausnutzung der Charakteristik (also von I) abhängt.

Wir dürfen hier wohl von einer ausführlichen Begründung absehen, weshalb eine weitergehende Verfeinerung des Ansatzes (16), so z. B. das Inbetrachtziehen einer Abhängigkeit $E_0(R)$ prinzipiell unstatthaft erscheint.

Für die Vorwiderstände vor den Röhren 1 und 2 ergaben sich folgende einleuchtende Sätze:

1. Bei verschwindenden Isolationsfehlern und hinreichend kleinem K_0 ist es gleichgültig, ob $\Delta_1 R = \Delta_2 R = \Delta R$ vor die ein-

zelnen gleichartigen Ventile oder $\varDelta_3 R$ vor den ganzen Gleichrichter geschaltet werden.

2. Die Einflüsse von $\Delta_1 R$ und $\Delta_2 R$ setzen sich bis zu Werten $\omega CR \approx 0.3$ sehr angenähert additiv zusammen. Wir dürfen daher dasselbe von R_0 und R_0 behaupten. Dieser letztere Satz erklärt sich aus der vollständigen Trennung der Arbeitszeiten der zwei Ventile und dem Umstand, dass die Ausgleichsvorgänge

Fig. 18a. Äquivalente ideale Charakteristik. Fig. 18b.

für $\omega C R \approx 0.3$ in einer Halbperiode noch praktisch ausklingen können.

Es genügt, im folgenden mit $\Delta_1 R = \Delta_2 R = \Delta R$ und $R_0 = \frac{1}{2}$ $(R_{10} + R_{20})$ zu operieren. Der Galvanometerwiderstand ist mit dem halben Betrag zu R_0 zu rechnen.

A) Prüfung von (11) mit sinusförmiger Spannung (KF (9)).

Wenn der ausgenützte Teil der Charakteristik ein Mehrfaches des gekrümmten Teiles derselben ist, so werden die WF bei technischen Frequenzen in guter Annäherung durch (11) wiedergegeben¹).

	R = 8	13	23	43	93	$ \cdot 10^3 \ \Omega$
$-w \frac{\text{gem.}}{\text{ber.}}$	1,1 1,0	3,5 2,5	9,3 8	27,3 27,0	$\frac{113}{112}$	º/00

Tabelle 3.

¹) Bei 1000 \sim und I = 0,3 mA erwies sich w(R) trotz Sinusform als praktisch lienar. Eine Erklärung hierfür kann nicht gegeben werden.

a) w(R): Als Beleg diene Tab. 3 für die Abhängigkeit w(R). Bedingungen: 100 kV KF(9), 50 ~, $C = C_{II} = 60 \ \mu\mu F$, $\Delta K + K_0 = 22000 \ \mu\mu F$, I = 0.7 mA. Den berechneten Werten ist $R_0 = 4000 \ \Omega$ zu Grunde gelegt worden.

b) w(C + K): Übereinstimmung fast wie unter a), obgleich hierbei wegen $R = 93000 \ \Omega$ und I = 0.3 mA am Gleichrichter Spannungsabfälle bis 100 V auftreten.

c) w(v): Der bei Niederspannung untersuchte Verlauf von w(v) ist zwischen 40 ~ und 70 ~ innerhalb einiger Prozent quadratisch.

B) WF und Kurvenformen.

w kann gegenüber geringen Verzerrungen recht empfindlich sein. Die Verzerrung äussert sich im allgemeinen bei spitzer KF

in einer erheblichen Vergrösserung von w und einer Streckung der Parabel gegen die Gerade hin, bei flacher Welle in einer Verkleinerung

von w und in einer Krümmung der Parabel im Sinne einer höhern Potenz. Bei sehr ${ {flacher spitzer } } Kurve kann w um eine Grössenordnung <math>{ kleiner grösser }$ als gegenüber Sinusform sein.

Beispiele sind in Fig. 19 enthalten; dort ist die unmittelbar gemessene Grösse — $(w-w_0)$ in Funktion von $\varDelta R$ aufgetragen.

a) w(R). Für den beträchtlichen Unterschied zwischen w(KF)(1)) und dem berechneten WF sind wohl die ca. $4^{0}/_{0}$ fünfte Harmonische verantwortlich zu machen. KF(7) bildet eine Ausnahme von der Regel. KF(7) ist nämlich spitzer als KF(9). Dass w(KF(7)) kleiner als w(KF(9)) ist, ist zunächst verwunderlich, lässt sich aber qualitativ aus der Phasenlage der dritten Harmonischen (siehe Fig. 13, KF(7)) in bezug auf die Grundwelle erklären.

Auf die Entstehung eines linearen Gliedes in w bei sehr spitzen Kurven kommen wir später zu sprechen.

Es sei erwähnt, dass Niederfrequenz mit überlagerter Mittelfrequenz [90 V KF(1) 50 ~] + [30 V Sinusform 820 ~] für $\Delta E = 100$ V (also im regulären Teil der U-Kurve) bei $C = 0,005 \ \mu F$ $w_0 < 1^{0}/_{0}$ ergab. Selbst an sehr schlechten Kurven ist demnach bei genügend kleinem C technische Genauigkeit erreichbar.

Der Grenzfall der flachen Spannungskurven, das ist die zerhackte Gleichspannung, ist der Rechnung leicht zugänglich. Man findet für die beim Aufladen eines Kondensators K über den Widerstand R erreichte Amplitude der Umladung, verglichen mit der für R = 0 erreichbaren, m. a. W. für die relative scheinbare Kapazität gegenüber zerhackter Gleichspannung, wenn RK = Tgesetzt wird

$$\frac{K_z}{K} = \frac{1 - e^{-\frac{\tau}{2T}}}{1 + e^{+\frac{\tau}{2T}}} \approx 1 - 2 \cdot e^{-\frac{\tau}{2T}}, \text{ wenn } \tau \gg T.$$
(19)

Für eine Sinusspannung gleicher Frequenz $\nu = \frac{1}{\tau}$ ist $\frac{\tau}{2T} = x = \frac{\pi}{\omega RK}$, und die relative scheinbare Kapazität beträgt entsprechend

$$\frac{K_{sin}}{K} = \frac{1}{\sqrt{1 + \omega^2 R^2 K^2}} = 1 - \frac{\pi^2}{2} \left(\frac{1}{x}\right)^2 + \cdots$$
 (20)

(19) von der Stelle $\frac{1}{x} = 0$ aus entwickelt gäbe in $\frac{1}{x}$ eine Parabel unendlich hoher Ordnung. Daher sind bei KF (6) für relativ

kleine ΔR sehr kleine WF zu erwarten; dies war auch wirklich der Fall. Die Kleinheit von w(KF(4)) ist hiernach verständlich.

Über die Darstellung der Funktionen (19) und (20) in Fig. 20 vergl. S. 398.

b) w(C + K) und w(v): Eingehende Untersuchung zeigte, dass für KF(1) wim wesentlichen Funktion von $2 \pi v R (C + K)$ ist.

C) WF bei unvollkommener Ausnutzung der Charakteristik.

Es gehen auch hier C, K, R und ν im wesentlichen nur in der Verbindung $2 \pi \nu R (C + K)$ in w ein. Mit abnehmender Ausnutzung geht eine Verflachung der quadratischen Abhängigkeiten Hand in Hand: die Willkür in der Wahl eines Abhängigkeitsgesetzes (siehe z. B. die konst. $\cdot R^{3/2}$ -Kurve in Fig. 19), mit der man w darzustellen versucht, um auf ,R = 0'' zu extrapolieren, wächst mit R_0 rasch an und ist nur ein Ausdruck für den Umstand, dass bei geringer Ausnutzung ein "Röhrenwiderstand" als konstante Zahl nicht mehr existiert.

Das praktische Resultat der beiden Abschnitte über g_e und wist zusammenfassend das folgende: Die Arbeit führt, im Gegensatz zu den meisten andern, die sich mit demselben Gegenstand befassen, zum Ergebnis, dass der WF nicht durch besondere Schaltmassnahmen zu eliminieren, sondern zweckmässig durch grössenordnungsmässiges Abschätzen (was nach dem 2. Abschnitt recht zuverlässig geschehen kann) und anschliessendes Kleinhalten von $\omega R_0 (C + K)$ zurückzudrängen und dafür das Hauptaugenmerk auf die Grundkorrektion g_e zu richten ist, welche nach (14c) abgeschätzt und nach einer der im IV. Teil angegebenen Methoden bestimmt werden kann.

3. Analyse der Grundkorrektion g_e und des Fehlers f.

Nach (14c) ist g_e wesentlich durch 'E bzw. E_0 bestimmt. Der letzteren Grösse müssen wir uns daher zuwenden.

$rac{VKF}{C\cdot 10^{-9}}F$	100 20	$\begin{array}{c} 200 \\ 10 \end{array}$	$\frac{400}{5}$	$800 \\ 2,5$	$\begin{vmatrix} 1500\\1,33\end{vmatrix}$	3000 0,66	6000 0,33
E ₀ in V E ₀ in V w	2, 8/9 2, ₂	1,9 (1,6)	$^{1,3}_{1,2}$	1,1 1,1	1,2 1,2	$1,2 \\ 1,2$	1, 1/2 1, 1/2

[a]	be	11	e	4.

(18) E_0 aus den anderweitig bestimmten Grössen f und w_0 berechnet worden. Die Unsicherheit dieser Korrektion erreicht die Grösse des nachzuweisenden Effektes sicher nicht. Die aus der letzten Zeile ersichtliche deutliche Abhängigkeit von C^1) gibt nun das für das Verständnis der Wirkungsweise des Röhrengleichrichters vielleicht wichtigste Resultat: Zu vom Standpunkt der vereinfachten Theorie hinsichtlich des Gleichrichters gleichwertigen Betriebsbedingungen (I bzw. VC = konstant) gehören, je nachdem C oder K vorwiegt, verschiedene äquivalente ideale Charakteristiken.

b) $E_0(I)$ bzw. g_e von (I). Nach obigem ist E_0 jedenfalls nicht Funktion von I oder, genauer gesagt, von der Gleichrichter-Charakteristik allein. Trotzdem lässt sich über die Zunahme von E_0 mit der Ausnutzung ziemlich allgemein eine Aussage machen.

In Fig. 18b ist der Koordinatenursprung in den Anstiegpunkt der wahren Charakteristik gelegt worden. Die andere (nicht gezeichnete) Hälfte der Charakteristik sei zur vorliegenden symmetrisch: E_0 verteilt sich dann zu gleichen Teilen auf die beiden Röhren. Man kommt den tatsächlichen Verhältnissen wohl recht nahe, wenn man die wahre Charakteristik i = i (e) von der Form $i = k \cdot e^n$ annimmt und von der idealen Charakteristik beim Strom I_1 i' = i' (e, I_1) voraussetzt, dass sie dieselbe Steigung $\left|\frac{di}{de}\right|_1$ wie i (e) im Punkt ($i = I_1, e = e_1$) besitzt und durch einen Punkt Pvon i (e) geht, dessen Ordinate ein gewisses konstantes Vielfaches $a \cdot I_1$ von I_1 ist. Für diese Gerade folgt leicht, dass sie die Spannungsachse in einem Punkt mit der Abszisse

$$\frac{1}{2} \cdot \underbrace{E_0}_{w} = e_1 \left(a^{1/n} - \frac{a}{n} \right) = \text{Konst.} \cdot e_1$$
(21)

¹) oder K? zur Bestimmung von E_0 muss stets K variiert werden.

schneidet. Hiernach befolgen E_0 und die Gleichspannung e_1 , die an der Röhre liegen würde, wenn ein Gleichstrom gleichen Betrages sie durchfliessen würde, ziemlich allgemein das gleiche Gesetz. Nun bestimmt einerseits E_0 direkt das Verhalten von g_e und letzteres dasjenige von 'A; andererseits ist I nahe proportional C. Wir verstehen hiernach, dass die Kurve 'A (C) in Fig. 11 von der gleichen Gestalt wie eine (um 90° gedrehte) Röhren-

Fig. 21. Konstruktion von f.

charakteristik ist. Bei Spannungen um 15 V KF(1) hat sich diese Regel sehr gut bestätigt.

c) Wir betrachten noch ganz schematisch anhand von Fig. 21 das Zustandekommen von f infolge der WF. Die linke Hälfte der Abbildung stellt die beliebig gewählte Funktion w(C + K), die rechte Hälfte die hieraus konstruierte U-Geradenschar dar. (3) und (16) vereinigt lauten:

$$A = A_{w} \left[1 + w(K) - \frac{E_{w}}{2 S_{w}} \left(1 + \frac{K}{C} \right) \right] \equiv A_{0} \left[1 - \frac{E(K)}{2 S} \left(1 + \frac{K}{C} \right) \right],$$

wobei durch die Schreibweise angedeutet ist, dass K der allein variable Parameter der Schar ist. Setzt man noch für den Fehler der natürlichen Gegenspannung

$$E_{\mathbf{0}}(K) - E_{w} = E(K) - E_{w} = \delta E_{\mathbf{0}}(K),$$

so folgt angenähert (vergl. (18)):

$$f - w = \delta E_{\mathbf{0}} \cdot \frac{1}{2 S_w} \left(1 + \frac{K}{C} \right).$$

Bals Schnitt von U_K mit $U_{K\,+\,\mathfrak{d}\,K}$ ist nun nach der Theorie der Einhüllenden gegeben durch

$$\frac{\partial A}{\partial K} = A_w \left[\frac{\partial w}{\partial K} - \frac{E_w}{2 S_w C} \right] \Big|_{E_w = -\delta E_o} = 0,$$

woraus:

$$\delta E_{\mathbf{0}} = -2 \, S_w C \cdot \frac{\partial w}{\partial K} \,.$$

Oben eingesetzt:

$$f - w = -\frac{\partial w}{\partial K} \left(C + K \right). \tag{22}$$

Hieraus lesen wir eine einfache Regel zur Konstruktion von fab: f ist die Strecke, die die Tangente in (C + K, w) an w(K)auf der w-Achse abschneidet. Die Konstruktion ist damit unmittelbar verständlich. Der Ort des Büschelpunktes B hat für den Wendepunkt von w(K) eine Spitze. Einer durch den Nullpunkt gehenden Tangente an w(K) entspricht ein infinitesimales Büschel mit f = 0. (Ein theoretisches Beispiel hiefür siehe unten.) Es leuchtet ferner ein, dass gute Definition des Büschels ein erhebliches f nicht ausschliesst.

Der ziemlich allgemeine Ansatz

$$w = -[a (C + K) + b (C + K)^{n}],$$

aus welchem nach (22) $f = (n-1) b \cdot (C + K)^n$ folgt, lehrt uns zweierlei: Ein lineares Glied in w (C + K) stört die Messung nicht. Dies müssen wir als eigentliche Ursache für die Kleinheit von f bis zu einigen Volt hinunter annehmen; dort wurde ja bei der geringen Ausnutzung w als praktisch linear befunden. Zweitens folgt, dass f um so kleiner ist, je näher der Abhängigkeitsexponent an 1 ist. Beispiel: Aus den bei KF(1) empirisch gefundenen Exponenten n = 3/2 (siehe oben Abschnitt 2, C) berechnet sich für 100 V, $C = 0.02 \ \mu F f$ zu $1^{0}/_{00}$, was mit Tab. 2 übereinstimmt. Dieses Nebenresultat wird hier nur erwähnt, um zu zeigen, dass auch das feinere Verhalten der Fehler 2. Ordnung unserem Verständnis nicht ganz verschlossen ist. d) g_e und KF. Bei der Besprechung von Tab. 2 wurde bereits festgestellt, dass g_e gegen flache Kurven hin stark von der Scheitelform abhängig ist. Qualitativ lässt sich dies folgendermassen verstehen: Der Schwerpunkt der Ausnutzung rückt mit zunehmender Abflachung der Spannungskurve bzw. flachwerdendem Null-

durchgang des Stromes auf der Röhren-Charakteristik nach unten. Der Umstand, dass, wie wir sehen, $g_w (C = 0,002 \ \mu F)$ für KF (1) und KF (3) so ähnlich sind, darf nicht zum Schluss verleiten, dass zu beliebig spitzen Kurven dasselbe g_w gehört. Dies zeigt das für R = konstant der Rechnung leicht zugängliche Beispiel der *Dreieckskurve*: Man erhält die zu (21) analoge Beziehung

$$1/_2 \cdot E_0 = 2 \cdot \ln 2 \cdot e_1 = 1,386 \cdot e_1$$
 ,

während empirisch für KF(1) und KF(3) die Konstante in (21) als ≤ 1 (meist ca. 0,5) befunden wurde.

Das Beispiel der Dreieckskurve ist auch insofern lehrreich, als

$$w = -rac{2}{\pi} \cdot ln \ 2 \cdot \omega \ R \ (C+K)$$

in $\omega R (C + K)$ rein linear und folglich f = 0 ist. Fig. 21 bezieht sich auf eine Dreieckform mit leicht abgerundeten Spitzen. Während man sonst C + K bei verzerrter Kurve nicht zu gross wählen darf, gilt hier gerade das Gegenteil.

Kurven mit ZS: Zu Fig. 16. Wie wir sehen werden, sind die WF im überhöhten Teil der U-Kurven im allgemeinen etwas grösser als im normalen Teil. Sie müssten dreimal grösser sein, wenn die Knickpunkte der U-Kurven auf einer E-Achsenparallelen liegen sollten. Daher liegen die Knicke bei grösserem K tiefer als bei kleinerem K; ferner ist die Abszisse des überhöhten Büschelpunktes grösser als diejenige des normalen und kommt dem Wert $E_w = 0$ näher.

Das praktische Resultat dieses Abschnittes ist: wenn man den Eigentümlichkeiten der Arbeitsweise des Gleichrichters Rechnung tragen will, so ist es ratsam, bei jeder nennenswerten Änderung der Messbedingungen die Grundkorrektion neu zu bestimmen.

Wir wollen mit diesen Ausführungen die erste der beiden im I. Teil aufgeworfenen Fragen als beantwortet ansehen und uns der zweiten Frage zuwenden, nicht nur im Hinblick auf die Möglichkeit einer Umgehung der Frequenzmessung durch den Ausbau des CH-Verfahrens 2. Art, sondern auch weil eine Reihe von Eigenschaften der U-Kurven benutzt worden sind, für die wir noch den experimentellen Nachweis schuldig sind.

4. Einfluss des WF auf den Verlauf der U-Kurven.

Der allgemeine Verlauf ist aus Fig. 9 ersichtlich. Die weitgehende Gültigkeit des im I. Teil abgeleiteten Satzes über das Parallellaufen der U-Kurven bei $\Delta E < 2S$ erhellt aus folgendem Beispiel: 100 V KF (1), 50 ~, $C = 0.02 \ \mu\mu F$, $K = K_0 = 130 \ \mu\mu F$;

$\varDelta E = 12 \ { m V}$	$\varDelta E = 112 \mathrm{V}$
·(9650)	(6170)
$w_0 - w = 0 \cdot 10^{-4}$	$w_0 - w = 0 \cdot 10^{-4}$
73	71
197	195
542	538
1787	1662
	$\begin{array}{c c} \varDelta E = 12 \ \mathrm{V} \\ \hline & \cdot (9650) \\ \hline \\ w_0 - w = 0 \cdot 10^{-4} \\ & 73 \\ 197 \\ & 542 \\ 1787 \end{array}$

Га	ab	el	le	5

Die Kurvenformen KF (7) bis KF (10) liefern ähnliche Ergebnisse. Für wenig verzerrte und spitze Kurven ist demnach unsere Regel bis zu Widerstandsfehlern von einigen Prozent gut erfüllt. Bei den KF mit ZS sind die WF im erhöhten Teil der U-Kurven etwa $30 - 100^{\circ}/_{\circ}$ grösser als im regulären Teil.

KF (6) als Vertreter der sehr flachen Formen bedarf einer besondern Besprechnug. Der WF bringt hier unmittelbar die Unvollständigkeit der Aufladung von C auf die Spannung

$$2S\left[1 - rac{E}{2S}\left(1 + rac{K}{C}
ight)
ight]$$

zum Audruck. I ist daher proportional $A = A_0 (1 - |w_0|) \left[1 - \frac{E}{2S}\left(1 + \frac{K}{C}\right)\right]$. Die Neigung $\frac{1}{A_0} \cdot \frac{\partial A}{\partial E}$ ist also geringer. Für das Verfahren 2. Art ersteht hieraus jedoch keine Schwierigkeit, da w_0 (KF (6)) stets vernachlässigbar klein gehalten werden kann.

5. Frequenzabhängigkeit von C und K^1).

A) K (v bzw. KF).

a) Messpannung sinusförmig. Wie aus Fig. 4 ersichtlich, ist K für kleine E annähernd mit zerhackter Gleichspannung, für E nahe gleich $\frac{2SC}{K+C}$ mit Sinusspannung belastet. Da im allgemeinen

¹) Hierbei ist weniger an die Abhängigkeit von der Messfrequenz als an das in einer Abhängigkeit von der KF sich äussernde verschiedene Verhalten gegenüber Oberwellen gedacht.

K keine Luftkapazität ist, müssen wir daher mit einer Abhängigkeit K(E) rechnen.

Es gibt vier relativ einfache Modelle für einen Kondensator mit Verlusten: siehe Fig. 22. Die Serie-Parallelschaltung SP_{II} ist dem sog. Maxwellschen Zwei-Schichten-Modell SP_{I} (Lit. (9)) äquivalent, da sich die beiden Ausdrücke für die komplexe Leitfähigkeit auf dieselbe Form in ω bringen lassen. Wir bedienen uns nachstehend des Modells SP_{II} (SP genannt), weil es rechnerisch und experimentell leichter zu handhaben ist.

Als sehr schlechter Kondensator diene eine zweiadrige, baumwollumsponnene Leitungsschnur (bezeichnet mit X) mit den Daten:

 $X \begin{cases} \nu = 50: \text{tg } \delta = 0,5; \\ P(X): 3400 \ \mu\mu F, \text{ in Serie } 0,46 \cdot 10^6 \ \Omega \\ P(X): 2700 \ \mu\mu F, \text{ parallel } 2,3 \cdot 10^6 \ \Omega \\ \nu = 800: \text{ ca. } 1400 \ \mu\mu F. \text{ Gleichstromisolation} \approx 10^9. \end{cases}$

Für die Brauchbarkeit der Modelle entscheidet hier der Einfluss auf die U-Kurven bei Ersatz von X (als K) durch äquivalente Modellschaltungen. Das Experiment zeigt nun, dass das durch die Fehler von X bedingte, in Fig. 23 übertrieben dargestellte Durchhängen der U-Kurven durch die durch Probieren gefundene Schaltung

 $SP(X): K_1 = 1300, K_2 \approx 4000 \ \mu\mu F, R \approx 1.2 \cdot 10^6 \ \Omega, \frac{1}{\varrho} = 0$ qualitativ gut wiedergegeben wird, während dies für S(X) und P(X) nicht der Fall ist. Im folgenden sei daher der Deutung der Erscheinungen das Modell SP, und zwar mit $\varrho = \infty$, zugrunde gelegt, entsprechend dem Umstand, dass in praxi meistens die mangelnde Isolation gegenüber der Wechselstrom-Verlust-Leitfähigkeit völlig zurücktritt.

Da es sich nur um Fehlergrössen handelt, wollen wir uns mit einem qualitativen Verständnis begnügen und annehmen, dass in erster Näherung die Veränderungen der Scheinkapazität (das ist $=\frac{1}{\omega}$ · Scheinleitfähigkeit) mit der *KF* für die Abweichungen von (11a) massgebend seien. Diese berechnet sich für Sinusform in den Bezeichnungen von Fig. 22 und mit $T = RK_2$ leicht zu

$$K_{\rm sin} = K_1 \left[\left/ \left(1 + \frac{K_2/K_1}{1 + \omega^2 T^2} \right)^2 + \left(\frac{\omega T \cdot K_2/K_1}{1 + \omega^2 T^2} \right)^2 \right.$$
(23)

Für $\omega T = \infty$ erhält man hieraus die geometrische Kapazität $\infty K_{\sin} = K_1$ und für $\omega T = 0$ die Gleichkapazität $_0K_{\sin} = K_1 + K_2$. Es genügt für unsere Zwecke, festzustellen, dass die relative Erhöhung der Scheinkapazität

$$v_{\rm sin} = \frac{K_{\rm sin} - {}_{\infty}K_{\rm sin}}{{}_{0}K_{\rm sin} - {}_{\infty}K_{\rm sin}} \tag{24}$$

als Funktion von ω T und dem Parameter K_2/K_1 in Fig. 20 das Gebiet zwischen dem Grenzfall

$$\lim \frac{K_2}{K_1} \to 0: v_0 = \frac{1}{1 + \omega^2 T^2} \quad (K_2 \text{ klein, Kondensator gut})$$

und dem bereits in (20) enthaltenen Fall

$$\lim \frac{K_2}{K_1} \rightarrow \infty : v_{\infty} = \frac{1}{\sqrt{1 + \omega^2 T^2}} \quad (K_1 \text{ klein})$$

ausfüllt. Andererseits ist für zerhackte Gleichspannung $K_z = K_1 + K_{z^z}$, wobei sich K_{z^z} nach (19) berechnet, und ferner nach Definition

$$v_z = \frac{K_z - {}_{\infty}K_z}{{}_{0}K_z - {}_{\infty}K_z}.$$
(25)

In Fig. 20 ist noch rechter Hand in vergrössertem Masstab das asymtotische Verhalten der drei Funktionen v_0 , v_{∞} und v_z bei $\omega T \rightarrow \infty$ dargestellt.

Wie erwähnt wurde, wollen wir also den in Fig. 23 dargestellten Durchhang der U-Kurven deuten als Abnahme der Neigung von

$$\frac{1}{2S}\left(\frac{C+K_z}{C}\right)\operatorname{bis}\frac{1}{2S}\left(\frac{C+K_{\sin}}{C}\right)^{1}, \text{ also } \operatorname{um}\frac{1}{2SC}\left(K_z-K_{\sin}\right).$$

Die Geradlinigkeit der U-Kurve ist also gleichsam ein Mass für die

¹) C fehlerfrei vorausgesetzt.

dielektrische Güte von K. Fig. 20 entnimmt man nun, dass in einem beträchtlichen Bereich von ωT die der U-Kurve zuentnehmende Grösse $\frac{K_z - K_{\sin}}{K_z}$ von der gleichen Grössenordnung wie $\frac{50 - K_{\sin} - \omega K_{\sin}}{50 - K_{\sin}}$ oder, da praktisch $_{800}$, $K_{\sin} \approx {}_{\omega}K_{\sin}$, wie die von einem Kondensator am ehesten bekannte Grösse $\frac{50 - K_{\sin} - \omega K_{\sin}}{50 - K_{\sin}}$ ist.

T	o h	~11	~
- 1	au	en	e

6.

Art des Kondensators	$\frac{50 - K_z - 50 - K_{\sin}}{50 - K_z}$	$\frac{50 - K_{\sin} - 800 - K_{\sin}}{50 - K_{\sin}}$
Luft-Kondensator; fester Glimmer- Kondensator, beste Qualität	0 ¹)	0 ¹)
Guter Dreidekaden-Glimmer-Konden- sator, je nach Schaltung	$2 \div 1^{0\!/_{00}}$	$3\div1^{0}\!/_{00}$
Glimmer-Kondensator geringerer Qua- lität	1º/₀	$1^{1}/_{2}^{0}/_{0}$
(Präzisions-Papier-Kondensator		1/20/0)
Einadriges Kabel mit Bleimantel	3º/0	3º/0
Metall-umklöppelte Gummiaderlitze .	einige %	$3 \div 5^{0/0}$
K_0 , ca. 130 $\mu\mu F$ (ungeschützter GR).	$10 \div 20^{\text{o}/\text{o}}$	$20 \div 30^{0}/_{0}$
Kabel X	ca. 20%/0	ca. $50^{0}/_{0}$

Tab. 6 bestätigt diese Regel; man hat also allgemein in der Differenz der Scheinkapazitäten für ν ($\ll 800 \sim$) und $800 \sim$ einen recht guten Anhaltspunkt für die Beurteilung der Frage, wie weit hinunter die U-Kurve messtechnisch ausgenützt werden darf, bzw.

¹) Nach Zertifikat der PTR.

welches die Grössenordnung der (minimalen) Fehler ist, die man gewärtigen muss, wenn ein bestimmter Unterdrückungsgrad durch die Umstände vorgeschrieben ist.

Ein Beispiel erläutere die Entstehung der ersten Kolonne der Tabelle 6: 500 V KF(1), 50 ~, $C = 330 \ \mu\mu F$ (Luft), $I = 0,024 \text{ mA}, K_0 \approx 130 \ \mu\mu F, \ \Delta K = 5000 \ \mu\mu F$ (Glimmerkondensator geringerer Qualität). Tab. 7.

$\varDelta E V$	А	Diff.
2 22 42 62 82 92	979,5 775,7 572,2 370,8 170,1 70,0	203,8 203,5 201,4 200,7 100,1

Tabelle 7.

Aus der Abnahme der Differenzen, d. h. des Gefälles, folgt die gesamte Kapazitätsänderung δK zu

 $1 \div 1, 2^{0}/_{0}$ von 5500 $\mu\mu F = 55 \div 65 \ \mu\mu F.$

Die entsprechende Messung mit $K = 4000 \ \mu\mu F$ (Luft) gibt

 $\delta' K = 3 \div 4^{0/00}$ von 4500 $\mu \mu' F \approx 15 \ \mu \mu F$.

Auf den Glimmerkondensator entfallen also $45 \div 50 \ \mu\mu F$ bzw. 1%.

b) Hinsichtlich der KF der Messpannung sei bemerkt, dass für KF (6) die Kapazitätsänderung, wie erwartet, viel kleiner ausfällt als für Sinusform, z. B. für X auf den obern $^{9}/_{10}$ der U-Kurve $< 1^{0}/_{0}!$ Für X bei KF (3) ist sie etwas grösser als bei Sinusform.

B) C (v bzw. KF).

a) Sinusförmige Niederspannung, Spezialfall $K \ll C$. Der Mechanismus ist anders als bei K, das Resultat jedoch, wie Überlegung und Experiment zeigen, ungefähr dasselbe, d. h.: Die

Wirkungen der Fehler von C und K addieren sich; der resultierende Durchhang ist demnach durch $\frac{\delta(C+K)}{C+K}$ charakterisiert. Bei Hochspannung ($C \ll K$, ΔE stets $\ll 2 S$) kommt natürlich hinsichtlich C ein solcher Effekt nicht in Frage.

b) Stark verzerrte Spannungen sind nur mit verlustfreiem C (Luft oder Pressgas als Dielektrikum) genau messbar, weil nur dann der Strom der zeitlichen Ableitung der Spannung proportional ist.

C) Isolationsfehler.

Solange die Isolation den idealen Verhältnissen von Fig. 1b bzw. 2 entspricht, ist es gleichgültig, ob der Erdpunkt F zwischen Gund ΔE oder zwischen G und R_1 oder zwischen ΔE und R_2 liegt. Bei zweifelhafter Isolation ist die gezeichnete Schaltung im allgemeinen vorzuziehen.

Gegen Isolationsfehler parallel zu den Röhren sind alle drei Schaltungen ungefähr gleich empfindlich.

Der Einfluss eines endlichen ohmischen Nebenschlusses zum Gleichrichter ($\varrho \neq \infty$) in Funktion von ΔE besteht in komplizierten Verschiebungen und Krümmungen der U-Kurven. Durch die Bildung des Büschels heben sich die Isolationsfehler (irgendwelcher Art) nicht oder nur teilweise weg. Dasselbe gilt von den Fehlern von K (Nebenschluss RK_2 in Fig. 22). Folglich sind Isolations- und Kapazitätsfehler auf die Grundkorrektion von schädlichem Einfluss und müssen daher vermieden werden. Zur Abschätzung der Grössenordnung der Fehler diene die empirisch aufgestellte Regel: Das grundkorrigierte Resultat ist schlimmstenfalls mit einem Fehler von der Grössenordnung

 $\frac{1}{2S} \cdot \frac{\text{einige Volt}}{\omega C \cdot (\text{Isol.- bezw. Verlustwidersand von } K)}$

behaftet.

6. Abnahme von E_0 mit wachsender Unterdrückung.

Man darf nicht erwarten, dass mit zunehmender Unterdrückung ε

$$\varepsilon = \frac{\Delta E}{2S} \left(1 + \frac{K}{C} \right) \quad (0 < \varepsilon < 1)$$

26

die ideale Ersatzcharakteristik von ε unabhängig bleibt. Die Änderung von R_0 ist praktisch belanglos, nicht aber die Abnahme von E_0 :

$$E_0(\varepsilon) = E_0(\Delta E = 2 \text{ V}) - m \cdot \varepsilon + m' \cdot \varepsilon^2 + \dots (m \ge 0) (26)$$

Der durch die höhern Glieder ε^2 , ε^2 ... bedingte Anteil an der Änderung der Neigung der U-Kurven war unter messtechnisch günstigen Bedingungen sehr klein ($< 1^{0}/_{00}$ von 100 V an aufwärts; bei 12 V KF (1), $C = 0,01 \ \mu$ F noch nicht $1/2^{0}/_{0}$). Von diesem Umstand wurde sub 5) Gebrauch gemacht, indem die ganze Krümmung den Fehlern von C und K zugeschrieben wurde.

Das lineare Glied in (26) bedingt wegen

$$E = E_0 + \Delta E = E_0 \left(\Delta E = 2 \text{ V} \right) + \left(1 - m \cdot \frac{C + K}{2 S C} \right) \cdot \Delta E$$

nach (11a) die veränderte Neigung

$$-\frac{1}{A_0}\frac{\partial A}{\partial \Delta E} = \frac{1}{2S}\left(1 - m \cdot \frac{C+K}{2SC}\right)\left(1 + \frac{K}{C}\right) = \frac{1}{2S'}\left(1 + \frac{K}{C}\right).$$
 (27)

Die nach dem Verfahren 2. Art ermittelten Werte 2S' haben daher, wenn man, wie im dritten Glied von (27) zum Ausdruck kommt, m nicht berücksichtigt, Neigung, zu gross auszufallen, und zwar um

$$2(S'-S) = m\left(1 + \frac{K}{C}\right).$$

m kann natürlich nicht grösser als E_0 selbst werden.

Die Bestimmung von m durch Messung des relativen Gefälles im obern Teil der U-Kurven erfolgte bei Niederspannung, da $\frac{K}{C} \left(=\frac{K_0}{C}\right)$ dort genauer bekannt war. Die Ergebnisse für Messströme bis 0,5 mA (KF(1) 50 ~) lassen sich durch

$$m = (0, 2 \div 0, 3) \cdot E_0$$

darstellen. $\frac{m}{2S}\left(1+\frac{K}{C}\right)$ ist der eigentliche Fehler des Verfahrens 2. Art, der zum Fehler f, welcher ja jeder Messung anhaftet, hinzutritt. Z. B. bei 50 V KF (1) 50 ~, $C = 0.02 \ \mu F$ beträgt er 3⁰/₀₀. Es ist zu erwarten, dass für Ströme von mehreren mA, wo die Charakteristik wirklich wie eine ideale arbeitet, m viel kleiner wird.

Unregelmässigkeiten in der Krümmung, die nicht den bisher besprochenen Erscheinungen zugeteilt werden können, scheinen im obersten Teil der U-Kurven, der ja, wie es in der Natur der Prüfmethode liegt, besonders genau untersucht werden kann, in geringem Masse vorhanden zu sein. Bei Strömen über 1 mA und verzerrter Kurve wurden lokale Neigungsänderungen von $1/2^{0}/_{0}$ beobachtet. Ein ungünstiger Einfluss auf g_e war nicht festzustellen. Für Messungen nach dem Verfahren 2. Art ist jedenfalls ein grösserer Teil der U-Kurve beizuziehen.

7. Fremd- und gleichperiodige Störungen, Wechselstromheizung usw.

Die kapazitive Beeinflussung der mit F (Fig. 2) metallisch . verbundenen Teile des Gleichrichters ist vollständig zu vernachlässigen.

A) Kapazitive Beeinflussung der mit M metallisch verbundenen Teile.

a) Gleichperiodige Störungen. Der Störstrom addiert sich schlimmstenfalls algebraisch zum Messtrom.

b) Fremdperiodige Störungen. Der Einfluss wächst quadratisch mit dem Störstrom, ist also äusserst klein.

B) Störungen bei direkt wechselstrom-geheizten Röhren.

Die Spannungsabfälle an den Heizdrähten wirken wie vor die Röhren geschaltete Wechselspannungen. Die Erscheinungen sind sehr mannigfaltig; wir begnügen uns hier mit der Angabe einiger Winke für die Praxis.

a) Heizfrequenz = Messfrequenz. Es gibt zwei Paare von Möglichkeiten, die Röhren an das Netz bzw. den Heiztransformator anzuschliessen. Das eine Paar ist daran erkenntlich, dass das zur Unterdrückung des Nullstromes minimal nötige ΔE kleiner ist als beim andern Paar; dieses letztere hat dafür den Vorteil, dass die Differenzen beim Umpolen des (gemeinsamen) Netzanschlusses viel kleiner ausfallen, dass ferner (11a) viel besser gilt und das g_e etwas zuverlässiger ist.

b) Heizfrequenz *#* Messfrequenz. Die Resultate sind erheblich besser, bleiben aber an Zuverlässigkeit hinter den mit Gleichstromheizung erhältlichen doch noch etwas zurück. Alle Störungen treten mit zunehmendem Messtrom mehr und mehr zurück.

Direkte Wechselstromheizung ist jedenfalls nicht zu empfehlen. Will man auf die im Netzanschluss liegende Vereinfachung gegenüber der Batterieheizung nicht verzichten, so benutze man indirekt geheizte Röhren. Über die Eignung der indirekten Heizung bei Messströmen von $10^{-6} A$ sind weitere Versuche im Gang.

C) Die Selbstinduktion des Galvanometers ist wegen der Ungültigkeit des Superpositionsprinzips prinzipiell schädlich. Die Fehler sind jedoch klein und dürften auch bei genauen Messungen stets zu vernachlässigen sein.

IV. Teil. Folgerungen und Ergänzungen.

1. Bemerkungen zur praktischen Anwendung.

Die günstigsten Bedingungen sind nach allem von der KFund ferner bei Kurven ohne ZS davon abhängig, ob die 1. oder 2. Art des Verfahrens zur Anwendung gelangen soll. Allgemein ist für genaue Messungen empfehlenswert, Gleichstromheizung oder indirekte Wechselstromheizung zu benutzen und minderwertige Kabel zur Verbindung von C mit dem Gleichrichter zu umgehen. Ferner verdienen hinsichtlich der 2. Art des Verfahrens Röhren mit möglichst eckig und steil ansteigender Charakteristik den Vorzug.

Bei wenig verzerrter NS von ca. 100 V ist ein C von $5 \div 10.10^{-9}$ F geeignet, da einerseits die WF noch nicht stören, andererseits ein Schutz bei solch hohen Kapazitäten im allgemeinen noch nicht nötig ist. Starke Verzerrung verlangt kleines C.

Bei HS ist gegen grosse Ströme (Grössenordnung 10 mA) nichts einzuwenden, solange man nicht durch ZS zu teilweiser Unterdrückung von A gezwungen wird. Ein Urteil über die Grösse des infolge des nach Formel (5a) dann notwendigen grossen Kentstehenden WF im regulären Teil der U-Kurve gewinnt man, indem man das überhöhte Büschel aufnimmt ($_1A_0$ in Fig. 5), hier nach dem Vorbild von Fig. 15 den WF für dasjenige K, dessen man sich zur Unterdrückung der ZS bedienen will, abliest und bemerkt, dass nach dem früheren der WF im regulären Teil der U-Kurven kleiner ist. Bei starker Verzerrung, oder wenn man die Möglichkeit der Anwendung des Verfahrens 2. Art offen lassen will, ist es angezeigt, die Mesströme von der Grössenordnung 0,1 mA zu wählen.

Wenn ein guter Frequenzmesser zur Verfügung steht, verdient das CH-Verfahren 1. Art den Vorzug. Die Fehler des Gleichrichters sind meist so klein, dass sie neben den Fehlern von C und ν (an der Genauigkeit der Messung von I fehlt es meistens nicht) ganz zurücktreten. Es liegt in der Natur des Verfahrens 2. Art, dass bei NSan C und K, bei HS an K hinsichtlich der Unabhängigkeit von ν bzw. KF grosse Anforderungen gestellt werden müssen. Dieser Umstand im Verein mit der Abhängigkeit von E_0 von der Aus-

nutzung erschwert es, eine höhere Genauigkeit als etwa $\frac{1}{3}$ % zu erreichen.

Die Bestimmung von g_e — sofern eine Abschätzung nach (14 c) eine solche überhaupt notwendig erscheinen lässst — erfolgt, wenn das Verhältnis $\frac{C+K_0}{\Delta K}$ bekannt ist, leicht folgendermassen mit Hilfe von zwei Messungen: Man misst bei normalen Bedingungen $(A_1 (E, K_0))$ die durch Zuschaltung von ΔK erzeugte Abnahme ΔA von A_1 . Aus Fig. 24 und Formel (11a) folgt dann

$$g_e = \frac{\Delta A}{A_1} \cdot \frac{C + K_0}{\Delta K}.$$

Kennt man das genannte Verhältnis nicht, so kann man wie in den beigegebenen Abbildungen graphisch vorgehen oder g_e aus vier Messungen (siehe Fig. 25):

bei *unbekannten* Grössen ΔE und ΔK berechnen zu

$$g_e = \frac{A_0}{A_{11}} - 1, A_0 = \frac{A_{11} \cdot A_{22} - A_{12} \cdot A_{21}}{A_{11} + A_{22} - A_{12} - A_{21}}.$$

Es ist klar, dass man hierbei in praxi nicht mit einer Brückenschaltung, sondern mit direkter Strommessung, unter Konstanthaltung von Spannung und Frequenz arbeitet.

Die Messung von K_0 erfolgt zweckmässig durch Bestimmung des absoluten Gefälles — $\frac{\partial I}{\partial E}\Big|_{K_0}$ der U_0 -Kurve; speziell für A = Iist nach (1) $A_0 = I_0 = 2 SC v$ und daher nach (11a):

$$-\frac{\partial I}{\partial E}\Big|_{K_0} = \nu \left(K_0 + C\right).$$

Bei HS ist im allgemeinen $C \ll K$ und braucht nur ungefähr oder gar nicht bekannt zu sein.

Über den Fehler von g_e infolge der Mängel von K_0 orientiert man sich leicht, indem man ein Gebilde ähnlicher dielektrischer Eigenschaften zu K parallel schaltet. Den Isolationsfehler von K_0 erkennt man daran, dass sich I nicht vollständig unterdrücken lässt.

An Formeln für die Anwendung des CH-Verfahrens nach Bestimmung von g_e seien die folgenden gegeben.

Für das Verfahren 1. Art bei Kurven ohne ZS:

$$2S = \frac{I_1}{vC} (1 + g_e) , \qquad (28 a)$$

wobe
i g_{e} zu $I_{1}\left(E_{1}\right)$ gehört.

Für das Verfahren 2. Art bei Kurven ohne ZS:

Es bedarf zweier Messungen: $A_1(E_1)$, wozu g_e gehöre, und $A_2(E_2)$. Dann folgt aus $A_0 = A_1(1 + g_e)$ und (11a):

$$2S = \frac{E_2 - E_1}{A_1 - A_2} \cdot A_1 \left(1 + g_e\right) \cdot \left(1 + \frac{K_0}{C}\right).$$
(29 a)

-406

407 -

Für das Verfahren 2. Art bei Kurven mit ZS:

 g_e gehöre zu $A_1(E_1)$. Die zwei Messungen im normalen Teil der U-Kurve seien $A_2(E_2)$ und $A_3(E_3)$ (siehe Fig. 26). Wie oben ist

$$2S = \frac{E_3 - E_2}{A_2 - A_3} \cdot A_1 (1 + g_e) \left(1 + \frac{K_0}{C} \right),$$

worin aber A_1 keine gemessene Grösse ist, sondern aus E_1 , E_2 , E_3 , A_2 und A_3 berechnet werden muss. Es folgt:

$$2S = \left[\frac{E_3 - E_2}{A_2 - A_3} \cdot A_2 + (E_2 - E_1)\right] (1 + g_e) \left(1 + \frac{K_0}{C}\right). \quad (29 \text{ b})$$

Für das Verfahren 1. Art bei Kurven mit ZS:

Ganz entsprechend ist in (28a) *I* durch die gemessenen Grössen E_1 , E_2 , E_3 , I_2 und I_3 auszudrücken:

$$2S = \left[I_2 + \frac{E_2 - E_1}{E_3 - E_2} (I_2 - I_3)\right] \cdot \frac{1 + g_e}{\nu C}.$$
 (28 b)

2. Beeinflussbarkeit des Funkenstrecken-Kondensators.

Da diese Form des Hochspannungs-Kondensators sich einer gewissen Beliebtheit erfreut, seien hier einige Angaben über die Beeinflussbarkeit seines Kapazitätswertes C_{III} durch die Umgebung gemacht.

Wie Fig. 27 veranschaulicht, ist eine Kalotte der geerdeten Kugel zum Messbeleg ausgebildet. Die Kapazität beträgt für 50 cm-Kugeln bei $d = 60 \div 110$ mm rund $6 \div 4 \ \mu\mu F$. Die Grössenordnung der Beeinflussbarkeit erhellt aus folgenden Daten:

a) Geerdetes Blech von $\frac{1}{2}$ m² 1 m schräg unter dem Kugelzwischenraum KZR erniedrigt bei d = 110 mm C_{III} um $\frac{1}{2} \frac{0}{00}$.

b) Spannung führendes Blech von 1/2 m² a = 1 m seitlich von KZR erhöht bei d = 110 mm C_{III} um 11/2 0/0; der Einfluss nimmt mit a ungefähr umgekehrt proportional ab.

c) Pro m Gestänge über der obern Kugel ist bei d = 110 mm mit einer Erhöhung von ca. $2^{0}/_{00}$ zu rechnen.

d) Fig. 28 zeigt den Einfluss des in Fig. 27 gezeichneten Spannung führenden Stabes in Funktion des Kugelabstandes in $^{0}/_{0}$ der jeweiligen Kapazität.

Sofern sich solche übertriebene Störungen in der Praxis vermeiden lassen, ist C_{III} demnach für d = 110 mm und 50 cm-Kugeln auf rund $1^{0}/_{0}$ genau definiert.

3. Vollweg-Gleichrichtung.

Zwecks Ausnutzung der zweiten Stromhalbwelle wurde der Zweiröhren-Halbweggleichrichter von THOMPSON und WALMSLEY (10) durch einen Vierröhren-Vollweggleichrichter (Graetz'sche Schaltung) ersetzt.

Die theoretische Behandlung ist erheblich komplizierter als bei zwei Röhren; sie lässt u. a. die Notwendigkeit von zwei Grundkorrektionen erkennen. Versuche zur Prüfung der Theorie sind im Gang.

Zusammenfassung.

Die beim CH-Verfahren zur Messung von Scheitelspannungen mit Hilfe eines röhren-gleichgerichteten Kondensatorstromes benutzte Schaltung ist ein System, bestehend aus Kondensatoren, Ventilen und elektromotorischen Kräften, und es bewahrt seine wesentlichste Eigenschaft, die Unabhängigkeit der Angaben von der Kurvenform, nur, wenn die Eingriffe in das System den genannten Rahmen nicht überschreiten. Solche Eingriffe sind die Veränderung der Kapazität parallel zum Gleichrichter und die ursprünglich zur Unterdrückung eines Nullstromes eingeführte Kompensationsspannung.

Die vorliegende Arbeit liefert den Nachweis, dass bei geeigneter Handhabung der genannten Grössen folgende Verfeinerungen und Erweiterungen erzielt werden können:

- 1. Durch Bestimmung und Anbringung einer sog. Grundkorrektion sind die bei Hochspannungs-Messeinrichtungen im allgemeinen kleinen durch den Gleichrichter bedingten Fehler fast vollständig zu beseitigen, so dass das Verfahren (1. Art) zu Präzisions-Scheitelspannungsmessungen herangezogen werden kann.
- 2. Die Bestimmungsmöglichkeit der Grundkorrektion gestattet die Ausdehnung des Anwendungsgebietes auf Niederspannung. Bei technischen Frequenzen und nicht allzu starker Verzerrung der Spannungskurve sind von 50 V an aufwärts sehr genaue Scheitelspannungsmessungen möglich.
- 3. In Zukunft ist das Ch-Verfahren nicht mehr auf Kurven ohne Zwischenscheitel beschränkt; gewissermassen durch eine Erweiterung der Grundkorrektion lassen sich auch hier die Scheitelwerte mit einer Genauigkeit, die der oben erwähnten nicht viel nachsteht, messen.
- 4. Das CH-Verfahren kann man in einer zweiten Form verwenden. Dank der weitgehenden Geradlinigkeit der sog. Unterdrückungskurven lässt sich die sub 3. erwähnte Elimination der Zwischenscheitel zu einer frequenz-unabhängigen Messung der Scheitelspannung ausbauen. Die Genauigkeit ist geringer als diejenige des Verfahrens 1. Art (wenn man bei letzterem vom Fehler der Frequenzmessung absieht), für technische Zwecke aber ausreichend.

Das CH-Verfahren gestattet eine weitgehende Prüfung in sich, ist also nicht mehr als eichbedürftiges, sekundäres Messverfahren, sondern als primäres, absolutes zu bewerten.

Diese Arbeit wurde in den Jahren 1928/29 im Eidg. Amt für Mass und Gewicht (Direktor Dr. E. König) ausgeführt.

Bern, im September 1929.

Literaturverzeichnis.

- (1) CHUBB and FORTESCUE, Transactions A. I. E. E. Vol. 32 I, 739,1913.
- (2) WHITEHEAD and GORTON, Trans. A. I. E. E. Vol. 33 I, 951, 1914.
- (3) CHUBB, Trans. A. I. E. E. Vol. 35 I, 109, 1916.
- (4) Siehe z. B. KEINATH, Die Technik elektr. Messgeräte II S. 39/40; ROTH, Hochspannungstechnik S. 356 ff.; ETZ 50, 95, 1929.
- (4a) D. R. P. 394014, 1923, E. HAEFELY & Co., Basel.
- (4b) Schweiz. Patent 110309, 1924, E. HAEFELY & Co., Basel.
- (5) WORK, Trans. A. I. E. E. 35 I, 119, 1916.
- (6) SHARP, El. World 69, 556, 1917, siehe auch KEINATH l. c. S. 40.
- (7) ORLICH und SCHULTZE, Archiv f. Elektrotechnik I, 1/88, 1912.
- (8) SCHIMPF, ETZ 46, 75, 1925.
- (9) Siehe z. B. WHITEHEAD, Diélectriques et Isolants S. 106, Paris 1928.
- (10) THOMPSON and WALMSLEY, Notes on the testing of static transformers Journal of the Inst. of El. E. 64, 505, 1926.
- (11) WHITEHEAD and ISSHIKI, Trans. A. I. E. E. 39 II, 1057, 1920.