| Zeitschrift: | Helvetica Physica Acta                           |
|--------------|--------------------------------------------------|
| Band:        | 5 (1932)                                         |
| Heft:        | VI                                               |
|              |                                                  |
| Artikel:     | Theorie der unelastischen Stösse zwischen Atomen |
| Autor:       | Stueckelberg, E.C.G.                             |
| DOI:         | https://doi.org/10.5169/seals-110177             |
|              |                                                  |

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

**Download PDF: 29.04.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

## Theorie der unelastischen Stösse zwischen Atomen

### von E. C. G. Stueckelberg in Basel.

### (28. XI. 32.)

#### Kurze Inhaltsangabe.

- § 1. Einleitung: Dieser § enthält die Problemstellung und die aus der Arbeit hervorgehenden Resultate in kurzer Zusammenfassung.
- § 2. Die Formulierung des Problems. (Zweiatomiges Molekül.)
- § 3. Grenzbedingungen und Wirkungsquerschnitt: Dieser § enthält die nötigen Definitionen zur Errechnung der Wirkungsquerschnitte.
- § 4. Die Formulierung des Problems nach der Born-Dirac'schen Theorie: Diese Formulierung unterscheidet sich von §2 in für die Arbeit wichtigen Punkten.
- § 5. Beispiel einer strengen Lösung.
- § 6. Die angenäherten Lösungen: Hier wird das Störungsverfahren kurz diskutiert.
- § 7. Vergleich der London'schen mit der Born-Dirac'schen N\u00e4herung: Dieser Abschnitt vergleicht die Ans\u00e4tzte des § 2 und § 4.
- § 8. Das Anschlussverfahren der N\u00e4herungsfunktionen in den Umkehrpunkten: Hier werden die f\u00fcr die folgenden \u00e3 verwendeten N\u00e4herungsfunktionen aufgestellt und das W. K. B.<sup>1</sup>) Verfahren von einem neuen Gesichtspunkte aus erl\u00e4utert.
- § 9. Das Anschlussverfahren der Näherungsfunktionen in der Überschneidungsgegend: (Fall II): Der § diskutiert den Fall sich schneidender Potentialkurven.
- § 10. Das Anschlussverfahren für den Fall I ( $\psi$  auf der reellen Axe überall grösser als null): Hier wird der Fall sich nicht schneidender Potentialkurven behandelt.
- § 11. Abschätzung der Matrixelemente  $|\eta_{1J}|^2$  nach dem Störungsverfahren: Für einige Fälle wird hier das Verfahren des § 6 angewendet.
- § 12. Bestimmung des Wirkungsquerschnittes in Fall I (kein Überschneiden der Kurven).
- § 13. Der Wirkungsquerschnitt im Resonanzfall.
- § 14. Bestimmung des Wirkungsquerschnittes im Fall II (Überschneidungsfall).
- § 15. Die Ionisation von Edelgasen durch Alkaliionen: Die Resultate des § 14 werden auf Ionenstossversuche angewendet.
- § 16. Zusammenfassung.

## § 1. Einleitung.

Das Problem des unelastischen Stosses zwischen zwei Atomen reduziert sich, wenn es erlaubt ist nur zwei Elektronenzustände jedes Atoms zu berücksichtigen, immer auf unendlich viele Systeme von je zwei gekoppelten linearen Differentialgleichungen zweiter Ordnung mit einer unabhängigen Variabeln r, welche den Abstand zwischen den beiden Systemschwerpunkten darstellt.

Ist die für die Übergänge verantwortlich zu machende Wechselwirkungsenergie zwischen den beiden Elektronenzuständen im Bereiche reeller Geschwindigkeiten klein gegen die vom Abstand abhängige Termdifferenz, so kann man mit FRANCK von potentiellen Energiekurven der beiden Elektronenzustände sprechen. Die Begriffe "sich schneiden" und "sich nicht schneiden" haben dann im folgenden den Sinn, dass die Kurven für *fehlende Wechselwirkungsenergie* sich schneiden oder nicht schneiden. Die Tatsache, dass Übergänge auftreten bedeutet ja schon, dass das Bild der potentiellen Energiekurven nicht mehr streng richtig sein kann.

Das Auftreten einer Wechselwirkung bewirkt immer, dass die beiden Kurven sich im Überschneidungsgebiet abstossen. Die Wechselwirkung zwischen zwei Termen kann in zwei Teile zerlegt werden: in einen von der Rotationsenergie unabhängigen und in einen von der Rotationsenergie (Quantenzahl J) abhängigen. Die Franck'schen Kurven zeichnet man im ganzen für J = 0. Haben die Elektronenterme verschiedene Symmetrieeigenschaften oder verschiedene Quantenzahlen  $\Lambda$  (resp.  $\Omega$ ) (= Elektronendrehimpulsquantenzahl um die Kernverbindungsachse), so verschwindet der zweite Teil<sup>1</sup>). Ist das nicht der Fall, so bewirkt dieser zweite Teil, dass die Kurven auch für J = 0 sich nicht schneiden. Die Kurven kommen sich also nur nahe. In Figur 1 ist der Fall des "Überschneidens" und "Nahekommens" gezeichnet. Man kann also in beiden Fällen annehmen, dass die Kurven sich schneiden, je nachdem man die Äste  $A_1B_1$  und  $A_0B_0$  zuordnet, da im Überschneidungsgebiet die Kurven ihre Bedeutung verlieren.

Wählt man das Bild der Überschneidung, und ist die durch die Wechselwirkung bedingte Übergangswahrscheinlichkeit klein gegen 1, so kann man das Franck'sche Bild in erster Näherung auch im Überschneidungsgebiet gelten lassen und die Übergangswahrscheinlichkeiten nach der Störungstheorie ermitteln. Ist dies jedoch nicht mehr der Fall, so kann man insofern von "schneiden" sprechen, als man links und rechts die Wellenfunktionen der Elektronenkonfiguration in Beziehung bringen kann. Die

<sup>&</sup>lt;sup>1</sup>) J. v. NEUMANN und E. WIGNER, Phys. Zeitschr. 30, 467 (1929).

"Schnittgegend" hat dann, für die asymptotische Darstellung der Wellenfunktion ähnliche Eigenschaften wie die Umkehrpunkte der klassisch-mechanischen Bewegung. Im § 9 wird ein dem WENTZEL, KRAMERS, BRILLOUIN'schen<sup>2</sup>) analoges Anschlussverfahren beschrieben, welches gestattet die Übergangswahrscheinlichkeiten für beliebig grosse Wechselwirkungsenergien zu ermitteln, wenn die Schnittgegend mit reeller Geschwindigkeit durchfahren wird. Betrachten wir einen Wahrscheinlichkeitsstrom der Stärke 1,



Fig. 1.

Sich "schneidende" Energiekurven für den Stoss zweier Atomsysteme.  $A_0$  und  $A_1$  haben dieselben charakteristischen Elektronenkonfigurationen. Die Pfeile stellen die Ströme dar, welche auf den einzelnen Kurvenästen fliessen, wenn der Strom 1 auf dem Ast  $A_0$  ankommt, und wenn jeder Strom sich im Schnittpunkt so verteilt, dass der Teil  $1-a^2$  auf dem Ast gleicher Konfiguration weiterläuft, während der Teil  $a^2$  auf dem andern Aste weiterfliesst.

der "auf" der einen potentiellen Energiekurve (mit  $A_0$  bezeichnet) ankommt, so teilt er sich im "Schnittpunkt" in zwei Ströme: den Strom  $1-a^2$  auf der Kurve  $A_1$  und den Strom  $a^2$  auf der Kurve  $B_1$ . Die Ströme fliessen im ankommenden Sinne weiter bis an ihre Umkehrpunkte. Dort werden sie reflektiert und beide kreuzen den Umkehrpunkt ein zweites Mal. Jeder der beiden Ströme verteilt sich dort wieder so, dass der Teil  $(1-a^2)$  seiner Intensität auf der Kurve gleicher Elektronenkonfiguration weiter-

<sup>&</sup>lt;sup>2</sup>) G. WENTZEL, Zeitschr. f. Phys. **38**, 518 (1926); A. H. KRAMERS, Zeitschr. f. Phys. **39**, 828 (1926); L. BRILLOUIN, C. R. Juli (1926).

fliesst, während der Teil  $a^2$  auf der andern Kurve fortläuft. Der auslaufende Strom  $4 \cdot |\eta_1|^2$  auf der Kurve  $B_1$  beträgt also:

$$4 \cdot |\eta_1|^2 = (1 - a^2)a^2 + a^2(1 - a^2) = 2a^2 \cdot (1 - a^2)$$

Nennt man  $a^2$  Übergangswahrscheinlichkeit, so nähert diese sich für grosse Wechselwirkungsenergien dem Wert 1. Bezeichnet man sie aber mit  $4 |\eta_1|^2$  wie dies im folgenden geschehen soll, so erreicht sie für  $a^2 = \frac{1}{2}$  ihr Maximum mit dem Werte  $4 \cdot |\eta_1|^2 = \frac{1}{2}$ , und wird für  $a^2 = 1$  zu Null.

Schneiden sich die Kurven nicht und kann ihr Abstand angenähert durch eine konstante Termdifferenz dargestellt werden, so liegt die "Schnittgegend" dort, wo die Wechselwirkungsenergie der Termdifferenz gleich wird. Befindet sich diese Gegend bei imaginären Geschwindigkeiten, so ist die Störungsmethode gerechtfertigt. Liegt sie aber bei reellen Geschwindigkeiten so erhält man einen ähnlichen Fall wie wenn sich die Kurven im reellen Geschwindigkeitsbereich schneiden (§ 10).

Das Verfahren wird zur Bestimmung von Wirkungsquerschnitten von Stössen zweiter Art verwendet. Man findet, dass der Fall, wo keine Überschneidung im oben definierten Sinne stattfindet, in Grössenordnung und Resonanzcharakter die experimentellen Ergebnisse besser darstellt, als der Fall der Überschneidung. Das plötzliche Einsetzen der Ionisation durch schnelle Alkaliionen, wie es von BEECK, MOUZON und NORDMEYER<sup>3</sup>) gefunden wurde, lässt sich sehr gut durch die Überschneidung der Potentialkurven erklären<sup>4</sup>).

Die Durchrechnung des Problems ist bis jetzt von verschiedenen Gesichtspunkten aus erfolgt. Eine erste, halbklassische Rechnung von KALLMANN und LONDON<sup>5</sup>) hatte den Nachteil, dass nur die Elektronenbewegung wellenmechanisch erfasst wurde. Die zum Vorgang wichtige kinetische Energie der Kerne konnte daher nicht in Erscheinung treten. Morse und STUECKELBERG<sup>6</sup>)

<sup>&</sup>lt;sup>3</sup>) O. BEECK und J. C. MOUZON, Ann. d. Phys. 11, 737, 858 (1931) siehe auch O. BEECK, Ann. d. Phys. 6, 1001 (1930); C. J. BRASEFIELD, Phys. Rev. 42, 11 (1932); M. NORDMEYER, erscheint demnächst in den Ann. d. Phys., der Verfasser ist Herrn Dr. NORDMEYER für die Mitteilung seiner Ergebnisse zu Dank verpflichtet. J. C. MOUZON, Phys. Rev. 41, 605 (1932).

<sup>4)</sup> W. WEIZEL und O. BEECK, Zeitschr. f. Phys. 76, 250 (1932).

<sup>&</sup>lt;sup>5</sup>) H. KALLMANN und F. LONDON, Zeitschr. f. Phys. Chem. 2 (B), 220 (1929).

<sup>&</sup>lt;sup>6</sup>) P. M. MORSE und E. C. G. STUECKELBERG, Ann. d. Phys. 9, 579 (1931). Für eine zusammenfassende Darstellung der elastischen und inelastischen Stösse sei auf die Arbeit von P. M. MORSE Rev. Mod. Phys. 4, 577 (1932) verwiesen, s. auch O. K. RICE, Phys. Rev. 38, 1943 (1931).

wendeten das Störungsverfahren von Born und Dirac unter Berücksichtigung der endlichen Ausdehnung der Atome an.

Die Theorie des unelastischen Stosses zwischen sich langsam bewegenden schweren Massenteilchen muss sich aber, wie LONDON<sup>7</sup>) später gezeigt hat, wesentlich von der Theorie des unelastischen Elektronenstosses unterscheiden.

Wendet man nämlich formal dasjenige Störungsverfahren an, in welchem die gesamte elektrische Wechselwirkung der beiden Atome als Störungsfunktion angesetzt wird so erhält man eine Grösse, welche den pro Zeiteinheit eintretenden Zuwachs der Endsubstanz angibt. Diese Grösse enthält, in LONDON's Ausdrucksweise, zwei Vorgänge:

1. den Anteil des "adiabatischen" Vorgangs, welcher sich nach dem Stosse wieder vollständig in die Anfangssubstanz zurückverwandelt und daher nur zur elastischen Reflexion beiträgt.

2. den Anteil des unelastischen Stosses.

Beim Elektronenstoss wird der Anteil 1 verschwindend klein, während beim Atomstoss unter Umständen der Teil 1 wesentlich grösser als der Teil 2 wird. Eine Methode zur Trennung von 1 und 2 wurde von ihm angegeben. Sie besteht darin (siehe § 7 dieser Arbeit und § 5 bei LONDON), dass er von einer den adiabatischen Vorgang bereits enthaltenden Näherung ausgeht. Auf diese Näherungen wendet er dann das übliche Störungsverfahren an. Bei der Auswertung der hierbei auftretenden Matrixelemente machte (LONDON's § 7) er aber wieder eine Vernachlässigung, die in gewissen Fällen nicht erlaubt ist (siehe § 11 dieser Arbeit).

LONDON<sup>7</sup>) und auch die Arbeit von MORSE und dem Verfasser<sup>6</sup>) nehmen den "allgemeinen" Fall an, dass sich die potentiellen Energiekurven, auf welchen sich die elastische Bewegung abspielt, *nicht schneiden*. Dem entgegen behandelt LANDAU<sup>8</sup>) den Fall, dass die Kurven *sich schneiden*. Er glaubt folgern zu dürfen, dass dieser letzte Fall bedeutend grössere Wirkungsquerschnitte ergibt als der erste "allgemeine" Fall.

Die vorliegende Arbeit behandelt nun beide Fälle nach einer neuen Methode, welche nicht auf einem Störungsverfahren beruht, sondern als eine Lösung des Problems im Sinne des WENTZEL, KRAMERS, BRILLOUIN'schen<sup>2</sup>) Verfahrens bezeichnet werden kann. Zum Vergleich wird in jedem Fall auch die Auswertung des entsprechenden Matrixelementes nach den Verfahren<sup>6</sup>) <sup>7</sup>) und <sup>8</sup>) im § 11 diskutiert.

<sup>7</sup>) F. LONDON. Zeitschr. f. Phys. 74, 143 (1932).

<sup>8</sup>) L. LANDAU, Sow. Phys. I, 89 (1932), s. auch O. K. RICE, Phys. Rev. 37, 1187 (1931).

## § 2. Die Formulierungen des Problems (zweiatomiges Molekül).

Die Behandlung des zweiatomigen Moleküls gestaltet sich am einfachsten im Koordinatsystem der Eulerschen Winkel. Auf das unelastische Stossproblem können wir, formal wenigstens, diese Betrachtungen übertragen.

KRONIG<sup>9</sup>) zeigt, dass in erster Näherung das Problem in diesen Koordinaten folgendermassen separierbar ist:

$$\psi_{\sigma J \Lambda M T} = \frac{1}{r} v_{\sigma J \Lambda T}(r) \cdot \Theta_{J M \Lambda}(\vartheta) \cdot e^{i M \varphi} \cdot \frac{\sin}{\cos} \Lambda \varphi \cdot \Phi_{\sigma \Lambda}$$
$$\cdot \exp\left[-\frac{2 \pi i}{h} (E_{\Lambda \sigma \infty} + T) t\right].$$

Hier bezeichnet r den Abstand der beiden Kerne,  $\vartheta$  den Winkel zwischen der Verbindungsaxe der Kerne ( $\zeta$ -Axe) und einer im Raum festen Richtung (z-Axe).  $\psi$  resp.  $\varphi$  die Winkel von der Knotenlinie (Schnitt der xy mit der  $\xi\eta$ -Ebene) nach der positiven x- resp.  $\xi$ -Axe.  $\xi$  bedeutet in den Formeln auch die Gesamtheit der Elektronenkoordinaten  $\xi_i \eta_i \zeta_i$ .

 $\sigma$  bezeichnet die Quantenzahlen des Elektronenzustandes,  $\Lambda$  ihre Drehimpulsquantenzahl um die  $\zeta$ -Axe ( $\Lambda$ -Type doubling!), J die Gesamtimpulsquantenzahl des Systems und M ihre Projektion auf die z-Axe.  $E_{\sigma\infty}$  bedeutet die Energie der Elektronen (Termwert) und T die kinetische Energie der Kerne, beides für  $r = \infty$ . Dann genügen die verschiedenen Funktionen den Gleichungen:

$$\left\{ \Delta_{\xi_i \eta_i \zeta_i \dots \varphi} + \frac{8\pi^2 m}{h^2} \left[ E_{\sigma \Lambda} \left( r \right) - V \left( \xi_i \eta_i \zeta_i \dots, r \right) \right] \right\} \Phi \left( \xi_i \dots, r \right) \cdot \frac{\sin}{\cos} \Lambda \varphi$$
$$= 0.$$
(1)

(Dies ist die Lösung bei festen Kernen im Abstand r (r als Parameter).)

$$\begin{cases} \frac{1}{\sin\vartheta} \frac{\partial}{\partial\vartheta} \left( \sin\vartheta \frac{\partial}{\partial\vartheta} \right) - \frac{(M - \Lambda\cos\vartheta)^2}{\sin^2\vartheta} \\ + (J(J+1) - \Lambda^2) \end{cases} \Theta_{JMA}(\vartheta) = 0 \tag{2}$$

$$\left\{\frac{\delta^{2}}{\delta r^{2}} + \frac{8 \pi^{2} M}{h^{2}} \left[ T - E_{\sigma \Lambda}(r) - \frac{J (J+1) - \Lambda^{2}}{r^{2}} \cdot \frac{h^{2}}{8 \pi^{2} M} \right] \right\} v_{\sigma J \Lambda T}(r) = 0^{*}).$$
(3)

<sup>9</sup>) R. DE L. KRONIG, Zeitschr. f. Phys. 46, 814 (1928) und 50, 247 (1928).

<sup>\*)</sup> In Formel (3) ist der Kürze halber  $E_{\sigma \Lambda \infty} = 0$  gesetzt.

Die Störungen (fehlende Glieder) sind dann gegeben durch die Operatoren  $(\frac{\partial}{\partial r}$  wirke auf r in  $\Phi(\xi_i, \ldots, r)$  und  $\frac{\partial}{\partial r}$  auf r in v(r):

$$I + II = \frac{h^2}{8 \pi^2 M} \left\{ \frac{\partial}{\partial r^2} + 2 \frac{\partial}{\partial r} \cdot \frac{\delta}{\delta r} \right\} + \frac{h^2}{8 \pi^2 M} \cdot \frac{1}{r^2} \left\{ \cos \varphi \cdot \frac{\partial}{\partial \varphi} \cdot \frac{\partial}{\partial \vartheta} + \ldots \right\} \Xi \left( \xi \eta \zeta \right), \qquad (4)$$

wo  $\Xi$  Operatoren der Art  $\xi / \zeta$  und  $\eta \partial / \partial \xi$  enthält.

(4) zerfällt daher in zwei Teile I und II. Idealisiert man wieder das Problem auf *nur zwei Elektronenzustände*  $\sigma = 0$  und  $\sigma = 1$ mit  $\Lambda_0$  und  $\Lambda_1$ , so hat man folgende Fälle zu unterscheiden:

Fall 1: 
$$\Lambda_0 = \Lambda_1$$
:

Man erhält, nach linksseitiger Multiplikation mit

$$\overline{\varPhi}_{\mathbf{0}} \cdot e^{-iM_{\mathbf{0}}\psi} \cdot \sin_{\cos} \Lambda_{\mathbf{0}} \varphi \cdot \Theta_{J_{\mathbf{0}}M_{\mathbf{0}}\Lambda_{\mathbf{0}}}$$

und Integration über die Elektronenkoordinaten  $\xi$  und über  $\psi$ ,  $\varphi$  und  $\vartheta$ , (wenn ' die Ableitung nach r bezeichnet, und wenn man  $J_0^2$  statt  $J_0(J_0 + 1) - \Lambda_0^2$  schreibt was ja für grosse  $J_0$  immer angängig ist):

$$v_{0JT_{0}}^{"} + \frac{8 \pi^{2} M}{h^{2}} \left[ T_{0} - (E_{0A}(r) - E_{0A\infty}) - \frac{h^{2}}{8 \pi^{2} M} \cdot \frac{J_{0}^{2}}{r^{2}} \right] v_{0JT_{0}} + \int d\xi \left( \overline{\Phi_{0}} \Phi_{0}^{"} v_{0J_{0}T_{0}} + 2 \overline{\Phi_{0}} \Phi_{0}^{'} v_{0J_{0}T_{0}}^{'} \right) = -\int d\xi \left( \overline{\Phi_{0}} \Phi_{1}^{"} v_{1J_{0}T_{1}} + 2 \overline{\Phi_{0}} \Phi_{1}^{'} v_{1J_{0}T_{1}}^{'} \right)$$
(5)

und eine entsprechende Gleichung (wenn 0 und 1 vertauscht werden) für  $v_{1J_0T_1}$ . Es ist  $T_0 + E_{0A\infty} = T_1 + E_{1A\infty}$ . Dies sind die zwei gekoppelten Gleichungen, welche LONDON<sup>7</sup>) seiner Betrachtung zugrunde legt. Die Kopplung durch die unter II aufgeführten höheren Glieder ist Null oder doch im allgemeinen von kleinerer Grössenordnung, da  $\cos \varphi \frac{\partial}{\partial \varphi}$  keine diagonalen Matrixelemente in  $\Lambda$  hat.

Fall II: 
$$\Lambda_0 \neq \Lambda_1$$
:

Dies ist der Fall, welchen LANDAU<sup>8</sup>) behandelt. Die Kopplung geschieht nur durch das zweite Störungsglied II. Bei  $J \gg 1$  kann das erste Glied von II als allein wesentlich betrachtet werden. (Näheres darüber siehe bei KRONIG<sup>9</sup>). Man kann nämlich, für grosse J, setzen:

$$\left|\int \Theta_{JA_0} \frac{\partial}{\partial \vartheta} \Theta_{JA_1} d (\cos \vartheta)\right| \sim J$$
.

Der Faktor cos  $\varphi \frac{\partial}{\partial \varphi}$  bewirkt: 1. dass  $\Lambda_1 = \Lambda_0 \pm 1$  sein muss, und

2. Kopplungen nur zwischen  $\sin \Lambda_0 \varphi$  und  $\cos \Lambda_1 \varphi$  auftreten. Ferner kann die Kopplung nur zwischen Funktionen mit gleichem M(da kein  $\frac{\cos}{\sin} \psi$  auftritt) und gleichem J (Erhaltung des Gesamtdrehimpulses) eintreten.

Das Kopplungsglied ist

$$\frac{h^2}{8\,\pi^2\,M} \cdot \frac{1}{r^2} \cdot \int d\,\xi \,\overline{\Phi}_0 \,\Xi \,(\xi) \,\Phi_1 \cdot \int_{\sin}^{\cos} \Lambda_0 \,\varphi \cdot \cos \varphi \cdot \frac{\sin}{\cos} \Lambda_1 \,\varphi \cdot d\,\varphi$$
$$\cdot \int \Theta_{J\Lambda_0} \frac{\partial}{\partial\vartheta} \,\Theta_{J\Lambda_1} d\,(\cos\vartheta) \simeq \frac{h^2}{8\,\pi^2\,M} \cdot \Lambda \,(r) \cdot J \cdot \frac{1}{r^2} = W_{01}^{\mathrm{II}}(r) \qquad (7)$$

wo  $\Lambda(r)$  noch Funktion von r ist.  $\Lambda(r)$  kann für kleine Distanzen den Wert der Quantenzahl  $\Lambda$  erreichen.

Das Matrixelement  $W_{01}^{II}$  muss selbstverständlich hermitisch sein und, da wir die  $\boldsymbol{\Phi}$  reell voraussetzen können, ist das Matrixelement der reellen physikalischen Grösse

$$\cos \varphi \cdot \frac{h}{2 \pi i} \frac{\partial}{\partial \varphi} \cdot \frac{h}{2 \pi i} \frac{\partial}{\partial \vartheta} = \cos \varphi \cdot p_{\varphi} \cdot p_{\vartheta}$$

ebenfalls reell. Wir haben also wieder  $W_{01}^{II} = W_{10}^{II}$ , und ebenfalls nur zwei gekoppelte Gleichungen:

$$\begin{split} v_{0J_{0}T_{0}}^{''} + & \frac{8 \pi^{2} M}{h^{2}} \left[ T_{0} - (E_{0J_{0}}(r) - E_{0J_{0}\infty}) - \frac{h^{2}}{8 \pi^{2} M} \cdot \frac{J_{0}^{2}}{r^{2}} \right] v_{0J_{0}T_{0}} \\ &= W_{10}^{\mathrm{II}}(r) \cdot \frac{8 \pi^{2} M}{h^{2}} v_{1J_{0}T_{1}} \end{split}$$
(5b)

(und entsprechend für  $v_{1J_0T_1}$ , wenn 1 und 0 vertauscht werden).

Betrachtungen von NEUMANN und WIGNER<sup>1</sup>) ergeben (wie LANDAU<sup>8</sup>) zeigte) folgendes:

Ist  $\Lambda_0 = \Lambda_1$ , so überschneiden sich Terme nur bei verschiedenem Gesamtspinn, dann sind aber die Wechselwirkungsenergien  $W_{01}^{I}$  gering. Die Wechselwirkungsenergien  $W_{01}^{II}$  sind im allgemeinen für kleine J kleiner als die  $W_{01}^{I}$ , aber, weil  $\Lambda_0 \ddagger \Lambda_1$ , so ist ein Überschneiden der potentiellen Energiekurven möglich. LANDAU<sup>8</sup>) schliesst nun in einer sehr geschickten Weise, dass in Fall I, wo kein Überschneiden für reelle Geschwindigkeiten eintritt, die Übergangswahrscheinlichkeiten mit wachsendem Elektronentermabstand exponentiell verschwinden, während sie im Fall II beim Überschneiden eine andere Form haben.

In §§ 9 und 10 werden diese beiden Fälle nach dem neuen Verfahren ausgewertet. Dabei wird sich zeigen, dass die Landau'sche Behauptung des exponentiellen Verlaufes von Fall I zwar richtig ist, dass aber die Wirkungsquerschnitte von Fall I bei guter Resonanz doch wesentlich grösser als die von Fall II trotz Überschneidung, werden können (§ 12).

### § 3. Grenzbedingungen und Wirkungsquerschnitt.

Wir wollen annehmen, dass  $\Lambda$  klein sei gegen J, dann heissen die Lösungen von (2): (auf 1 normiert)

$$\Theta_{JM, \Lambda=0} = \sqrt{\frac{(2J+1)(J-M)!}{4\pi (J+M)!}} \cdot P_J^M(\cos \vartheta) .$$

Die Wellenfunktion der Kernbewegung im Zustande 0 soll eine ebene einfallende und eine ausgestrahlte (elastisch reflektierte) Kugelwelle darstellen. Denken wir uns die  $v_J$  welche sich ja im  $\infty$  wie Bessel'sche Funktionen verhalten müssen, wie diese normiert d. h.:

$$\lim_{r=0} v_{0J} = r^{\frac{1}{2}} \left[ J_{J+\frac{1}{2}} \left( p_0 \, r + \mu_{0J} \cdot \frac{\pi}{2} \right) + \eta_{0J} \, H_{J+\frac{1}{2}}^{(1)} \left( p_0 \, r + \mu_{0J} \cdot \frac{\pi}{2} \right) \right];$$

$$p_0^2 = \frac{8 \, \pi^2 \, M}{h^2} \, T_0 \tag{8a}$$

so stellt

$$F_{0} = \sum_{J} A_{J} \cdot \Theta_{J00} \cdot \frac{1}{r} \cdot v_{0J} (r)$$
(9)

 $\operatorname{mit}$ 

$$A_{J} = \left[ \left( J + \frac{1}{2} \right) - \frac{(2 \pi)^{3} M}{h_{.} p_{0}} \right]^{\frac{1}{2}} \cdot e^{i \frac{\pi}{2} (J + \mu_{0J})}$$

im Unendlichen eine so beschaffene Welle der Stromdichte 1 cm<sup>-2</sup> sec<sup>-1</sup> dar.  $\mu_{0J}$  ist eine Phasenkonstante, welche vom Potentialfeld  $E_0(r) - E_{0\infty}$  abhängt und die *elastische Streuung* bedingt (Dispersion).

Bei fehlender Kopplung muss  $v_{0J}$  überall eine reelle Funktion sein damit kein von Null verschiedener Strom fliesst, d. h.  $\eta_{0J} = 0$ .

Für  $v_{1,j}$  lautet die Grenzbedingung im Unendlichen (nur ausgestrahlte Kugelwelle):

$$\lim_{r=\infty} v_{1J} = \eta_{1J} \cdot r^{\frac{1}{2}} \cdot H^{(1)}_{J+\frac{1}{2}} \left( p_1 r + \mu_{1J} \cdot \frac{\pi}{2} \right); \ p_1^2 = \frac{8 \pi^2 M}{h^2} \cdot T.$$
(8b)

Die Funktion

$$F_{1} = \sum_{J} A_{J} \Theta_{J00} \frac{1}{r} v_{1J} \xrightarrow[r=\infty]{} \sum_{J} A_{J} \Theta_{J00} \cdot \eta_{1J} \cdot \frac{1}{r^{\frac{1}{2}}} H^{(1)}_{J+\frac{1}{2}}$$

stellt dann die auslaufende Kugelwelle dar. Der durch die unendlich weite Kugelfläche fliessende Strom von  $F_1$  ist, wegen der Normalisierung von  $F_0$  (Stromdichte 1 cm<sup>-2</sup> sec<sup>-1</sup>) gleich dem Wirkungsquerschnitt ( $d\omega$  bedeutet das Differential des räumlichen Winkels):

$$q = \frac{h}{8\pi M} \cdot \int \operatorname{imag}\left(\overline{F}_{1} \bigtriangledown F_{1}\right) d\omega = \frac{8\pi}{p_{0}^{2}} \sum_{J} \left(J + \frac{1}{2}\right) \cdot |\eta_{1J}|^{2} . \quad (10)$$

Es handelt sich also darum die gekoppelten Gleichungen (5), (5a) oder (5b) mit den Grenzbedingungen (8a) und (8b) zu lösen, und so die  $|\eta_{1J}|^2$  zu bestimmen. Bei fehlender Kopplung stellt  $v_0$ eine stehende Welle dar  $(J_{J+\frac{1}{2}})$ , welche als eine Überlagerung zweier fortschreitender  $(H_{J+\frac{1}{2}}^{(1)} \text{ und } H_{J+\frac{1}{2}}^{(2)})$  gedacht werden kann.  $|\eta_{1J}|^2$  ist dann identisch Null. Sobald die Kopplung einsetzt, werden  $|\eta_{0J}|^2$  und  $|\eta_{1J}|^2$  von 0 verschieden, und wir haben fortschreitende Wellen in beiden Fällen. Da  $J_n = \frac{1}{2} (H_n^{(1)} + H_n^{(2)})$  ist, so wird der Maximalwert von  $|\eta_{1J}| = \frac{1}{2}$ ;  $|\eta_{1J}|^2 = \frac{1}{4}$  bedeutet also "Übergangswahrscheinlichkeit = 1" (siehe § 1).

## § 4. Die Formulierung des Problems nach der Born-Dirac'schen Stosstheorie.

Einschaltungsweise legen wir hier nicht das zweiatomige Molekül unseren Betrachtungen zugrunde, sondern gehen (mit Rücksicht auf eine spätere Anwendung) vom Grenzfall der getrennten Atome aus. Wir setzen wieder in nullter Näherung die Wellenfunktion gleich einem Produkt aus den Wellenfunktionen der Elektronenbewegung und derjenigen der Kernbewegung. Diese beiden Funktionen, mit  $\chi(\xi)$  und  $\frac{1}{r} \cdot u(r)$  bezeichnet, haben aber ganz andere Bedeutungen als die mit  $\Phi(\xi, r)$  und  $\frac{1}{r} v(r)$  bezeichneten des § 2.

$$\Psi_{\sigma JAMT} = \frac{1}{r} u_{\sigma JAMT}(r) \cdot \Theta_{JMA}(\vartheta) e^{iM\psi} \cdot \frac{\sin}{\cos} \Lambda \varphi \cdot \chi_{\sigma A}(\xi)$$
$$\cdot \exp\left[-\frac{2\pi i}{h} (E_{\sigma A\infty} + T) t\right]$$

wo  $\chi$  die Gleichung

$$\begin{cases} \Delta_{\xi_{i}\eta_{i}\zeta_{i}\cdots\varphi}+\frac{8\pi^{2}m}{h^{2}}\left[E_{\sigma\Lambda\infty}-V(\xi_{i}\eta_{i}\zeta_{i}\ldots,r=\infty)\right]\\ \chi_{\sigma\Lambda}\left(\xi_{i}\eta_{i}\zeta_{i}\ldots\right)\frac{\sin}{\cos}\Lambda\varphi=0 \end{cases}$$
(1a)

befriedigt. Die dem ersten Störungsglied I in (4) entsprechende Wechselwirkungsenergie heisst jetzt:

$$W^{I}(\xi_{i}\eta_{i}\zeta_{i},r) = V(\xi_{i}\eta_{i}\zeta_{i},r) - V(\xi_{i}\eta_{i}\zeta_{i},r=\infty).$$
(4a)

An Stelle des Operators haben wir jetzt eine gewöhnliche Funktion. Es treten natürlich auch noch dem Gliede II in (4) analoge Operatoren auf, welche  $\frac{\partial}{\partial \varphi}$  und  $\frac{\partial}{\partial \vartheta}$  enthalten. Die  $\chi$  sind natürlich die Eigenfunktionen der getrennten Atome\*).

An Stelle von (5) steht jetzt im Falle I

$$u_{0J_0T_0}'' + \frac{8\pi^2 M}{h^2} \left(T_0 - W_{00}^{\mathrm{I}}(r)\right) u_{0JT_0} = \frac{8\pi^2 M}{h^2} W_{01}^{\mathrm{I}}(r) u_{1JT_1}$$
(5a)

und die entsprechende Gleichung für  $u_{1JT_1}$ , wobei

$$W^{\mathrm{I}}_{i\,k} = \int d\,\xi \cdot \overline{\chi}_i(\xi) \cdot W^{\mathrm{I}}(\xi) \cdot \chi_k(\xi) + rac{h^2}{8\,\pi^2\,M}\,\delta_{i\,k}\,rac{J_{\,i}^{\,2}}{r^2}\,;\,\delta_{i\,k} = rac{0}{1}\,rac{i\,\pm\,k}{i\,=\,k}.$$

Das Resultat ist auch hier zwei gekoppelte Gleichungen, nur haben sie den Vorteil gegenüber (5), dass die Kopplung statisch und nicht dynamisch erscheint. Die gegenseitigen Vorteile dieser zwei Ausgangsgleichungen werden im § 7 diskutiert werden. Die Grenzbedingungen für die u sind selbstverständlich dieselben wie die für die v (§ 3, Gl. (8a) und (8b).

<sup>\*)</sup> Streng genommen<sup>7</sup>) die Eigenfunktionen bei fehlender Wechselwirkung. Diese Definition unterscheidet sich eventuell gegen diejenige im Text. Die Darstellung (4a) hat dann wie (1a), rein formale Bedeutung.

### § 5. Beispiel einer strengen Lösung\*).

Da nach Voraussetzung überhaupt nur zwei Elektronenzustände eine Rolle spielen sollen, so müssen die strengen Lösungen der Probleme im § 2 (5) und im § 4 (5a) dasselbe Resultat liefern. Wir wollen in diesen Paragraphen vorübergehend einige weitere einfache Annahmen machen, ohne ihre Beziehungen zur Wirklichkeit zu diskutieren. Wir gehen von Gleichung (5a) aus und nehmen an, dass

$$W_{00}(r) = W_{11}(r) = \frac{\beta^2}{r^2} \cdot \frac{h^2}{8 \pi^2 M}$$

sei, ferner dass

$$W_{01} = \text{const} = \frac{h^2}{8 \,\pi^2 \,M} \cdot \alpha$$

sei für  $r < r_0$  und gleich Null für  $r > r_0$ . Setzt man noch

$$\begin{split} &\frac{1}{2} \left( p_0^2 - p_1^2 \right) = \psi > 0 \,. \\ &\frac{1}{2} \left( p_0^2 + p_1^2 \right) = p^2 \\ &p^2 \pm \sqrt{\psi^2 + \alpha^2} = \nu_0^2 \\ &f_0 = \frac{\alpha}{p_0^2 - \nu_1^2} \,; \ f_1 = \frac{\alpha}{p_1^2 - \nu_0^2} \,; \ f^2 = f_0 f_1 \end{split}$$

dann lauten (5a), wenn  $J^2 = J (J+1) - \Lambda^2 + \beta^2$ 

$$\begin{array}{l} u_{0}^{''} + \left( p_{0}^{2} - \frac{J^{2}}{r^{2}} \right) u_{0} = \alpha u_{1} \\ \\ u_{1}^{''} + \left( p_{1}^{2} - \frac{J^{2}}{r^{2}} \right) u_{1} = \alpha u_{0} \end{array} \right\} \ \alpha = 0 \ \text{für} \ r > r_{0}.$$

Die Lösungen, welche im Nullpunkt endlich sind lauten:

$$\begin{aligned} \text{für:} \ r < r_0 \ u_0 &= r^{\frac{1}{2}} \cdot \left[ c_0 \cdot J_J(\nu_0 r) + c_1 \cdot f_0 \cdot J_J(\nu_1 r) \right] \\ u_1 &= r^{\frac{1}{2}} \cdot \left[ c_0 \cdot f_1 \cdot J_J(\nu_0 r) + c_1 \cdot J_J(\nu_1 r) \right] \end{aligned}$$

und wegen (8a) und (8b).

$$\begin{split} \text{für:} \ r \geq r_0 \quad u_0 &= r^{\frac{1}{2}} \cdot \left[ J_J \left( p_0 \, r \right) + \, \eta_{0J} \cdot H_J^{(1)}(p_1 \, r) \, \right] \\ u_1 &= r^{\frac{1}{2}} \cdot \left[ \, \eta_{1J} \cdot H_J^{(1)}(p_1 \, r) \, \right]. \end{split}$$

Gleich setzen von beiden Werten  $u_0$  (resp.  $u_1$ ) in Grösse und Neigung

<sup>\*)</sup> Dieses Beispiel findet sich ausführlich bei: P. M. MORSE, Rev. Mod. Phys. 4, 632 (1932), dem der Verfasser das Beispiel zur Verfügung stellte.

im Punkte  $r = r_0$ , gibt 4 lineare unhomogene Gleichungen zur Bestimmung der 4 Konstanten  $c_0$ ,  $c_1$ ,  $\eta_0$ ,  $\eta_1$ . Die Lösung für  $\eta_{1J}$  schreibt sich in der Form einer Determinante aus Bessel'schen Funktionen und deren Ableitungen. Der Zähler ist:

$$\begin{split} f_{1} p_{0} \cdot \left[ H_{J}(p_{0} r_{0}) \cdot J_{J}'(p_{0} r_{0}) - H_{J}'(p_{0} r_{0}) \cdot J_{J}(p_{0} r_{0}) \right] \\ \cdot \left[ J_{J}(v_{0} r_{0}) \cdot v_{1} J_{J}'(v_{1} r_{0}) - v_{0} J_{J}'(v_{0} r_{0}) \cdot J_{J}(v_{1} r_{0}) \right] \\ &= \frac{2i f_{1}}{\pi r_{0}^{2}} (v_{0}^{2} - v_{1}^{2}) \int_{0}^{r_{0}} r dr \cdot J_{J}(v_{0} r) \cdot J_{J}(v_{1} r). \end{split}$$

Der Nenner hat für  $\alpha^2 \ll \psi^2$   $(|f^2| \ll 1)$  den Wert:

$$\frac{4}{\pi^2 r_0^2}$$

und für  $\alpha^2 \gg \psi^2$  ( $f^2 = -1$ ) den Wert:

$$\frac{8}{\pi^2 r_0^2}$$

(solange als  $v_1 r_0$  reell und grösser als J ist).

Man erhält daher, in beiden Fällen wegen der Definition von  $v_i$  und  $f_i$ :

$$|\eta_{1J}| = \frac{\pi}{2} \cdot \int_{0}^{\infty} r dr \cdot \alpha \cdot J_{J}(\nu_{0}r) \cdot J_{J}(\nu_{1}r). \qquad (12)$$

Unter  $\alpha$  ist hier eine Funktion verstanden, welche konstant =  $\alpha$  ist für  $0 < r < r_0$  und = 0 für  $r > r_0$ . Für imaginäres  $\nu_1$ , wo  $\nu_1 r_0 > iJ$  ist wird

$$|\eta_{1J}|^{2} = \frac{\sin x}{\sqrt{\frac{2 \alpha}{p_{0} p_{1}}} \cdot \cos\left(x + \frac{\pi}{4}\right) - i \sqrt{\frac{p_{0} + p_{1}}{p_{0} p_{1}}} \cdot \cos x};$$
$$x = v_{1}r - \frac{2 J - 1}{4}.$$

## § 6. Die angenäherten Lösungen (Störungsrechnung).

Wir können die Gleichungen (5), (5a), (5b) alle in der Form schreiben:

$$y_0'' + K_0(r) y_0 = L(r) y_1 y_1'' + K_1(r) y_1 = L(r) y_0$$
(13)

wo L in (5) ein linearer Operator ist. Für kleine Störungen L (r) (schwache Kopplung), setzen wir in erster Näherung  $y_1 = 0$  und wählen für  $y_0$  die im Nullpunkte endliche Lösung, welche wir, nach WENTZEL, KRAMERS, BRILLOUIN<sup>2</sup>) für positive  $K_0$  wie

$$y_{0} = y_{0}^{\mathrm{I}} \simeq \sqrt{\frac{2}{\pi}} \frac{1}{K_{0}^{\frac{1}{4}}} \cos\left(\int_{K_{0}=0}^{r} K_{0}^{\frac{1}{2}} dr - \frac{\pi}{4}\right)$$

normieren können. (Im Falle  $W_{00} \propto 1/r^2$ :  $y_0 = r^{\frac{1}{2}} \cdot J_J(p_0 r)$ ). Die homogene Gleichung für  $y_1$  hat ebenfalls eine im Nullpunkt endliche Lösung  $y_1^{\text{I}}$  und eine unendliche Lösung  $y_1^{\text{II}}$ . Wir wählen die beiden so, dass

$$y_1^{\mathrm{I}} + y_1^{\mathrm{II}} \cong \sqrt{\frac{2}{\pi}} \cdot \frac{1}{K_1^{\frac{1}{4}}} \cdot \exp\left[i\left(\int\limits_{K_1=0}^r K_1^{\frac{1}{2}} dr - \frac{\pi}{4}\right)\right]$$

normiert ist. Wegen (13) gilt streng<sup>10</sup>):

$$y_1^{I} \cdot y_1^{II'} - y_1^{I'} \cdot y_1^{II} = \frac{2}{\pi}$$

Die Lösung der unhomogenen Gleichung heisst<sup>10</sup>):

$$\begin{split} y_{1} &= \left[ c_{1} + \frac{\pi}{2} \int_{\infty}^{r} d \, \varrho \cdot y_{0}^{\mathrm{I}} \left( \varrho \right) \cdot L \left( \varrho \right) \cdot y_{1}^{\mathrm{II}} \left( \varrho \right) \right] \cdot y_{1}^{\mathrm{I}} \left( r \right) \\ &+ \left[ c_{2} - \frac{\pi}{2} \int_{\infty}^{r} d \, \varrho \cdot y_{0}^{\mathrm{I}} \left( \varrho \right) \cdot L \left( \varrho \right) \cdot y_{1}^{\mathrm{I}} \left( \varrho \right) \right] \cdot y_{1}^{\mathrm{II}} \left( r \right) \,. \end{split}$$

Die Grenzbedingungen im Unendlichen geben  $c_2 = ic_1 = i\eta_{1J}$ . Für r = 0 müssen wir verlangen, dass

$$\lim_{r=0} \left[ \int_{\infty}^{r} d \varrho \cdot y_{0}^{\mathrm{I}} \cdot L \cdot y_{1}^{\mathrm{II}} \right] \cdot y_{1}^{\mathrm{I}}(r) = 0,$$

was eine gewisse Beschränkung auf die Störungsfunktion L(r)auferlegt. Da aber die Lösungen  $y_0^{I}$  für r = 0 stark verschwinden (Abstossung der Kerne), so wird dieser Bedingung im ganzen genügt werden. Ferner muss der Faktor von  $y_1^{II}(r)$  für r = 0zu null werden. Wegen (8b) gibt das:

$$-i c_2 = \eta_{1J} = +i \frac{\pi}{2} \int_0^\infty dr \cdot y_1^{I} \cdot L \cdot y_0^{I}.$$
 (14)

<sup>&</sup>lt;sup>10</sup>) FRANCK und R. v. MISES, Dif. Gleich. d. Phys. p. 299 und p. 300 (1930).

Auf den Fall des vorhergehenden Paragraphen angewandt, gibt (14):

$$\eta_{1J} = \frac{\pi}{2} \int_{0}^{\infty} \alpha \cdot r dr \cdot J_{J} \left( p_{0} r \right) \cdot J_{J} \left( p_{1} r \right).$$
(15)

Der Unterschied zwischen (12) und (15) besteht darin, dass der Näherungsausdruck andere Frequenzen  $p_i$  enthält, an Stelle von  $v_i$  im exakten Ausdruck (12). Da das Integral im wesentlichen von der Resonanzschärfe  $\frac{1}{2} (p_0^2 - p_1^2) = \psi$  abhängt, so entspricht der Fehler in (15) der Verwendung von  $\psi$  an Stelle von  $\sqrt{\psi^2 + \alpha^2}$ . Wir wollen das nun noch allgemeiner beweisen.

#### § 7. Vergleich der London'schen mit der Born-Dirac'schen Näherung.

Dazu wendet man das im vorangehenden Paragraphen beschriebene Verfahren auf die Gleichung (5) (LONDON<sup>7</sup>)) und (5a) (MORSE und STUECKELBERG<sup>6</sup>)) an. Die Lösungen von (1a) seien als bekannt vorausgesetzt. Haben wir nur zwei Zustände in Betracht zu ziehen, so können die beiden (1) genügenden *adiabatischen molekülaren Wellenfunktionen*  $\Phi_{\sigma}$   $(r, \xi)$  durch die beiden Funktionen  $\chi_{\sigma}$   $(\xi)$  (1a) exakt ausgedrückt werden  $(\sigma = 0,1)$ . Wir machen mit LONDON<sup>7</sup>) den, vorerst willkürlichen Ansatz.

Die  $\chi_{\sigma}$  hängen definitionsgemäss nur von  $\xi$  ab. (Dabei stellen wir uns vor, dass die  $\xi_i$  eines zum Atom I gehörenden Elektrons vom Schwerpunkt des Atoms I aus gezählt werden usw. Näheres darüber siehe bei LONDON<sup>7</sup>) in seinem §2 und bei MORSE, STUECKEL-BERG<sup>6</sup>) in ihrem § 3). Die vorerst noch unbestimmte Funktion ghänge nur von r ab. Setzen wir die  $\chi_{\sigma}$  als normiert und orthogonal voraus, so sieht man leicht, dass auch die beiden  $\Phi_{\sigma}$  für jeden beliebigen reellen Wert von g(r) normal und orthogonal sind. Das gilt selbstverständlich nur solange als man annehmen darf, dass nur zwei Elektronenzustände existieren.

Der Hamilton'sche Operator der Wellengleichung der Elektronen für getrennte Atome lautet ((1a) in § 4):

$$H\left(\xi_{1}\ldots\zeta_{n},\varphi\right)=-\frac{h^{2}}{8\pi^{2}m}\varDelta_{\xi_{1}\ldots\xi_{n},\varphi}+V\left(\xi_{1}\ldots\zeta_{n},r=\infty\right).$$

Der entsprechende Operator der Molekülgleichung (1) im § 2 ist dann

$$H\left(\xi_{1}\ldots\zeta_{n},\varphi\right)+W\left(\xi_{1}\ldots\zeta_{n},r\right),$$

wobei W durch Gleichung (4a) im § 4 plus die dort erwähnten von  $\frac{\partial}{\partial \varphi}$  und  $\frac{\partial}{\partial \vartheta}$  abhängigen Operatoren definiert ist. Die  $\Phi_{\sigma}$ müssen der folgenden Gleichung genügen. (Die  $\chi_{\sigma}$  und daher die  $\Phi_{\sigma}$  seien reell.):

$$\int \Phi_i (H+W) \Phi_k d\xi_1 \dots d\zeta_n = \delta_{ik} E_i (r)$$
$$\int \chi_i H \chi_k d\xi_1 \dots d\zeta_n = \delta_{ik} E_i (\infty) = \delta_{ik} E_{i\infty} \cdot$$

Die Indizes *i* und *k* stehen an Stelle der Indices  $\sigma_0 = 0$  und  $\sigma_1 = 1$ in §§ 2 und 4. Der hier belanglose Index  $\Lambda$  ist weggelassen. Ausser  $E_i(r)$  und  $E_{i\infty}$  tritt noch das (für den Fall I ( $W_{01}^I$ ) bereits im § 4 definierte) Integral (Gleichung 5a)) auf\*):

$$W_{ik}(r) = \int \chi_i W(\xi_1 \dots \zeta_{n'} r) \chi_k d\xi_1 \dots d\zeta_n.$$

Aus der Gleichung für  $i \neq k$  d. h.  $\delta_{ik} = 0$  erhält man

tang 2 g (r) = 
$$\frac{2 W_{01}(r)}{[E_{0 \infty} + W_{00}(r)] - [E_{1 \infty} + W_{11}(r)]}$$

und aus den beiden Gleichungen für i = k = 0 resp. = 1, d. h.  $\delta_{ik} = 1$  bestimmen sich die Termwerte zu:

$$\begin{split} E_{\frac{1}{2}}(r) &= \frac{[E_{0\,\infty} + W_{00}] + [E_{1\,\infty} + W_{11}]}{2} \\ \pm \sqrt{\frac{\{[E_{0\,\infty} + W_{00}] - [E_{1\,\infty} + W_{11}]\}^2}{4} + W_{01}^2}. \end{split}$$

Die beiden Termwerte (Franck'sche Kurven) können sich also in dieser Betrachtungsart bei von Null verschiedenen  $W_{01}$  für reelle Abstände r nicht überschneiden, sondern sich nur nahe kommen (siehe <sup>1</sup>)). Wie in § 5 erleichtern folgende Abkürzungen die Schreibweise ( $W_{01}$  steht für  $W_{01}^{I}$  oder  $W_{01}^{II}$ ):

$$\frac{8 \pi^2 M}{h^2} \cdot \frac{[E_{0 \infty} + W_{00}] - [E_{1 \infty} + W_{11}]}{2} = \psi(r); \ \psi(\infty) \ge 0;$$

<sup>\*)</sup> In Gl. (5a) enthalten die Diagonalelemente  $W_{ii}$  noch das von der Rotation der Kerne herrührende Zusatzglied  $h^2 J^2/8 \pi^2 M r^2$ . In der Schreibweise dieses Paragraphen sind diese Glieder *nicht* enthalten, sondern sie werden erst in (17) explicite aufgeführt.

Unelastische Stösse zwischen Atomen.

$$\frac{8 \pi^2 M}{h^2} W_{01} = \alpha(r);$$

$$\frac{8 \pi^2 M}{h^2} T_i = p_i^2; \ p^2 = \frac{1}{2} \left( p_1^2 + p_0^2 \right);$$

$$g(r) = \frac{1}{2} \tan^{-1} \frac{\alpha}{\psi}$$

$$= p^2 - \frac{8 \pi^2 M}{2 h^2} \left[ W_{00}(r) + W_{11}(r) \right] - \frac{J^2}{m^2} \pm \sqrt{\psi^2(r) + \alpha^2} \left( \frac{M^2}{4} \right)$$

$$m{v}_{01}^2 = p^2 - rac{8 \ \pi^2 \ M}{2 \ h^2} \left[ W_{00} \left( r 
ight) + W_{11} \left( r 
ight) 
ight] - rac{J^2}{p^2} \pm \sqrt{\psi^2 \left( r 
ight) + lpha^2 \left( r 
ight);} \ \mu_{01}^2 = p_{01}^2 - rac{8 \ \pi^2 \ M}{h^2} \ W_{00} \left( r 
ight) - rac{J^2}{r^2} = arphi_{01}^2.$$

Wie bereits erwähnt, sind die  $\Phi_i$  orthogonal und normal, wenn die  $\chi_i$  es waren. Es ist weiter noch:

$$\int d \xi \Phi_{0} \Phi_{0'} = 0; \quad \int d \xi \Phi_{0} \Phi_{1'} = \mp g'$$
$$\int d \xi \Phi_{0} \Phi_{0'} = -g'^{2}; \quad \int d \xi \Phi_{0} \Phi_{1'} = \mp g''$$

(5) wird, wenn man die Glieder mit  $g^{\prime 2}$  gegen  $v_i^2$  vernachlässigt:

$$v_{0}'' + v_{0}^{2} v_{0} = 2 g' v_{1}' + g'' v_{1}$$

$$v_{1}'' + v_{1}^{2} v_{1} = -2 g' v_{0}' - g'' v_{0}$$
(18)

entsprechend wird (5a):

. .

$$u_{0}^{\prime\prime} + \mu_{0}^{2} u_{0} = \alpha u_{1}$$
(18a)  
$$u_{1}^{\prime\prime} + \mu_{1}^{2} u_{1} = \alpha u_{0}$$

Die Gleichungen (18) und (18a) sind äquivalent. Die angenäherte Bestimmung von  $|\eta_{1J}|^2$  (14) auf (18) und (18a) angewandt kann natürlich trotzdem zu zwei verschiedenen Resultaten führen.

Aus (18) folgt durch partielle Integration, da g und alle vorkommenden Ableitungen von g für  $r = \infty$  zu Null werden, und  $v_i$ und alle vorkommenden Ableitungen von  $v_i$  für r = 0 Null sind\*):

$$\int_{0}^{\infty} v_{0} v_{1} g'' dr = \int_{0}^{\infty} g dr [v_{0}'' v_{1} + 2 v_{0}' v_{1}' + v_{0} v_{1}'']$$
$$2 \int_{0}^{\infty} v_{0}' v_{1} g' dr = \int_{0}^{\infty} g dr [-2 v_{0}'' v_{1} - 2 v_{0}' v_{1}']$$

\*) Unter  $v_i$  und  $u_i$  sind hier, der Anwendung von § 6, Gl. (14) entsprechend, die Lösungen der homogenen Gleichungen verstanden, welche im Nullpunkt endlich sind, d. h.  $y_i^{I}$ .

Wegen (14):

$$|\eta_{1J}| = \frac{\pi}{2} \int_{0}^{\infty} \frac{1}{2} \cdot \operatorname{tg}^{-1} \frac{\alpha}{\psi} \cdot (v_0 v_1'' - v_0'' v_1) \cdot dr$$

oder wegen (18), und weil  $\frac{1}{2} (\nu_0^2 - \nu_1^2) = \sqrt{\psi^2 + \alpha^2}$ :

$$\eta_{1J} = \frac{\pi}{2} \int_0^\infty \sqrt{\psi^2 + \alpha^2} \operatorname{tg}^{-1} \frac{\alpha}{\psi} \cdot v_0 \, v_1 \cdot d \, r \,. \tag{19}$$

Entsprechend erhält man aus (18a)

$$|\eta_{1J}| = \frac{\pi}{2} \int_{0}^{\infty} \alpha \cdot u_0 u_1 dr.$$
 (19a)

In (19) ist aber:  $\sqrt{\psi^2 + \alpha^2} \operatorname{tg}^{-1} \frac{\alpha}{\psi} \simeq \alpha$  für  $\alpha^2 < \psi^2$  und  $\simeq \frac{\pi}{2} \alpha$ für  $\alpha^2 \gg \psi^2$  oder  $\sqrt{\psi^2 + \alpha^2} \operatorname{tg}^{-1} \frac{\alpha}{\psi} = \delta \cdot \alpha$ , wo  $\delta$  ein Faktor der Grössenordnung 1 ist ( $1 < \delta < 1.57$ ), eine genügende Annäherung. Der Unterschied zwischen (19) und (19a) ist also von derselben Art, wie derjenige zwischen der exakten Lösung (12) und der angenäherten (15). Wie LONDON<sup>7</sup>) zeigte, stellt (19a) die Summe von adiabatischer und nicht adiabatischer Zustandsänderung ( $0 \rightarrow 1$ ) dar, während das wegen schlechterer Resonanz kleinere (19) allein die, von uns gesuchten, nicht adiabatischen Übergänge  $0 \rightarrow 1$  enthält. Ist also im Bereiche, wo  $u_{1J}$  von Null verschieden ist  $\alpha \ll \psi$ , so gibt die dem (Born-Dirac'schen) Näherungsverfahren von MORSE und dem Verfasser<sup>6</sup>) zugrunde gelegte Gleichung (19a) schon die richtige Antwort.

Da q in eine Summe über J zerfällt, so darf für alle Glieder J, wo

$$| \alpha_{\max}(r) | = | \alpha(r_{\min}) | = | \alpha\left(\frac{J}{p_0}\right) | \ll | \psi |,$$

das Verfahren von Morse und Stueckelberg<sup>6</sup>) angewandt werden\*).

\*) In Gl. (17) dieses Paragraphen steht  $W_{01}$  für  $W_{01}^{I}$  und  $W_{01}^{II}$ . Wird dieser Paragraph als logische Entwicklung der Paragraphen 2 und 4 gelesen, so darf das in (17) und weiter oben vorkommende  $W_{01}$  nur  $W_{01}^{I}$  bedeuten. Für das Folgende wollen wir eine etwas andere Übereinkunft treffen:

Die Parallelität zwischen  $u_i$  mit den Frequenzen  $\mu_i$  und mit  $v_i$  mit den Frequenzen  $v_i$ , wollen wir so verallgemeinern, dass die  $\mu_i^2$  jeweils ein Mass für die Termgrössen ohne die für die Übergänge verantwortliche Störung  $\alpha = 8 \pi^2 M W_{01}^{I}/h^2$ oder  $8 \pi^2 M W_{01}^{II}/h^2$  bedeuten, während die  $v_i^2$  die Termgrössen mit eingeschalteter Störung darstellen.

Wir werden daher im folgenden von der exakten adiabatischen Lösung (Gl. (5) für Fall I und Gl. (5b) für Fall II) ausgehen, soweit sich das als möglich erweist. Beim Fall II wird das immer möglich sein, während beim Fall I eine Schwierigkeit auftreten wird, die darin besteht, dass die nicht-adiabatische Wechselwirkung, welche die Übergänge induziert, nicht lediglich eine Funktion sondern ein Operator ist. Dieser Schwierigkeit können wir nur entgehen, wenn wir eine London'sche Näherung einschalten, die in der Tat (siehe (18)) die dynamische in eine statische Wechselwirkung überführt.

# § 8. Das Anschlussverfahren der Näherungsfunktionen in den Umkehrpunkten.

Wenn man versucht das Problem der gekoppelten Gleichungen streng zu lösen, so ist es wie in § 5 methodisch gleichgültig, ob man (5), (5a) oder (5b) betrachtet, sofern nur die Kopplung durch eine Funktion, nicht einen Operator dargestellt wird. Beide Gleichungspaare sind von Typus:

$$u_{0}'' + \varphi_{0} u_{0} = \alpha u_{1}$$
$$u_{1}'' + \varphi_{1} u_{1} = \alpha u_{0},$$

wo  $\alpha$  im Fall I die Funktion 8  $\pi^2 M W_{01}^1/h^2$  und im Fall II die Funktion 8  $\pi^2 M W_{01}^{11}/h^2$  darstellt. Im Fall II legen wir unseren Rechnungen also die exakten adiabatischen Näherungsfunktionen zugrunde. Im Fall I können wir das nicht tun, weil die folgende Auflösungsmethode des Gleichungspaares nicht auf Operatorenkopplung anwendbar ist. Wir gehen daher von den Gleichungen (18a) aus, in welchen die Operatorenkopplung durch eine Funktionenkopplung ersetzt ist. Wie im § 7 gezeigt wurde, bedeutet das, dass die exakten adiabatischen Näherungsfunktionen durch die London'schen Näherungsfunktionen ersetzt sind.

Durch Elimination erhalten wir in beiden Fällen:

$$u_{0}^{\mathrm{IV}} - 2 \frac{\alpha'}{\alpha} \cdot u_{0}^{\mathrm{III}} + \left[\varphi_{0} + \varphi_{1} - \frac{\alpha''}{\alpha} - 2 \frac{\alpha'^{2}}{\alpha^{2}}\right] \cdot u_{0}^{\prime\prime} + \left[2 \varphi_{0}^{\prime} - 2 \frac{\alpha' \varphi_{0}}{\alpha}\right] \cdot u_{0}^{\prime} + \left[\varphi_{0} \varphi_{1} - \alpha^{2} - 2 \alpha' \left(\frac{\varphi_{0}}{\alpha}\right)^{\prime} - \alpha^{\prime\prime} \frac{\varphi_{0}}{\alpha}\right] \cdot u_{0} = 0$$
(20)

und

$$u_{\mathbf{1}} = \frac{1}{\alpha} \cdot [u_{\mathbf{0}}^{\prime\prime} + \varphi_{\mathbf{0}} u_{\mathbf{0}}].$$
(21)

Wir erinnern uns, dass  $\varphi_i$  und  $\alpha$  Grössen bedeuten, welche mit  $\frac{1}{h^2}$  multipliziert sind. Wir schreiben deshalb statt (20), (20a).

$$u_{0}^{IV} + D \cdot u_{0}^{III} + \frac{A}{h^{2}} \cdot [1 + h^{2} \cdot A_{2} + \dots] \cdot u_{0}^{"} + \frac{B}{h^{2}} \cdot u^{'} + \frac{C}{h^{4}} \cdot [1 + h^{2} \cdot C_{2} + \dots] \cdot u_{0} = 0, \qquad (20a)$$

wo

$$A \cdot \frac{1}{h^2} = \varphi_0 + \varphi_1 = 2 \varphi \qquad A_2 = \dots$$
$$B \cdot \frac{1}{h^2} = 2 \cdot \left[\varphi_0' - \frac{\varphi_0}{\alpha} \alpha'\right]$$
$$C \cdot \frac{1}{h^4} = \varphi_0 \varphi_1 - \alpha^2 \qquad C_2 = \dots$$
$$D \qquad = -2 \frac{\alpha'}{\alpha} \qquad \text{ist.}$$

Entsprechend dem W. K. B.<sup>2</sup>) Verfahren, setzt man auch hier

$$u_0 = e^{\frac{1}{h} \cdot (S_0 + h S_1 + h^2 S_2 + \ldots)}$$

und findet für die erste Näherung:

$$S_{0}^{\prime 4} + A S_{0}^{\prime 2} + C = 0; \quad \frac{S_{0}^{\prime 2}}{h^{2}} = i^{2} v^{2} = i^{2} [\varphi \pm \sqrt{\psi^{2} + \alpha^{2}}];$$
$$S_{1}^{\prime} = -\frac{1}{2} \frac{v^{\prime}}{v} - \frac{1}{2} \frac{(v^{2} - \varphi_{0})^{\prime} - \frac{\alpha^{\prime}}{\alpha} (v^{2} - \varphi_{0})}{v^{2} - \varphi}$$

usw.\*). Es treten also die gleichen Frequenzen  $r_0$  und  $r_1$  auf, wie im § 5 Gl. (17). In zweiter Näherung lautet daher die Lösung von (24) oder von (18a) nach einigem Umformen, wenn  $t = \frac{\psi}{\alpha}$ :

$$u_{0} \simeq \left[ (c_{+} \cdot e^{i \int v_{0} dr} + c_{-} \cdot e^{-i \int v_{0} dr}) \cdot \exp \frac{1}{2} \left( -\int \frac{d v_{0}}{v_{0}} + \int \frac{d t}{\sqrt{1 + t^{2}}} \right) + (d_{+} \cdot e^{i \int v_{1} dr} + d_{-} \cdot e^{-i \int v_{1} dr}) \cdot \exp \frac{1}{2} \left( -\int \frac{d v_{1}}{v_{1}} - \int \frac{d t}{\sqrt{1 + t^{2}}} \right) \right] \cdot e^{-\frac{1}{2} \int \frac{t dt}{1 + t^{2}}}$$
(26)

\*) Wenn man die Glieder D und  $B/h^2$  schon in nullter Näherung berücksichtigt, so erhält man vier voneinander verschiedene komplexe Grundfrequenzen, wo nicht  $v_{0+} = -v_{0-}$  ist. Das bedeutet für das Folgende, dass die Umkehrpunkte  $v_{0+} = v_{0-}$  im Komplexen liegen. Die übrige Behandlung bleibt sich aber gleich.

resp., wenn 
$$z = \frac{\alpha}{\psi}$$
:  
 $u_0 \approx \left[ (c_+ \cdot e^{i \int v_0 dr} + c_- \cdot e^{-i \int v_0 dr}) \cdot \exp \frac{1}{2} \left( -\int \frac{dv_0}{v_0} - \int \frac{dz}{z \sqrt{1 + z^2}} \right) + (d_+ \cdot e^{i \int v_1 dr} + d_- \cdot e^{-i \int v_1 dr}) \cdot \exp \frac{1}{2} \left( -\int \frac{dv_1}{v_1} + \int \frac{dz}{z \sqrt{1 + z^2}} \right) \right] \cdot e^{\frac{1}{2} \int \frac{dz}{z(1 + z^2)}}$ 

Die Annäherung ist überall gut, ausser in der Nähe der Punkte  $v_0 = 0$ ,  $v_1 = 0$ ,  $v_0 \simeq v_1$ , da dort die von  $v_i$  oder t resp. z abhängigen Amplituden rasch variieren. Beim Durchgang resp. Umfahren von diesen Punkten treten sprungweise Änderungen in den Konstanten  $c_+, c_-, d_+, d_-$  auf. Für eine Gleichung zweiten Grades (Punkte  $v_i = 0$ ) wurde das Problem von Kramers<sup>2</sup>) für den Durchgang auf der reellen Axe, und von ZWAAN<sup>11</sup>) für die Umfahrung auf der komplexen r-Ebene durchgeführt. Wir wollen hier ein dem Zwaan'schen ähnliches Verfahren anwenden, welches sich auch auf die Punkte  $v_0 = v_1$  ausdehnen lässt. Dazu muss angenommen werden, dass die Funktionen  $\varphi_0$ ,  $\varphi_1$  und  $\alpha$  im betrachteten kleinen Gebiet analytisch sind. Dann muss auch  $u_0$  analytisch sein. Beim Umfahren jedes Punktes  $v_0 = 0$ ,  $v_1 = 0$ ,  $v_0 = v_1$ muss darum  $u_0$  auf seinen Anfangswert zurückkehren. Die Näherungsausdrücke tun das aber nicht. Darum müssen die Konstanten sich sprungweise an bestimmten Stellen ändern. Da sich  $v_0$  mit  $-v_0$  bein Umfahren von  $v_0 = 0$ , und  $v_0 - v_1$  mit  $-(v_0 - v_1)$ , d. h.  $v_0$  mit  $v_1$  beim Umfahren von  $v_0 = v_1$  vertauscht, so können diese Sprünge nur proportional den vorhandenen Konstanten  $c_+ d_+ c_- d_-$  sein (siehe Stokes<sup>12</sup>)).

Beim Umfahren von  $v_0 = 0$  betrachtet man

$$\nu_{\mathbf{0}}^{-\frac{1}{2}} \cdot \begin{bmatrix} x & x & x \\ i \int r_{\mathbf{0}} dx & -i \int \nu_{\mathbf{0}} dx \\ c_{+} \cdot e & 0 & + c_{-} \cdot e \end{bmatrix}.$$

Da  $\nu_0$  die Wurzel aus einer im Punkte  $\nu_0 = 0$ , x = 0 verschwindenden analytischen Funktion ist, so muss, wenn  $c_+', c_-'$  die Konstanten nach der Umfahrung bedeuten:

$$c'_{+} = c_{-} \cdot e^{i \frac{\pi}{2}}; \quad c'_{-} = c_{+} \cdot e^{i \frac{\pi}{2}}.$$

<sup>&</sup>lt;sup>11</sup>) A. ZWAAN, Diss., Utrecht 1929.

<sup>&</sup>lt;sup>12</sup>) STOKES, Collected papers, siehe auch G. N. WATSON, Theory of Bessel Functions, Cambridge 1922.

Es stellt sich jetzt die Frage, wo die Konstanten springen können. STOKES<sup>11</sup>)<sup>12</sup>) zeigt, dass die verwendeten Näherungen, welche den asymptotischen Darstellungen entsprechen, in den Richtungen vom Punkte x = 0 aus, wo das Verhältnis der beiden Funktionen

$$\exp\left(\pm i\int\limits_0^x\boldsymbol{\nu_0}\,d\ x\right)$$

ein Extremum wird, der Fehler in der grösseren Funktion grösser ist, als der absolute Betrag der Kleinern. Die Konstante der Kleinern darf sich also dort sprungweise ändern. Dies gilt nur, wenn die betrachteten Unstetigkeitslinien, ohne von andern Punkten kommende Unstetigkeitslinien zu durchkreuzen, sich zu solchen Entfernungen verfolgen lassen, wo

$$\exp\left(\pm\int\limits_0^x\nu_0\,d\,x\right)$$

beliebig gross resp. klein wird. Die Gleichung der Unstetigkeitslinien von  $c_+$  ist\*):

Bezeichnet  $\lambda(x)$  das Argument von  $\nu_0(x)$  und  $\varphi'$  das Argument von dx, so führt (wenn  $x = \varrho \cdot e^{i\varphi}$  ist),

$$\lambda (\varrho, \varphi) + \varphi' = \pi + (\text{ganze Zahl} \times 2 \pi)$$

auf die Differentialgleichung:

$$ang^{-1}\Big(rac{arrho \, d \, arphi}{d \, arrho}\Big) + arphi + \lambda \left(arrho, arphi
ight) - \pi = ( ext{ganze Zahl} imes 2 \, \pi) + 0.$$

Man sieht leicht, dass die Extremalrichtungen den Punkt x = 0unter den Winkeln

$$\varphi = \frac{\pi}{3}$$
 und  $\frac{5\pi}{3}$ 

für Sprünge von  $c_+$ , und unter  $\varphi = \pi$  für Sprünge von  $c_-$  verlassen (siehe Fig. 2). Wir nehmen jetzt an, dass beim Überschreiten dieser Richtungen  $c_+$  sich proportional  $c_-$  ändert und umgekehrt.

1) Ist *a* eine komplexe Zahl  $a = |a| \cdot e^{i\varphi}$ , so bedeutet arg  $a = (\log a - \log |a|)/i = \varphi$ .

In diesem und in folgenden § sind die Buchstaben  $\varphi$ ,  $\psi$  und  $\vartheta$  als Argumente von komplexen Zahlen gebraucht Eine Verwechslung mit den Grössen  $\varphi$  und  $\psi$ , definiert in Gleichung (17) § 7, welche Termwerte resp. -differenzen darstellen, ist nicht zu befürchten; ebensowenig eine mit den Eulerschen Winkeln der § 2 u. § 4.

(Würde man die Sprünge noch proportional sich selbst und proportional den Konstanten  $d_+$  und  $d_-$  annehmen, so erhalten nämlich diese weiteren Proportionalitätskonstanten den Wert Null.)

Wir haben daher: Anfangswert:  $c_+$ ;  $c_$ nach Überschreiten von  $\varphi = \pi/3$ :

$$c_{+} + \alpha c_{-}; c_{-}*)$$

nach Überschreiten von  $\varphi = \pi$ :

$$c_+ + \alpha c_-; \beta c_+ + (1 + \alpha \beta) c_-$$

nach Übe schreiten von  $\varphi = 5 \pi/3$ :

$$c_+ (1 + \beta \gamma) + c_- (\alpha + \gamma + \alpha \beta \gamma); \ \beta c_+ + (1 + \alpha \beta) c_-$$



Fig. 2.

x-Ebene in der Umgebung von x = 0. Die Unstetigkeitslinien verlassen den Punkt x = 0 unter den Winkeln:  $\pi/3$ ,  $\pi$ ,  $5\pi/3$ .

Die letzten Werte müssen gleich  $c_{-} \cdot e^{i\frac{\pi}{2}}$ resp.  $c_{+} \cdot e^{i\frac{\pi}{2}}$ sein. Die Konstanten  $\alpha$ ,  $\beta$ ,  $\gamma$  sind also bis auf den belanglosen Faktor  $e^{2\pi i}$  bestimmt zu:

$$\alpha = \beta = \gamma = e^{i\frac{-\pi}{2}}.$$

Verlangt man jetzt, dass auf der negativen reellen *x*-Axe, wo  $v_0$  imaginär ist, nur der negative reelle Exponent auftritt  $(c_+ = 0, c_- = c)$ , so lautet die Lösung auf der positiven *x*-Axe, nach Überschreiten von  $\varphi = 5 \pi/3$ :

$$v_0^{-\frac{1}{2}} \cdot c \begin{bmatrix} i \int_{0}^{x} v_0 dx - i \frac{\pi}{2} & -i \int_{0}^{x} v_0 dx + i \frac{\pi}{2} \\ e & 0 & +e \end{bmatrix}$$

<sup>\*)</sup> Die Grösse  $\alpha = 8 \pi^2 M W_{01}/h^2$  darf nicht mit den hier verwendeten Zeichen  $\alpha$ ,  $\beta$ ,  $\gamma$  für die Sprungkonstanten verwechselt werden.

Auf der reellen Axe tritt noch die Nullstelle von  $v_1$  auf. Dieselbe behandelt sich in gleicher Weise. Sähe man von den Nullstellen von  $\psi^2 + \alpha^2$ , die im Komplexen liegen, ab, so wäre  $u_0$  im Unendlichen gleich dem obigen Ausdruck, und  $u_1$  gleich einem analogen. Die Grenzbedingungen (8a) und (8b) lassen sich also nur für  $\eta_0 = \eta_1 = 0$  (d. h. beide Ströme = 0) erfüllen. Das Stossphänomen muss also durch die Punkte  $v_0 = v_1$ , die immer im Komplexen, aber für kleine Störung nahe reellen Axe liegen, erklärt werden.

Da sich die Behandlung des Falles II (LANDAU<sup>8</sup>)) übersichtlicher gestaltet, so betrachten wir diesen im folgenden Paragraphen zuerst.

# § 9. Das Anschlussverfahren der Näherungsfunktionen in der Überschneidungsgegend (Fall II).

In einem kleinen Bereich um die Überschneidungsstelle  $\psi = 0$ ,  $r = r_0$  dürfen wir  $\alpha =$  konstant und  $\psi = \psi' \cdot (r - r_0)$  setzen. Dann sieht man, dass die Punkte  $\nu_0 - \nu_1 = 0$  symmetrisch um und nahe bei der reellen r-Axe liegen. Die Unstetigkeitslinien liegen, wie weiter unten gezeigt wird so, dass nur eine von je drei Linien die reelle Axe schneidet und die beiden Punkte verbindet. Die vier andern laufen in Paaren in die positiv und negativ imaginäre Halbebene. In Fig. 3 ist dieser Fall II dargestellt. Zum Anschlussverfahren müssen wir das kleine Gebiet etwa in der gezeichneten Art umfahren. Die Ausführungen dieses § haben aber auch, wie sich zeigen wird, noch in vielen Fällen Geltung wo  $\alpha$  nicht klein ist. (Also auch wenn sich die Kurven nach dem in der Einleitung und im § 7 skizzierten Verfahren von NEUMANN und WIGNER<sup>1</sup>) nicht schneiden.) Die Bedingung ist nur, dass  $\alpha$  und  $\psi$ sich in dem jetzt benötigten Gebiet durch eine analytische Funktion darstellen lassen. Um diesen Fall gleich einzuschliessen nehmen wir  $t = \frac{\psi}{\alpha}$  als unsere unabhängige Variable. Ist das Gebiet dann klein, so bedeutet das nur eine Masstabänderung, da dann  $t = \frac{\psi'}{\alpha} \cdot (r - r_0) = \text{konstant} \cdot (r - r_0)$ . Die untere Grenze der Integrale in den Exponenten von (22) kann durch Abspaltung eines in die Konstanten eingehenden Faktors beliebig gewählt werden. Wir wählen z. B. den in Fig. 4 gezeichneten Punkt B. Dann zerlegt man noch

$$\int_{B}^{t} v_{0} dr = \int_{B}^{t} \frac{v_{0} + v_{1}}{2} dr - \int_{B}^{t} \frac{v_{0} - v_{1}}{2} dr$$

und entsprechend auch  $\int_{B}^{\circ} \nu_{1} dr$ .

Das erste Integral hat keine Extremalrichtungen, welche von der Überschneidungsstelle ausgehen und kehrt nach der Umfahrung jedes einzelnen der beiden Punkte auf seinen Anfangswert zurück. Das zweite aber hat Extremalrichtungen und sein Vorzeichen ändert sich nach der Umfahrung eines der Punkte  $t = \pm i$ .



Fig. 3.

Die obere Hälfte der Figur stellt das bei Vernachlässigen der Kopplung  $\alpha$  auftretende Überschneiden der potentiellen Energiekurven  $\mu_0^2$  und  $\mu_1^2$  dar. Die gestrichelten Kurven stellen  $v_0^2$  und  $v_1^2$  dar. Sie überschneiden sich nicht, sondern kommen sich nur nahe. Da  $v_0 \sim \mu_0$  und  $v_1 \sim \mu_1$  werden soll, wenn wir weit vom Schnittpunkt der  $\mu_i$  entfernt sind, so verlieren die  $v_i$  ihre Identität am Schnittpunkte.

Die untere Hälfte stellt die dazugehörige komplexe r-Ebene für kleine Störungen  $\alpha$ dar. Beschreibt man die gezeichnete Umfahrung, so ändert sich das Vorzeichen von  $\sqrt{\psi^2 + \alpha^2}$ . Das auf der linken Seite kleinere  $v_0$  wird jetzt auf der rechten Seite grösser als  $v_1$ . Die in der oberen Figurenhälfte verlangte Zuordnung ergibt sich also zwanglos. Die Unstetigkeitslinien der Umkehr- und der Überschneidungspunkte sind (starke Linien) eingezeichnet.

Wir haben jetzt vier Glieder mit den Exponenten

$$\pm i \int \frac{v_0 - v_1}{2} dr = \pm i \int T(t) \cdot \sqrt{1 + t^2} \cdot dt,$$
  
wo  $T(t) = \frac{\alpha}{t'(v_0 + v_1)}$  ist.

Die Grössen  $\alpha$ , t',  $\nu_0$  und  $\nu_1$  sind als Funktionen von t gedacht. Nimmt man T (t) als im zur Umfahrung der Punkte  $t = \pm i$ benötigten Gebiet konstant an, so erhält man Fig. 4. Die ausgezogenen Linien stellen die Kurven



t- $(\psi/\alpha)$ -Ebene in der Nähe von t = 0 für  $\psi'$  und  $\alpha$  konstant. Die Unstetigkeitslinien verlassen die Punkte  $\pm i$  unter Winkeln, die um je  $2 \pi/3$  voneinander entfernt sind.

und die Gestrichelten die Kurven

arg 
$$(-i \int_{\pm i}^{t} \sqrt{1+t^2} dt) = \pi + m \cdot 2 \pi$$

### Unelastische Stösse zwischen Atomen.

dar. Dabei ist festgesetzt

$$\sqrt{1+t^2} = \sqrt{(t-(-i)) \cdot (t-(+i))} = \varrho^{\frac{1}{2}} \cdot e^{i\frac{\varphi}{2}} \cdot \tau^{\frac{1}{2}} \cdot e^{i\frac{\psi}{2}} *)$$
mit

$$rac{\pi}{2} < arphi < rac{5 \ \pi}{2}$$

und

$$rac{3\ \pi}{2} < arphi < rac{7\ \pi}{2}$$

(siehe Fig. 4). Die Bestimmung der Sprungkoeffizienten lässt sich streng durchführen, gestaltet sich aber ziemlich kompliziert. Es zeigt sich dabei, dass die Konstante von  $\exp(+i\int v_0 dx)$  nur proportional der Konstanten von  $\exp(+i\int v_1 dx)$  springen usw. Die Bestimmung gestaltet sich wesentlich einfacher, wenn man dieses Resultat voraussetzt. Zur Vereinfachung der Schreibweise lassen wir die belanglose Funktion

$$\exp\left(i\int\frac{\nu_0+\nu_1}{2}\,d\,r\right)$$

weg. Dann haben wir nur die Kopplung zwischen den beiden Summanden in

$$\begin{bmatrix} i \int_{B}^{t} dt \cdot T \cdot \sqrt{1+t^{2}} + \frac{1}{2} \int_{B}^{t} \frac{dt}{\sqrt{1+t^{2}}} \\ v_{0}^{-\frac{1}{2}} \cdot C_{+} \cdot e^{-B} & -i \int_{B}^{t} dt \cdot T \cdot \sqrt{1+t^{2}} - \frac{1}{2} \int_{B}^{t} \frac{dt}{\sqrt{1+t^{2}}} \end{bmatrix} \cdot \exp\left(-\frac{1}{2} \int_{B}^{t} \frac{t \, dt}{1+t^{2}}\right)$$

wo

$$C_{+} = c \cdot e^{-0} \quad \text{und} \quad D_{+} = d \cdot e^{-0}$$

ist, zu betrachten. Die Linie, welche i mit -i verbindet, darf aber nicht zur Umfahrung benützt werden, da dort

$$\left[i\int\limits_{t=\pm i}^{x}\frac{v_0-v_1}{2}\,d\,x\right]$$

nicht beliebig gross werden kann. Der in Fig. 4 gezeichnete Weg

.

<sup>\*)</sup> Siehe Anmerkung auf Seite 390.

A - B - E - F - G - H - A ist erlaubt, wenn die Unstetigkeitslinien der Punkte  $v_0$  und  $v_1 = 0$  die gezeichneten Linien I, II, III und IV nicht oder erst (bei  $x_{\infty}$ ) für sehr grosse Werte der Exponenten schneiden. Dann ist der Fehler von der Grössenordnung

$$\exp\left(-\mid i\int_{t\pm i}^{x_{\infty}}(v_0-v_1)\,d\,x\mid\right).$$

Beschreibt die Lösung den Weg von B nach E (in Fig. 4), so springt zuerst  $C_+$  auf  $C_+ + aD_+$ , und dann  $D_+$  auf  $bC_+ +$  $(1 + ab) D_+$ . Auf dem Weg von B über F nach G multipliziert sich das erste Glied ausserdem mit

$$M_1 = \exp\left(i\int\limits_B^G T\cdot dt\cdot \sqrt{1+t^2} + \int\limits_B^G \frac{dt}{2\ \sqrt{1+t^2}}\right)$$

und das zweite Glied mit  $N_1 = M_1^{-1}$ , so dass die Lösung bei C lautet:

$$\begin{bmatrix} i \int_{0}^{t} dt \cdot T \cdot \sqrt{1+t^{2}} + \frac{1}{2} \int_{0}^{t} \frac{dt}{\sqrt{1+t^{2}}} + \nu^{-\frac{1}{2}} \cdot \Delta_{+} \cdot e^{-i \dots} \end{bmatrix}$$
$$\cdot \exp\left(-\frac{1}{2} \int_{B}^{t} \frac{t \, dt}{1+t^{2}}\right)$$
$$\Gamma_{+} = (C_{+} + a D_{+}) \cdot M_{1}; \ \Delta_{+} = (b C_{+} + (1 + a b) D_{+}) \cdot N_{1}.$$

Beim Umfahren von +i von G nach H ändert sich  $\Gamma_+ in \Gamma_+ + \alpha \Delta_+$ und  $\Delta_+ in \beta \Gamma_+ + (1 + \alpha \beta) \Delta_+^*$ ). Auf dem Wege von G nach Büber A, treten entsprechende Faktoren  $M_2$  und  $N_2$  hinzu.

Es ist:

$$\begin{split} \log M_1 M_2 = \log N_1 N_2 = \frac{1}{2} \oint \frac{dt}{\sqrt{1+t^2}} + i \oint T \sqrt{1+t^2} \cdot dt = i\pi - 2\,\delta;\\ \log M_1 N_2 = \log M_2 N_1 = 0\\ \frac{1}{2} \oint \frac{t\,dt}{1+t^2} = i\,\pi\,. \end{split}$$

( $\oint$  bedeutet das Linienintegral auf dem Weg A - B - E - F - G - H - A)

\*) Siehe Anmerkung auf Seite 391.

Die positiv reelle Grösse  $\delta$  bestimmt sich folgendermassen:

Das Integral  $i \oint T \cdot \sqrt{1+t^2} \cdot dt$  ist, da T analytisch =  $T_0 + t T_0' + \ldots$ ,

$$i \oint T \cdot \left(t + \frac{1}{2} \cdot \frac{1}{t} + \ldots\right) \cdot dt = i \oint T_0 \cdot \frac{1}{2} \cdot \frac{dt}{t} = -\pi \cdot T_0 = -2 \delta,$$

da |t| > 1 auf dem ganzen Weg gewählt werden kann. Nach der Umfahrung gehen  $v_0$  und  $v_1$  ebenso  $v_0 - v_1$  (im Gegensatz zum Punkte  $v_0 = 0$ ) auf ihre Anfangswerte zurück. Man erhält die beiden Bestimmungsgleichungen:

$$\begin{split} & - \left[ C_{+} \left( \alpha \ b - e^{-2 \ \delta} \right) + D_{+} \left( \alpha \ (1 + a \ b) - a \ e^{-2 \ \delta} \right) \right] = C_{+} \\ & - \left[ C_{+} \left( \beta - b \ (1 + \alpha \ \beta) \ e^{+2 \ \delta} \right) \right. \\ & + \left. D_{+} \left( \beta \ a - (1 + a \ b) \ (1 + \alpha \ \beta) \ e^{+2 \ \delta} \right) \right] = D_{+} \,. \end{split}$$

Dies gibt vier Gleichungen zur Bestimmung der vier Konstanten. Man findet (bis auf den Faktor  $e^{2\pi i}$ ):

$$\alpha = \beta = a = b = e^{i\frac{\pi}{2}} \cdot \sqrt{1 - e^{-2\delta}}.$$

(Hätte man das strenge Problem durchgeführt, so hätten wir im ganzen  $4 \times 4 = 16$  Konstanten zu bestimmen, von denen die 8 Null sind, welche  $\nu_0$  mit  $-\nu_1$  und umgekehrt koppeln.)

Die Konstanten, welche  $C_{-}$  und  $D_{-}$  koppeln, haben denselben Wert wie  $\alpha$ ,  $\beta$ , a, b.

Ist  $e^{-2\delta} \ll 1$ , so heissen wir die Punkte weit voneinander getrennt oder *isoliert*. Der isolierte Punkt hat also 3 Unstetigkeitslinien, und die Sprungkoeffizienten sind  $e^{i\frac{\pi}{2}}$ . Das deckt sich mit dem für  $v_0 = 0$  (Fig. 2) gefundenen Werte. Fallen die Punkte zusammen ( $T_0 = \frac{\delta}{2\pi} = 0$ ), so sind die Sprungkoeffizienten alle = 0. ( $T_0 = 0$  bedeutet aber  $\alpha = 0$ , d. h. keine Wechselwirkung.) Wir kennen die Lösung links von  $\psi = 0$ , d. h. auf der negativen reellen t-Axe; sie ist gegeben durch Gleichung (22), wenn  $c_{\pm} = c \cdot e^{\pm i\frac{\pi}{4}}$ und  $d_{\pm} = d \cdot e^{\pm i\frac{\pi}{4}}$  gesetzt wird. Beschreibt man jetzt den Weg A-B-E-F, und berücksichtigt, dass aus Symmetriegründen:

$$i \int_{A}^{F} \frac{v_{0} - v_{1}}{2} dr = \frac{i}{2} \oint T(r) \cdot \sqrt{1 + t^{2}} \cdot dt = -\delta$$

ist, so lautet die Lösung auf der reellen Axe rechts von  $\psi = 0$  (siehe Fig. 4), d. h. auf der positiven reellen *t*-Axe:

$$u_{0} = \frac{1}{\nu_{0}^{\frac{1}{2}}} \cdot \left[ \frac{\psi + \sqrt{\psi^{2} + \alpha^{2}}}{\sqrt{\psi^{2} + \alpha^{2}}} \right]^{\frac{1}{2}} \cdot \left[ (c \cdot e^{-\delta} + d \cdot \sqrt{1 - e^{-2\delta}} \cdot e^{-i\tau}) e^{-i\int_{0}^{x} \nu_{0} dx - i\frac{\pi}{4}} + (c \cdot e^{-\delta} + d \cdot \sqrt{1 - e^{-2\delta}} \cdot e^{+i\tau}) e^{-i\int_{0}^{x} \nu_{0} dx + i\frac{\pi}{0}} \right]$$

$$- \frac{1}{\nu_{1}^{\frac{1}{2}}} \left[ \frac{\alpha^{2}}{\psi \sqrt{\psi^{2} + \alpha^{2}} + \psi^{2} + \alpha^{2}} \right] \cdot \left[ (-c \cdot \sqrt{1 - e^{-2\delta}} \cdot e^{i\tau} + d \cdot e^{-\delta}) e^{i\int_{0}^{y} \nu_{1} dy - i\frac{\pi}{4}} + (-c \cdot \sqrt{1 - e^{-2\delta}} \cdot e^{-i\tau} + d \cdot e^{-\delta}) e^{-i\int_{0}^{y} \nu_{1} dy + i\frac{\pi}{4}} \right]; \quad (24)$$

darin bedeutet

$$\int_{\frac{\nu_0=0}{1}}^{r} \nu_0 dr = \int_{\frac{\nu_0}{1}=0}^{A} \nu_0 dr + \int_{A}^{r} \frac{\nu_0 + \nu_1}{2} dr \pm \int_{A}^{r} \frac{\nu_0 - \nu_1}{2} dr.$$

Die Schreibweise  $\oint$  deutet an, dass der Integrand  $\nu_0$  resp.  $\nu_1$  sich an der Stelle A—F sprungweise von

$$\sqrt{\varphi \mp |\sqrt{\psi^2 + \alpha^2}|}$$
 in  $\sqrt{\varphi \pm |\sqrt{\psi^2 + \alpha^2}|}$ 

verändert. Diese Definition der Identität der  $\nu_i$  vor und nach der Überschneidung bedeutet, dass für negative t resp.  $(r-r_0)$ ,  $r_0 < \nu_1$  und für positive t resp.  $(r-r_0)$ ,  $\nu_0 > \nu_1$  ist, d. h. wir folgen der Bezeichnungsweise, welche in nullter Näherung eine reelle Überschneidung darstellt. (Wählte man die andere Möglichkeit:  $\nu_0$  überall  $> \nu_1$ , so hätte man einen kontinuierlichen Integranden, aber in nullter Näherung nur ein Nahekommen der Kurven, siehe <sup>2</sup>) und Fig. 3). Ferner ist  $\tau$  die reelle Grösse:

$$\tau = \int_{\nu_0=0}^{A} \nu_0 \, dr - \int_{\nu_1=0}^{A} \nu_1 \, dr \quad (\tau < 0, \text{ da } \nu_0 < \nu_1 \text{ für negative reelle } t) \, .$$

Für grosse Werte von  $\frac{\psi}{\alpha}$  wird der Faktor des ersten  $(\nu_0)$ -Gliedes zu  $\sqrt{2}$  und der des zweiten  $(\nu_1)$  zu  $\left(\frac{\alpha}{\psi\sqrt{2}}\right)$ . Die Grössen  $\nu_0$ 

und  $v_1$  sind dort schon praktisch konstant. Dann gilt auch in (21):

$$e^{\pm i \int_{r_i}^{r} v_i dr} \cdot \frac{1}{\alpha} \cdot \left(\frac{d^2}{dr^2} + \varphi_0\right) e^{\pm i \int_{r_i}^{r} v_i dr} = \frac{\varphi_0 - v_i^2}{\alpha} = \frac{-\frac{1}{2} \frac{\alpha}{\psi}}{+2 \frac{\psi}{\alpha}} \quad \text{für} \quad i=0$$

Geht man jetzt zur Grenze  $\frac{\psi}{\alpha} = \infty$  über, was ja bei fehlender Resonanz ( $\alpha(r = \infty) = 0, \psi(r = \infty) > 0$ ) immer möglich ist, so hat man:

$$u_{0} = \sqrt{\frac{2}{\nu_{0}}} \cdot \left[ (c \cdot e^{-\delta} + d \cdot \sqrt{1 - e^{-2\delta}} \cdot e^{-i\tau}) \cdot e^{i\int_{0}^{x} \nu_{0} dx - i\frac{\pi}{4}} - i\int_{0}^{x} \nu_{0} dx + i\frac{\pi}{4} \right]$$

$$(c \cdot e^{-\delta} + d \cdot \sqrt{1 - e^{-2\delta}} \cdot e^{+i\tau}) \cdot e^{-i\int_{0}^{x} \nu_{0} dx + i\frac{\pi}{4}}$$

$$(25)$$
we group (21)

und wegen (21)

$$u_{1} = -\frac{1}{\sqrt{\frac{2}{\nu_{1}}}} \cdot \left[ (-c \cdot \sqrt{1 - e^{-2\delta}} \cdot e^{+i\tau} + d \cdot e^{-\delta}) e^{-i\frac{\pi}{4}} - i\frac{\int_{0}^{y} \nu_{1} dy - i\frac{\pi}{4}}{-i\int_{0}^{y} \nu_{1} dy + i\frac{\pi}{4}} \right].$$

$$(-c \cdot \sqrt{1 - e^{-2\delta}} \cdot e^{-i\tau} + d \cdot e^{-\delta}) e^{-i\frac{\pi}{4}} = 0.$$
(26)

Die Grenzbedingungen (8a) und (8b) lauten, wenn statt der Bessel'schen Funktionen die W.K.B.<sup>2</sup>)-Näherungen verwendet werden (die im  $\infty$  natürlich asymptotisch in Bessel- und Hankelfunktionen übergehen), und wenn

$$\lim_{r \to \infty} \left( \int_{\nu_0 = 0}^{r} \nu_0 \, dr - \int_{\mu_0 = 0}^{r} \mu_0 \, dr \right) = \beta$$

$$\lim_{r \to \infty} \left( -\int_{\nu_1 = 0}^{r} \nu_1 \, dr + \int_{\mu_1 = 0}^{r} \mu_1 \, dr \right) = \gamma$$
(27)

gesetzt wird:

$$\lim_{r \to \infty} u_{0} = \sqrt{\frac{2}{\pi p_{0}}} \cdot \left[ (\eta_{0} + \frac{1}{2}) \cdot e^{i\beta} \cdot e^{0} + \frac{i\int_{-}^{x} v_{0} dx - i\frac{\pi}{4}}{-i\int_{-}^{x} v_{0} dx + i\frac{\pi}{4}} + \frac{1}{2} e^{-i\beta} \cdot e^{0} + \frac{-i\int_{-}^{x} v_{0} dx + i\frac{\pi}{4}}{-i\beta} \right]$$
(28a)

$$\lim_{r \to \infty} u_1 = \sqrt{\frac{2}{\pi p_1}} \cdot \left[ \eta_1 \cdot e^{-i\gamma} \cdot e^{0} \right].$$
(28b)

Es gilt ferner für r = 0:  $\lim \nu_0 = \lim \mu_0 = p_0$  und  $\lim \nu_1 = \lim \nu_1 = p_1$ . Setzt man (29) resp. (30) gleich (32a) resp. (32b) in Grösse und Ableitung nach r (oder x resp. y), so erhält man vier Gleichungen zur Bestimmung der vier Unbekannten  $c, d, \eta_0, \eta_1$ . Sie bestimmen sich zu

$$\eta_0 = i \cdot e^{-i(2\beta + \tau)} \cdot a^2 \cdot \sin \tau - i \cdot e^{-i\beta} \cdot \sin \beta$$
  
$$\eta_1 = -e^{i(\beta - \gamma)} \cdot a \cdot e^{-\delta} \cdot \sin \tau, \qquad \text{wo } a = i \cdot \sqrt{1 - e^{-2\delta}}.$$

(Die Grössen  $a^2$ ,  $\beta$ ,  $\gamma$ ,  $\tau$  sind reell,  $a^2$  bedeutet  $(e^{-2\delta} - 1)$ ). Der Strom der Funktion  $u_0$  ist proportional\*)

 $\frac{2}{\pi} \cdot u_0' \overline{u}_0 = \text{Realteil von } (\eta_0 + \eta_0 \overline{\eta}_0) = -(1 - e^{-2\delta}) \cdot e^{-2\delta} \cdot \sin^2 \tau,$ und der Strom der Funktion  $u_1$  proportional

$$\frac{2}{\pi} \cdot u_1' \overline{u}_1 = \eta_1 \overline{\eta}_1 = (1 - e^{-2\delta}) \cdot e^{-2\delta} \cdot \sin^2 \tau.$$

Mittelt man über  $\tau$ , so erhält man für  $|\eta_1|^2$ :

$$\begin{array}{c|c} | \eta_{1} |^{2} = \frac{1}{2} \cdot e^{-2\delta} \cdot (1 - e^{-2\delta}) \\ 2 \delta = \pi \cdot T_{0} = \frac{\alpha^{2}}{\psi' \nu} \cdot \frac{\pi}{2} \\ r = \frac{\nu_{0} + \nu_{1}}{2} . \end{array} \tag{33}$$

Die Funktionswerte  $\alpha^2$ ,  $\psi'$  und  $\nu$  sind an der Stelle  $\psi = 0$  verstanden. Für Werte von 2  $\delta \ll 1$  erhält man

$$|\eta_1|^2 = \frac{\pi}{4} \cdot \frac{\alpha^2}{\psi' \nu} = \frac{1}{2} \cdot 2 \delta$$
 (29a)

in Übereinstimmung mit der Landau'schen Formel<sup>8</sup>). LANDAU integriert aber in seiner ersten Arbeit<sup>8</sup>) später über die  $|\eta_{1J}|^2$ in solcher Weise, dass er eine beträchtliche Anzahl von  $|\eta_{1J}|^2$ erhält, wo  $|\eta_{1J}|^2 > 1/4$  ist, da er bis zu  $J_m$  geht, wo an der Überschneidungsstelle

$$v_{J_m} = \sqrt{p^2 - \frac{J_m^2}{r_0^2}} = 0$$
.

Die vorliegende Methode gilt allerdings auch nicht mehr streng, wenn  $\nu \simeq 0$  wird, weil dann die Unstetigkeitslinien von  $\nu_0 = 0$  sich mit denen von  $t = \pm i$  überkreuzen. Immerhin ist (29) länger richtig als (29a), da  $|\eta_{1J}|^2$  immer  $< \frac{1}{4}$  ist. (Das Maximum von

<sup>\*)</sup> Die Grössen  $\beta$  und  $\gamma$  sind selbstverständlich hier und im Folgenden diejenigen aus Gleichung (27) und nicht etwa die Springkonstanten.

 $e^{-2\delta}$   $(1 - e^{-2\delta})$  liegt bei  $e^{-2\delta} = \frac{1}{2}$  und beträgt 1/4.) Wird  $\delta \ge 1$ , so eignet sich die Darstellung des Nahekommens der Kurven besser als die Darstellung des Überschneidens.  $|\eta_{1J}|^2$  wird dann gleich  $\frac{1}{2} \cdot e^{-2\delta}$ . Diesen andern Grenzfall erhält nun LANDAU in seiner neuen Arbeit<sup>13</sup>) auch, jedoch auf eine andere, wie mir scheint weniger übersichtliche Weise.



Fig. 4a.

t- $(\psi/\alpha)$ -Ebene in der Nähe von t = 0 für nicht konstante  $\psi'$  und  $\alpha$ .

Die Voraussetzung T(t) = konstant, welche wir zur Zeichnung der Figur 4 annahmen, ist übrigens nicht nötig. Man muss nur T(t) im benötigten Gebiet als überall von 0 verschiedene analytische Funktionen von t approximieren können. Für

$$\int t dt/(1+t^2)$$
 und  $\int dt/\sqrt{1+t^2}$ 

wählt man A' oder F', statt A und F als untere Grenze (siehe Fig. 4a) und beschreibt den Weg  $A' - B' \dots$  usw., während für

$$\int^t dt \cdot T(t) \cdot \sqrt{1+t^2}$$

der alte Weg A-B..., welcher jetzt deformiert ist, genommen wird.

<sup>&</sup>lt;sup>13</sup>) L. LANDAU. Sow. Phys. 2, 46 (1932). Zu ähnlichem Resultat für grosse  $\alpha^2$  kommt auch C. ZENER (Proc. Roy. Soc. 137 A, 696 (1932)) durch eine ganz verschiedene Betrachtungsweise.

## § 10. Das Anschlussverfahren der Näherungsfunktion für den Fall I ( $\psi$ auf der reellen Axe überall > 0).

Im Fall I trete im ganzen reellen Geschwindigkeitsbereich auf der reellen Axe keine Überschneidung auf. Es wird sich dann zeigen, dass die Gegend, wo  $W_{01}^{I} = \frac{1}{2} \left( E_{0} - E_{1} \right)$  d. h. wo  $|\alpha| = \psi$ wird, ähnliche Eigenschaften hat, wie die Überschneidungsstelle im vorhergehenden Paragraphen. Das ist verständlich, denn dort beginnen die potentiellen Energiekurven für  $\alpha = 0$  (entsprechend den Grössen  $\mu_1^2$  und  $\mu_2^2$  in Gl. (17) im § 7) sich wesentlich von denjenigen mit  $\alpha \sim \psi$  (entsprechend den Grössen  $v_0^2$  und  $v_1^2$  in Gl. (17) § 7) zu unterscheiden. Die letztgenannten Kurven  $(v_0^2$  und  $v_1^2)$  haben nämlich dort bereits den nahezu doppelten Termabstand  $2\sqrt{\psi^2 + \alpha^2} \simeq 2\sqrt{2\psi^2}$  als die ungestörten Kurven. Für kleinere Abstände, wo  $|\alpha| > \psi$  wird, wächst der Termabstand wie  $2 \alpha$  und für grössere Abstände der Atome ( $\alpha \rightarrow 0$ ) wird er konstant = 2  $\psi$ . Die potentiellen Energiekurven verlieren also auch in dieser Gegend in beiden Fassungen ( $\nu_i$  oder  $\mu_i$  Identifizierung) ihren Sinn. Das Bild ähnelt etwa dem des vorigen Paragraphen, wenn man  $\alpha$  und damit  $\delta$  sehr gross werden lässt, so dass die Neumann-Wigner'sche Darstellung des Nahekommens vorteilhafter als die der Überschneidung wird. Das bedeutet die am Schluss von § 9 in Klammern erwähnte Identifizierung der Kurven. Das Schlussresultat dieses Paragraphen wird auch dem des vorhergehenden sehr ähnlich (Gl. (30)), wenn man annimmt, dass  $\alpha$ und  $\psi$  ihre Rollen vertauscht haben. Dies zeigt sich schon darin, dass wir die Betrachtung nicht in der doch in roher Weise rähnlichen t-Ebene durchführen können, sondern von vorne herein die abstrakte zu t reziproke Grösse z heranziehen müssen. Wir verwenden die Form (23) der Lösung des § 8. Der Punkt  $z = \frac{\alpha}{w} = 0$ entspricht dann dem Ort  $r = \infty$ . Die Punkte  $z = \pm i$  behandelt man gleich wie oben und bestimmt die Unstetigkeitslinien:

$$\arg\left(\pm i \int_{\pm i}^{z} Z(z) \cdot \sqrt{1+z^{2}} \cdot dz\right) = \pi \; ; \; \; Z = \frac{\psi}{2 \; \nu z'} \; ; \; \; \nu = \frac{\nu_{0} + \nu_{1}}{2}.$$

Der Fall I lässt sich aber nicht so allgemein behandeln wie Fall II. Die Wechselwirkungsenergien  $W_{01}^{I} = \frac{h^2}{8 \pi^2 M} \cdot \alpha(r)$  müssen genauer betrachtet werden. Die Änderung der Elektronenkonfiguration für  $r = \infty$  von  $\Phi_0 = \chi_0$  nach  $\Phi_1 = \chi_1$  gibt uns das Kriterium für den stattgehabten Stoss.  $\chi_0$  bedeutet aber: Atom I im Zustand *m*, Atom II im Zustand *n*.  $\chi_1$  in gleicher Weise: Atom I im Zustand m' und II in n'. Die Wechselwirkungsenergie  $W_{01}^{I}$  lässt sich dann in vielen Fällen für grosse Distanzen nach Potenzen von 1/r entwickeln. Für beiderseits neutrale Systeme ist das erste Glied

$$\frac{d_{\mathbf{I}} \cdot d_{\mathbf{II}}}{r^{\mathbf{3}}}$$

,

das zweite Glied

$$\frac{d_{\mathrm{I}} \cdot q_{\mathrm{II}} + q_{\mathrm{I}} \cdot d_{\mathrm{II}}}{\imath^4}$$

usw., worin  $d_1$ ,  $q_1$  etc. das mit dem Übergang m m' verbundene Dipolmoment bzw. Quadrupolmoment des Atoms I bedeutet und entsprechend für Atom II. Für beiderseits optisch erlaubte Übergänge wird das Glied mit  $1/r^3$  für grosse Distanzen ausschlaggebend sein usw. Dieses Resultat erhält man durch klassische Überlegungen. (Näheres über die wellenmechanische Begründung findet sich in der ersten Arbeit von Morse und dem Verfasser<sup>6</sup>) im § 3.) Wir beschränken uns im folgenden auf Funktionen  $\alpha$ , welche für grosse r wie  $\varepsilon \cdot r^{-(\lambda+1)}$  verlaufen, wo  $\lambda \ge 2$  ist.

Dann ist, wenn

$$v = \frac{v_0 + v_1}{2}$$

und  $\psi$  im Bereiche |z| < 2 konstant sind:

$$\alpha' = -(\lambda+1) \cdot \frac{1}{r} \alpha; \ r = \left(\frac{\varepsilon}{\alpha}\right)^{\frac{1}{\lambda+1}}$$
  
oder  $z' = -\frac{\lambda+1}{r} \cdot z = -(\lambda+1) \cdot \frac{\psi^{\frac{1}{\lambda+1}} \cdot z^{\frac{1}{\lambda+1}}}{\varepsilon^{\frac{1}{\lambda+1}}}.$ 

Wir setzen  $n = 1 + \frac{1}{\lambda + 1}$  und haben:

$$Z(z) = -\frac{\psi^{1-\frac{1}{\lambda+1}}}{(\lambda+1)\cdot \varepsilon^{\frac{1}{\lambda+1}}} \cdot \frac{1}{z^{n}}; \ 1 < n < 1.5.$$

Unter der z-Ebene müssen wir, da n eine nicht ganze Zahl ist, eine Riemann'sche Fläche verstehen, welche der negativen reellen Axe entlang aufgeschnitten ist. Die Richtungen der Unstetigkeitslinien bestimmen sich, wenn  $z = |z| \cdot e^{i\vartheta}$ ,  $z - (+i) = \varrho \cdot e^{i\vartheta}$ ,

$$z - (-i) = \tau \cdot e^{i \psi}$$
 und  $dz = |dz| \cdot e^{i \psi}$  ist,\*)

aus:

$$\arg\left(\pm i\int_{z=+i}^{r} \frac{\nu_0 - \nu_1}{2} dr\right)$$

$$= \arg\left[\mp i\int_{+i}^{z} \frac{dz}{z^n} \cdot (z - (+i))^{\frac{1}{2}} \cdot (z - (-i))^{\frac{1}{2}}\right] = \pi + m \cdot 2\pi$$

Fig. 5.

z- $(\alpha/\psi)$ -Ebene in der Nähe von z = 0 für  $\psi$  konstant und  $\alpha = \varepsilon/r^2$ . Die z-Ebene ist eine Riemann'sche Fläche, welche der negativen reellen Axe entlang aufgeschnitten ist.

oder, wenn  $\lambda_{\mp}$  das Argument von  $\pm i \int_{+i}^{r} (r_0 - r_1) dr/2$  bedeutet:

$$\lambda_{\mp}+arphi'=\pi+m\cdot 2\,\pi,$$

wo  $\lambda_{\mp} = \frac{1}{2} \cdot (\varphi + \psi - 2 n \vartheta \pm \pi) \text{ ist.}^{**}$ 

Wir setzen fest  $0 \le \varphi, \psi \le 2\pi$ , und auf dem nullten Blatt der Riemann'schen Fläche  $-\pi \le \vartheta \le \pi$ . Für die Ausgangsrichtungen

<sup>\*)</sup> Siehe Anmerkung auf S. 390.

<sup>\*\*)</sup>  $\lambda_+$  und  $\lambda_-$  ist nicht mit dem Exponenten  $\lambda$  ohne Index in  $\alpha = \varepsilon \cdot r^{-(\lambda+1)}$  zu verwechseln.

ist  $\varphi' = \varphi \equiv \varphi_0$  zu wählen. Das gibt für  $\varphi_0$ , da  $\vartheta_0 = \psi_0 = \frac{\pi}{2}$  ist: für  $D_+$  und  $C_-$  Sprünge  $(\lambda_-)$ :

$$\varphi_0 = \frac{1+8\ m+2\ n}{6}\pi$$

Das Bild für  $\alpha = \frac{\varepsilon}{r^2}$ ,  $\lambda = 1$  und n = 1.5 ist in Fig. 5 gegeben: Bezeichnet man  $\varphi_0$ , für  $D_+$  Sprünge und m = 1, mit

$$\varphi_0 = 2 \pi - \sigma$$
, und  $\sigma = \frac{2 n - 3}{6} \pi > 0$ 

so ist  $\sigma = 0$  für n = 1.5. Der Halbkreis |z| = 1 von  $-\frac{\pi}{2} < \vartheta < \frac{\pi}{2}$ genügt der Gleichung, da dort  $\varphi + \psi = \frac{3\pi}{2} + 2\psi$ , und  $\psi = \frac{\vartheta}{2} + \frac{\pi}{4}$ . Daher  $\varphi + \psi = 2\pi + \vartheta$  und  $\lambda_{-} = \frac{3\pi}{2} + \vartheta$ . Der Tangentenwinkel ist aber in jedem Punkte  $\varphi' = \frac{3\pi}{2} - \vartheta$ , so dass  $\lambda_{-} + \varphi' = \pi + 2\pi$ ist. Die Kurve  $\lambda_{-} + \varphi' = \pi$ , wo  $C_{-}$  und  $D_{+}$  springen (I) geht nach  $z = \infty$  mit der asymptotischen Richtung  $\varphi'_{\infty} = \pi$ . Die Kurve  $\lambda_{+} + \varphi' = \pi$ , wo  $C_{+}$  und  $D_{-}$  springen, (II) nähert sich z = 0von der Richtung  $\vartheta_{\infty} = \pi$  her. Wir können also I sowohl wie II an einer Stelle überschreiten, wo

$$\pm i \int_{z=i}^{r} \frac{v_0 - v_1}{2} dr$$

über alle Grenzen wächst, wenn die Punkte  $v_1$  und  $v_0 = 0$  weit entfernt sind. Die Verhältnisse um den Punkt -i sind spiegelbildlich\*) wie sich leicht nachweisen lässt. Zur Bestimmung der Sprungkonstanten wählen wir wie im vorhergehenden Fall den Weg  $A-B-E-F-G-H-A^{**}$ ).

Da uns die Lösung für lim  $r = \infty$ , d. h. für lim z = +0interessiert, so wählen wir, nach Bestimmung der Sprungkonstanten den Weg A-B-E-F zum Anschlussverfahren.

Ist  $\alpha = \frac{\epsilon}{r^{\lambda+1}}$  und  $\lambda > 1$ , 1 < n < 1,5, so ändert sich das Bild nur wenig. (Fig. 6). Der Halbkreis wird zu einer Kurve  $K_w$ , die vom Punkte *i* unter dem Winkel  $2\pi - \sigma$  ( $\sigma = (2n - 3) \pi/6 > 0$ ) verlässt. Wir zeichnen den Kreis  $K_a$  für  $\sigma = 0$  aus Fig. 5 in Fig. 6 ein, und einen Kreis  $K_i$ , welcher in den Punkten  $z = \pm i$  die

gleichen Tangenrichtungen wie  $K_w$  (2  $\pi - \sigma$  resp. 3  $\pi - \sigma$ ) hat. Be-

<sup>\*)</sup> Spiegelbildlich in dem Sinne, dass die Kurven spiegelbildlich verlaufen, aber I und II ihre Bedeutung vertauscht haben, wenn man den gezeichneten (Fig. 5) Weg einschlägt.

<sup>\*\*)</sup> Der Übersichtlichkeit halber sind die Buchstaben A-B...-F in Fig. 5 nicht eingezeichnet, sondern nur die Punkte und der Weg durch einen geschlossenen gefiederten Pfeil (wie in Fig. 4).

zeichnet man mit  $\varphi_i'$  und  $\varphi_a'$  die Tangenrichtungen der Kreise  $K_i$ und  $K_a$  als Funktion von  $\vartheta\left(\frac{\pi}{2} > \vartheta > -\frac{\pi}{2}\right)$ , und bezeichnet man mit  $\varphi'$  die Richtung, wie sie sich aus  $\lambda_- + \varphi' = 3 \pi$  ergibt, so ist:

$$\varphi' - \varphi_i' = 3 \sigma \left[ \frac{1}{2\sigma} \sin^{-1} (\sin \sigma \cdot \sin \vartheta) - \frac{\vartheta}{\pi} \right]$$
$$\simeq 3 \sigma \left[ \frac{\sin \vartheta}{2} - \frac{\vartheta}{\pi} \right] > 0$$

und



z- $(\alpha/\psi)$ -Ebene in der Nähe von z = 0 für  $\alpha = \varepsilon/r^{\lambda+1}$ ,  $(\lambda > 1)$ . Die z-Ebene ist eine der negativen reellen Axe entlang aufgeschnittene Riemann'sche Fläche. In der Figur ist das nullte Blatt  $(-\pi < \vartheta < + \pi)$  und ein Stück des plus ersten Blattes  $(+\pi < \vartheta < 3\pi)$  gezeichnet. Die schraffierte Fläche stellt den Aufschnitt dar.

Die wahre Kurve  $K_w$ , auf welcher  $\varphi' - \varphi'_w \stackrel{id}{=} 0$ , muss also zwischen  $K_i$  und  $K_a$  liegen, und zwar, da der Absolutwert des ersten Ausdruckes überall kleiner ist als der des zweiten, nahe bei  $K_i$ . Die Kurve I läuft nach wie vor ins Unendliche mit einer Asymptotenrichtung  $\varphi_{\infty} = (n - \frac{1}{2})\pi$ . Die Kurve II nähert sich spiralförmig auf der Riemann'schen Fläche dem Punkte z = 0 mit der Asymptotenrichtung

$$\vartheta_{\infty} = \frac{\pi}{2} \cdot \frac{1}{n-1} = (\lambda+1) \cdot \frac{\pi}{2}.$$

Die Ausführung der Sprungkonstantenbestimmung und des Anschlusses geht genau gleich wie im Fall II. Man erhält für  $|\eta_1|^2$  nach der Phasenmittelung wieder:

$$|\eta_1|^2 = \frac{1}{2} \cdot e^{-2\delta} \left(1 - e^{-2\delta}\right)$$
$$\delta = |i \int_{-i}^{+i} Z(z) \cdot \sqrt{1 + z^2} \cdot dz| = \frac{\psi^2}{2\nu \alpha'} \cdot M_\lambda$$

wo unter  $\alpha'$  der Absolutwert der Ableitung von  $\alpha$  an der Stelle  $\alpha^2 = \psi^2$  verstanden ist, und wo

$$M_{\lambda} = | i \int_{-i}^{+} \frac{i}{z^{1}} \frac{1}{1 + \frac{1}{\lambda + 1}} \cdot \sqrt{1 + z^{2}} \cdot dz |$$

eine Zahl der Grössenordnung 1 ist. (Für  $\lambda = 1$  beträgt der Wert 3,41.) Wir haben also:

$$|\eta_{1}|^{2} = \frac{1}{2} \cdot \left( e^{-M_{\lambda} \frac{\psi^{2}}{\nu \alpha'}} - e^{-2M_{\lambda} \frac{\psi^{2}}{\nu \alpha'}} \right).$$
(30)

Diese Formel gilt nur, wenn im Bereiche, wo  $|\alpha| \simeq |\psi|$  wird,  $\nu$  reell und nahezu konstant ist d. h. wenn  $\nu_0 = 0$  weit entfernt ist. Mit Annäherung gilt (34) überall wo  $|\alpha_{\max}| > |\psi|$ .

Wie in der Einleitung zu diesem Paragraphen bemerkt, entspricht diese Gleichung (30) abgesehen vom Zahlenfaktor  $M_{\lambda}$ genau Gleichung (29), wenn man die Bedeutungen von  $\alpha$  und  $\psi$ vertauscht.

# § 11. Abschätzung der Matrixelemente $|\eta_{1J}|^2$ nach dem Störungsverfahren.

Ist die Kopplung sehr schwach, so müssen die durch das Anschlussverfahren ermittelten Übergangswahrscheinlichkeiten  $|\eta_{1J}|^2$ ((29) im § 9 und (30) im § 10) in die nach der Störungstheorie ((14) § 6) ermittelten Werte übergehen.

Im Fall I können wir diesen Übergang allerdings *nicht* verfolgen, da die im § 10 gegebene Ableitung nur für den Fall gilt, wo  $|\alpha_{\max}| > |\psi|$ . In diesem Fall ist aber die Kopplung nicht mehr schwach.

Ist  $|\alpha|$  im ganzen reellen Geschwindigkeitsbereich  $> |\psi|$ , so gilt auch, wenigstens für grosse J; näherungsweise

$$v_i = u_i \simeq \sqrt{r \cdot J_J(p_i r)}.$$

Beschränkt man sich wieder auf  $\alpha = \varepsilon \cdot r^{-(\lambda+1)}$  und ist  $p_1 < p_0$ , so gilt (14):

$$\eta_{1J} = \frac{\pi \varepsilon}{2} \int_{0}^{\infty} \frac{J_{J}(p_{0} r) \cdot J_{J}(p_{1} r) \cdot dr}{r^{\lambda}} = \frac{\pi \varepsilon}{2} \frac{1}{2^{\lambda} \cdot \Gamma\left(\frac{\lambda+1}{2}\right)}$$
$$\cdot \frac{\Gamma\left(J - \frac{\lambda-1}{2}\right)}{\Gamma\left(J+1\right)} \cdot \left(\frac{p_{1}}{p_{0}}\right)^{J} \cdot F\left(-\frac{\lambda-1}{2}, J - \frac{\lambda-1}{2}, J+1, \left(\frac{p_{1}}{p_{0}}\right)^{2}\right).$$

Für die  $\Gamma$ -Funktionen verwenden wir (grosse J) Stirlings Formel, und setzen ferner<sup>6</sup>):

$$\begin{split} F &\simeq \left[ 1 - \frac{J}{J + \left(\frac{\Gamma\left(\lambda\right)}{\Gamma\left(\frac{\lambda+1}{2}\right)}\right)^{\frac{2}{\lambda-1}}} \cdot \left(\frac{p_1}{p_0}\right)^2 \right]^{\frac{\lambda-1}{2}}, \quad c_1 = \frac{\pi^2 \cdot \Gamma\left(\lambda\right)^2}{4^{\lambda+1} \cdot \Gamma\left(\frac{\lambda+1}{2}\right)^4} \\ c_2 &= \left[ \frac{\Gamma\left(\frac{\lambda+1}{2}\right)}{\Gamma\left(\lambda\right)} \right]^{\frac{2}{\lambda-1}} \end{split}$$

dann wird:

$$|\eta_{1J}|^{2} = c_{1} \cdot \varepsilon^{2} \cdot p_{0}^{2\lambda - 2} \cdot \frac{1}{J^{2\lambda}} e^{-\frac{\psi}{p_{0}^{2}}J} \cdot \left[1 + c_{2} \cdot \frac{\psi}{p_{0}^{2}}J\right]^{\lambda - 1}.$$
 (31)

Setzt man nun  $\alpha_{\max} = \epsilon \cdot p_0^{\lambda+1} / J^{\lambda+1}$ 

und 
$$\left| \alpha'_{\max} \right| = \left| \frac{\lambda + 1}{r_{\min}} \cdot \alpha_{\max} \right| = \left| \frac{(\lambda + 1) p_0}{J} \cdot \alpha_{\max} \right|$$

so wird:

$$\frac{\psi}{p_0^2} J = \frac{\psi \alpha_m}{p_0 \alpha'_m} (\lambda + 1)$$

bunter  $\alpha_m$  und  $\alpha'_m$  sind immer die Absolutwerte verstanden, *m* (edeutet max.)

Man hat also mit guter Annäherung für  $|\alpha_{\max}| \le |\psi|$ :

$$|\eta_{1J}|^{2} = c_{1} \cdot \left[\frac{\alpha_{m}^{2}}{p_{0} \alpha_{m}^{\prime}} (\lambda+1)\right]^{2} \cdot e^{-\frac{\psi \alpha_{m}}{p_{0} \alpha_{m}^{\prime}} (\lambda+1)}$$
$$\cdot \left[1 + c_{2} \cdot (\lambda+1) \frac{\psi \alpha_{m}}{p_{0} \alpha_{m}^{\prime}}\right]^{\lambda-1}.$$
(31a)

Je kleiner  $\psi/\alpha'$ , umso grösser wird  $|\eta|^2$ , wie es ja auch London<sup>7</sup>) verlangte.

Wir bezeichnen jetzt für diese Teilwelle J, wo

$$lpha_m = |lpha(r_{\min})| = \psi$$
 wird,  
 $r_{\min} = p_1^{-1} \cdot J$  mit  $r_0$  und das  $J$  mit  $J_m$ .

Zum Werte  $J = J_m$  gehört also, der im § 3 vorgenommenen Zerlegung in sphärische Harmonische entsprechend, diejenige Teilwelle, welche einer Annäherung der beiden Atomzentren bis zu dem Punkte entspricht, wo die Störungsenergie gleich der Resonanzunschärfe wird.

Für die  $|\eta_{1J}|^2$ , wo  $J > J_m$  ist lautet in (31a) die charakteristische Exponentialfunktion:

$$\exp\left[-(\lambda+1)\frac{\psi\,\alpha_m}{p_0\,\alpha'_m}\right],$$

während sie für  $J < J_m$ , wo  $\alpha_m > \psi$  ist, nach (30) in § 10 lautet:

$$\exp\left[-M_{\lambda} \frac{\psi \psi}{p_{0} \alpha'_{m}}\right].$$

Es sieht also so aus, als ob abgesehen von den Zahlenfaktoren  $M_{\lambda}$  und  $\lambda + 1$ , sich das beim Verkleinern von J wachsende  $\alpha_m$  im Zähler nur bis zum Werte  $\alpha_m = \psi$  vergrössert  $(J = J_m)$  und dann konstant bleibt, während das  $\alpha'_m$  im Nenner weiter wächst. Diese Erscheinung kann auch auf eine andere, allerdings sehr wenig strenge Weise, plausibel gemacht werden:

Idealisiert man  $\alpha$ , indem man setzt  $\alpha = \alpha' \cdot (r_0 - r) = \alpha' \cdot x$ und  $\alpha = 0$  für  $r > r_0$ , so hat man in der Gegend  $r < r_0$ :

$$v_{0} v_{1} = \frac{2}{\pi} \frac{1}{\sqrt{\nu_{0} \nu_{1}}} \cdot \frac{1}{2} \left[ \cos \left\{ \int_{0}^{x} (\nu_{0} - \nu_{1}) d x \right\} \cdot \cos \tau + \sin \left\{ \int_{0}^{x} (\nu_{0} - \nu_{1}) d x \right\} \cdot \sin \tau \right]$$
(32)

plus einem schnell oszillierenden Teil mit

$$\sin\left\{\int_{0}^{x} (v_0 + v_1) dx\right\}.$$

 $\tau$  ist eine (siehe § 10) hier belanglose Phasenkonstante.

Für  $\sqrt{\psi^2 + \alpha^2}$  tg<sup>-1</sup>  $\frac{\alpha}{\psi}$  setzen wir (siehe § 7)  $\alpha \simeq \alpha' \cdot x$ .

Die Gleichsetzung von:

$$\int_{0}^{x} (v_0 - v_1) dx = \frac{\alpha'}{\nu} \int_{0}^{x} \sqrt{\frac{\psi^2}{\alpha'^2} + x^2} \cdot dx$$
$$= \frac{\alpha'}{2\nu} \cdot x \cdot \sqrt{\frac{\psi^2}{\alpha'^2} + x^2} \equiv \frac{\psi^2}{4\nu\alpha'} \cdot t$$

ist erlaubt bei Vernachlässigung logarithmischer Glieder.

Dann wird

$$lpha' \cdot x \ d \ x = -rac{\psi^2}{2 \ lpha'} \cdot rac{t \ d \ t}{\sqrt{1+t^2}},$$

und auf Grund von (19) im § 7:

$$|\eta_{1J}|^{2} = \frac{\psi^{2}}{4\nu\alpha'} \cdot \int_{0}^{\infty} \frac{t\,d\,t}{\sqrt{1+t^{2}}} \sin\left[\frac{\psi^{2}}{4\nu\alpha'} \cdot t\right] \simeq e^{-\frac{\psi^{2}}{4\nu\alpha'} - \log\cdot\operatorname{GL}}$$
(33)

Grössenordnungsweise tritt also der Exponent  $\frac{\psi^2}{4 r \alpha'}$  auf, doch wissen wir hier nicht an welcher Stelle (bei nicht konstantem  $\alpha'$ )  $\alpha'$  zu nehmen ist.

Endlich sei, der Vollständigkeit halber, noch das Landau'sche<sup>8</sup>) Matrixelement erwähnt. Man erhält es aus (19a) und (21), wenn man berücksichtigt, dass für x = 0:  $\psi = \psi' \cdot x$  ist wo in (32)  $u_i$  statt  $v_i$  und  $\mu_i$  statt  $v_i$  zu setzen ist, (die Phasenkonstante ist allerdings wegen des Unterschiedes zwischen  $v_i$  und  $\mu_i$  von derjenigen des § 9 verschieden).

$$\int_{0}^{x} (\mu_{0} - \mu_{1}) d x = \frac{\psi'}{2 \mu} \cdot x^{2}$$

und dass

$$\int_{0}^{\infty} \frac{\cos\left[\frac{\psi'}{2\ \mu}\ x^{2}\right] \cdot d\ x = \left[\frac{2\ \pi\ \mu}{\psi'}\right]^{\frac{1}{2}}.$$

Dann ist nach Mitteilung über die Phase:

$$|\eta_{1J}|^{2} = \frac{\pi}{4} \frac{\alpha^{2} (r_{0})}{\mu_{J} (r_{0}) \cdot \psi' (r_{0})}; \quad \psi (r_{0}) = 0$$
(34)

Diese Auswertung von LANDAU<sup>8</sup>) ist natürlich nur erlaubt, wenn  $|\eta_{1J}|^2 \ll \frac{1}{4}$ . Im "Resonanzfall" d. h. sehr kleines  $\psi'(r_0)$  und für grosse  $\alpha^2$  resp. kleine  $\mu_J$  wird daher sein Resultat ungültig. Die Formel (34) deckt sich (da ja für kleine  $\alpha$  und grosse  $\psi' \quad \mu_i = r_i$  ist) mit (29a).

# § 12. Bestimmung des Wirkungsquerschnittes im Fall I (keine Überschneidung der Kurven).

Im Fall I zerfällt der Wirkungsquerschnitt in zwei Teile. Wir ersetzen die Summation  $\sum_{J} J$  durch  $\int J d J$ . Für  $J \ll J_m$ (wenn  $J_m/p_1 \simeq r_0$  und wenn  $\alpha(r_0) = \psi$  ist) gilt sicher die Formel (30). Für  $J \simeq J_m$  haben wir keinen gültigen Ausdruck, da für  $J \sim J_m$ und  $J > J_m$  sich die Unstetigkeitslinien von  $v_1 = 0$  und von  $z = \pm i$ im Endlichen überschneiden. Der Ausdruck liegt aber auf alle Fälle in der gleichen Grössenordnung. Für  $J \gg J_m$  ist aber sicher die Born'sche<sup>6</sup>) (oder London'sche<sup>7</sup>), da sie zusammenfallen) Näherung (31) oder (31a) gut. Verwenden wir (30) und (31a) bis zu  $J = J_m$ , so machen wir keinen grossen Fehler.

Wir setzen daher (35)

$$q = q_{<} + q_{>}, \text{ wo } \leq : J \leq J_m \text{ bedeutet.}$$
 (35)

Für den Teil  $q_{<}$  wollen wir nur den Fall "guter" Resonanz betrachten, d. h. wir setzen an der Stelle  $r_0$ 

$$\begin{split} r_{0} &= J_{m} / p_{m}; \ (p_{m}^{2} = p_{0}^{2} - 8 \ M \pi^{2} \cdot W_{00} \ (r_{0}) / h^{2}) \\ r_{0}^{2} &\simeq r_{1}^{2} \simeq \left[ \frac{r_{0} + r_{1}}{2} \right]^{2} \simeq r^{2} \simeq p_{m}^{2} - \frac{J^{2}}{r_{0}^{2}}, \end{split}$$

so dass  $v^2 (J = J_m) = 0$  an der Stelle  $r = r_0$ .

Führen wir die Grössen

$$z = \frac{1}{\sqrt{1 - \frac{J^2}{p_m^2 r_0^2}}}, \ k = 3 \frac{\psi^2}{p_0 \alpha}$$

ein\*) und definieren die Funktion

$$f_1 = 2 \left[ \int_{1}^{\infty} \frac{d z}{z^3} \left( e^{-kz} - e^{-2kz} \right) \right]$$

so haben wir:

$$q_{<} = \pi r_{0}^{2} \cdot 2 \left[ \frac{p_{m}}{p_{0}} \right]^{2} \cdot f_{1} \left( 3 \cdot \frac{\psi^{2}}{p_{m} \alpha'} \right).$$

$$(36)$$

Die Funktion  $f_1(k)$  steigt für k < 1 wie 2 k an, erreicht bei k = 0,45 ein flaches Maximum vom Werte 0,22 und nähert sich für grosse Werte von k der Funktion  $2 \cdot e^{-k}/k$ .

<sup>\*)</sup> Der Faktor  $M_{\lambda}$  des § 10, welcher für  $\lambda = 2$  den Wert 3,41 hat, ist der Einfachheit halber im folgenden überall = 3 gesetzt.

Für den Teil  $q_>$  setzen wir  $z = \frac{J}{J_m}$  und erhalten aus (31):

$$q_{>} = \pi r_{0}^{2} \cdot 8 c_{1} \left[ \frac{\psi}{p_{0}^{2}} J_{m} \right]^{2} \cdot \sum_{k=0}^{k=\lambda-1} \binom{\lambda-1}{k} \cdot c_{2}^{k} \cdot \left[ \frac{\psi}{p_{0}^{2}} \cdot J_{m} \right]^{k}$$
$$\cdot \int_{1}^{\infty} \frac{dz}{z^{2\lambda-1-k}} \cdot e^{-\frac{\psi}{p_{0}^{2}} J_{m} \cdot z}.$$

Man sieht, dass für sehr schlechte Resonanz

$$\frac{\psi^2}{p_0^2\,\alpha'}\gg 1,$$

 $q_>$ überwiegt, da in  $q_>$  die Exponentialfunktion mit der grossen Zahl

$$\left(\frac{\psi}{p_0^2} J_m\right)^2$$

multipliziert ist, während in  $q_{<}$  die grosse Zahl

$$k = \left(\frac{\psi}{p_0^2} J_m\right) = 3 \frac{\psi^2}{p_0 \alpha'}$$

im Nenner auftritt\*).

Eine allgemeine Diskussion würde sehr weitläufig. Wir wollen daher den konkreten Fall  $\alpha = \epsilon/r^3$ ,  $\lambda = 2$  betrachten.

Die Funktionen  $f_3$  und  $f_4$  seien definiert als

$$f_{3}(k) = 2\int_{1}^{\infty} \frac{dz}{z^{3}} \cdot e^{-k \cdot z} = e^{-k} - k \cdot \{e^{-k} - k [-Ei(-k)]\};$$
$$[-Ei(-k)] = \int_{k}^{\infty} \frac{e^{-u}}{u} du$$

und

$$f_4(k) = \int_{1}^{\infty} \frac{dz}{z^2} \cdot e^{-kz} = e^{-k} - k \left[ -E i \left( -k \right) \right].$$

<sup>\*)</sup>  $q_{>}$  ist nichts anderes als der von MORSE und dem Verfasser<sup>6</sup>) berechnete Querschnitt, wenn das dortige  $\beta = J_m$  und  $\frac{W}{E} = \frac{2}{p_0^2} \frac{\psi}{p_0^2}$  gesetzt wird. Auf den Kurven der Figuren  $D_{\beta}\left(\frac{W}{E}\right)$  im § 5 der alten Arbeit, bedeutet das, dass man bei zunehmender Resonanz sich auf Kurven mit grösserem  $\beta$  begeben muss. Allerdings zeigt die Rechnung, dass  $J_m = \beta$  leicht die Grössenordnung 100 übersteigt. Die "Resonanzkurven" werden daher flacher. Dazu tritt aber noch der mit schärferer Resonanz wachsende Wert von  $q_{<}$  hinzu, welcher diesen Effekt aufhebt und schliesslich sogar überwiegt.

Dann gilt:

$$f_{1}(k) = f_{3}(k) - f_{3}(2 k)$$

$$\frac{1}{2} \lim_{k \to \infty} f_{1}(k) = \frac{1}{2} \lim_{k \to \infty} f_{3}(k) = \lim_{k \to \infty} f_{4}(k) = \frac{1}{k} \cdot e^{-k}$$

$$f_{3}(0) = f_{4}(0) = 1; \lim_{k \to 0} f_{1}(k) = 2 k.$$

Es ist, da

$$\lambda + 1 = 3: \quad c_1 = 1/4; \quad c_2 = \pi/4 \quad \text{(siehe (31))}.$$

$$q_{>} = \pi \ r_0^2 \cdot 2 \cdot \left(3 \ \frac{\psi^2}{p_0 \ \alpha'}\right)^2 \cdot \left[\frac{1}{2} \cdot f_3 \left(3 \ \frac{\psi^2}{p_0 \ \alpha'}\right) + \frac{\pi}{4} \left(3 \ \frac{\psi^2}{p_0 \ \alpha'}\right) \cdot f_4 \left(3 \ \frac{\psi^2}{p_0 \ \alpha'}\right)\right] \tag{37}$$

oder aus (36), wenn  $p_m \sim p_0$ , und aus (37):

$$q = \pi r_0^2 \cdot \left[ 2 f_1(k) + k^2 \cdot f_3(k) + \frac{\pi}{2} k^3 \cdot f_4(k) \right]$$
(38)  
$$k = \frac{\psi}{p_0^2} J_m = \frac{\psi^2 \cdot \varepsilon^{\frac{1}{3}}}{p_0}, \quad \text{da} \quad r_0 = \left(\frac{\varepsilon}{\psi}\right)^{\frac{1}{3}} \text{ ist.}$$

In Fig. 7 sind der Klammerausdruck (ausgezogen) und der erste Summand (gestrichelt) gezeichnet. Dieser erste Summand, welcher für gute Resonanz überwiegt, stellt den Anteil  $q_{<}$  dar, während die Differenz zwischen der ausgezogenen und der gestrichelten Kurve den Anteil  $q_{>}$  bedeutet. Für kleine k hat man:

$$q = \pi r_0^2 \cdot 4 k \tag{39}$$

und für grosse k:

$$q = \pi r_0^2 \cdot \frac{\pi}{2} k^2 \cdot e^{-k}$$
 (40)

Ist  $\lambda \pm 2$ , so gilt (39) immer noch, während in (40) sich der numerische Faktor  $\frac{\pi}{2}$  in 8  $c_1 c_2^{\lambda-1}$  verwandelt, und statt  $k^2$ ,  $k^{\lambda}$  steht. k bedeutet dann in (39):  $M_{\lambda} \psi^2 / p_m \alpha'$ , und in (40):  $(\lambda+1) \psi^2 / p_m \alpha'$ .

Die Formeln (29) und (30) wurden aus den Lösungen der Differentialgleichung (18a) oder (20) und den Grenzbedingungen (28a) und 28b) erhalten. Dabei wurde vorausgesetzt, dass r = +reell  $\infty$  einem Punkte t = + reell  $\infty$  für Fall II, und z = + reell 0 im Fall I entspricht, der weit von der Unstetigkeitslinie, welche + i mit - i verbindet, und weit von  $z \text{ (oder } t) = \pm i \text{ liegt}$ . Weit heisst hier, dass

$$i\int_{z, t=\pm i}^{r} (v_0 - v_1) dr$$

eine grosse Zahl ist. Das ist immer der Fall, wenn  $v_0 \neq v_1$  für  $r = \infty$  ist, d. h. wenn  $\psi_{\infty} \neq 0$  ist.



Die in Gl. (36) verwendete Funktion  $2 f_1(k)$  gestrichelt (-----) und die Summe in Gl. (38)  $[2 f_1(k) + k^2 \cdot f_3(k) + \pi k^3 \cdot f_4(k)/2]$  ausgezogen (------) als Funktion von k gezeichnet. Die Summe verläuft für sehr kleine k wie 4 k und für sehr grosse kwie  $\pi k^2 \cdot \exp((-k)/2)$ .

Dann gilt nämlich:

$$\lim_{r=R=\infty} \left| i \int_{z, t=\pm i}^{r} (v_0 - v_1) dr \right| > \left| \int_{0}^{\infty} \frac{\psi_{\infty}}{p_0} dr \right| > \frac{\psi_{\infty}}{p_0} \cdot R$$

R bedeutet den maximalen Abstand, d. h. unsere Betrachtungen beziehen sich alle auf lim  $R = \infty$ .

Formel (39) gilt daher für beliebig kleine  $\psi_{\infty}$  und damit kleine k solange als

$$\lim_{R = \infty} \frac{\psi_R \cdot R}{p_0} = \infty \; .$$

Wir bezeichnen diesen Fall für beliebig kleine  $\psi_{\infty}$  als Grenzfall im Gegensatz zum im § 13 behandelten Resonanzfall.

Im Grenzfall gilt also

$$\lim q = \frac{12 \pi \cdot \psi_{\infty}^{1-\frac{3}{1+\lambda}} \cdot \varepsilon^{\frac{3}{1+\lambda}}}{p_{0} \cdot (\lambda+1)} .*)$$

Für  $\lambda + 1 < 3$  erhalten wir beim Verschärfen der Resonanz beliebig grosse Werte von q.

 $F\ddot{u}r \ \lambda + 1 = 3$  (den betrachteten Fall) strebt q einem festen Grenzwert zu. Der Grenzquerschnitt von  $\lambda + 1 = 3$  ist von gleicher Grössenordnung wie die Maximalquerschnitte von  $\lambda + 1 > 3$ (siehe unten für  $\lambda + 1 > 3$ ).

 $F\ddot{u}r \ \lambda + 1 > 3$  durchläuft q beim Verkleinern von  $\psi_{\infty}$  ein Maximum. Dort hat die (38) analoge Klammer  $[2f_1 + \ldots]$  die Grössenordnung 1. Das Maximum beträgt also etwa

$$q_{\rm max} = \pi \, r_{00}^2 \times 1$$
.

Dieses Resultat gilt für alle Wechselwirkungen, wo  $\lambda + 1 > 3$ . Die Grössen  $r_{00}(k_0)$  und  $k_0$  sind bestimmt durch

$$\frac{d}{dk}\left\{\left[2\cdot f_{1}\left(k\right)+k^{2}\cdot\sum_{l}c_{l}k\cdot f_{3+l}\left(\frac{3}{\lambda+1}\right)\right]\cdot r_{0}\left(k\right)\right\}=0$$

 $k_0$  hat ebenfalls die Grössenordnung 1, so dass  $r_{00}$  sich grössenordnungsweise durch:

$$\alpha'(r_{00}) = \frac{\psi^2}{p_m}$$
 bestimmt.

Der Grenzquerschnitt wird hier = 0.

## Allgemein gilt:

Die Geschwindigkeitsabhängigkeit wird nur durch den Klammerausdruck (Fig. 7, für  $\lambda = 2$ ) gegeben, da  $r_0$  dann konstant, und k proportional  $\frac{1}{p_0}$  ist. Der W. Q. erreicht also ein Maximum von  $\pi r_0^2$  für  $p_0 = \psi^2/\alpha'(r_0)$ , und fällt dann wie  $1/p_0$  zu null ab.

Die Grössenordnung der Wirkungsquerschnitte erreicht die der gaskinetischen Querschnitte und übersteigt sie sogar.

Fig. 8 (Kurve a) gibt eine "Resonanzkurve" für den Fall:

$$T_0 = 1$$
 Volt,  $W_{01}^{I} = \frac{(e a_0)^2}{r^3}$ ,

 $M = 10 M_{H}$ . (e = Elektronenladung,  $a_0$  Bohr'scher Kreisbahnradius,  $M_H$  Masse von Atomgewicht 1).

<sup>\*)</sup> An Stelle von 12 steht streng genommen  $4 M_{2}$ .

#### § 13. Der Wirkungsquerschnitt im Resonanzfall.

Die Ableitung der Grössen  $|\eta_{1J}|$  erfolgte in den §§ 9 und 10 immer unter der Annahme, dass

$$\lim_{r \to \infty} \frac{\psi(r) \cdot r}{p_0} = \infty$$

ist. Für  $\psi_{\infty} = 0$  erhalten wir dementsprechend eine Reihe ver-



Wirkungsquerschnitte für Stösse zweiter Art zwischen Atomen in logarithmischer Skala: q in cm<sup>2</sup> gegen  $\psi_V$  in Volt. Kurve a ist berechnet für sich nicht überschneidende Potentialkurven (Fall I) mit der Wechselwirkung  $WI = (ea)^2/r^3$ . Kurve bfür sich schneidende Potentialkurven mit  $\psi'_V = \psi_V 10^{-8}$  Volt cm<sup>-1</sup> und mit der Wechselwirkungsenergie  $WII = h^2 \Lambda J/8 \pi^2 Mr^2$  ( $\Lambda = 1$ ). Die Relativgeschwindigkeit beträgt in beiden Fällen ein Elektron-Volt und die reduzierte Masse 10 mal die Masse vom Atomgewicht eins.

schiedener Fälle je nach dem Grenzwert, dem  $\psi \cdot r/p_0$  zustrebt. Im vorhergehenden Paragraphen ist der *Grenzfall*  $\psi \cdot R = \infty$  behandelt.

LONDON<sup>7</sup>) betrachtet noch den Resonanzfall identischer Systeme:  $\psi$  identisch = 0. Dann zerfallen die gekoppelten Gleichungen (18a) in zwei ungekoppelte, wenn man die Funktionen  $u_0 + u_1$  und  $u_0 - u_1$  einführt. Sein Resultat ist, wenn man die Phasenkonstanten  $\beta$  und  $\gamma$  (Gl. 27 § 9) benützt (da im Endlichen keine Überschneidung auftreten soll, ist dort f = f):

$$|\eta_{1J}|^2 = \frac{1}{4} \cdot \sin^2\left(\beta + \gamma\right). \tag{41}$$

Diese Gleichung lässt sich auch allgemeiner beweisen. Wir verlangen nicht dass  $\psi$  identisch verschwinde, sondern nur dass

$$\lim_{r \to \infty} \frac{\psi}{\alpha} = \lim_{r \to \infty} t = 0$$

sei. Wir nehmen z. B. unsere Gleichung (22) als Lösung von (20), wo wir wissen, dass  $c_{\pm} = c \cdot \exp(\mp i \frac{\pi}{4})$  und  $d_{\pm} = d \exp(\mp i \frac{\pi}{4})$ ist. Die untere Grenze der  $v_i$ -Integrale sei  $v_i = 0$  und die der *t*-Integrale t = 0. Für kleine  $t = \frac{\psi}{\alpha}$  wird dann:

$$\lim_{r=\infty} u_0 = v_0^{-\frac{1}{2}} \cdot c \cdot \left(1 + \frac{1}{2} \frac{\psi}{\alpha} \dots\right) \cos\left(\int^r v_0 dr - \frac{\pi}{4}\right) \\ + v_1^{-\frac{1}{2}} \cdot d \cdot \left(1 - \frac{1}{2} \frac{\psi}{\alpha} \dots\right) \cos\left(\int^r v_1 dr - \frac{\pi}{4}\right).$$

Aus der Gleichung (21) erhält man, da für

$$t = 0: \lim \frac{\varphi_0 - v_0^2}{\alpha} = -1, \lim \frac{\varphi_0 - v_1^2}{\alpha} = +1 \text{ ist:}$$
$$\lim_{r = \infty} u_1 = -v_0^{-\frac{1}{2}} \cdot c \cdot (1 - \dots) \cos\left(\int^r v_0 \, dr - \frac{\pi}{4}\right) + v_1^{-\frac{1}{2}} \cdot d \cdot (1 + \dots) \cos\left(\int^r v_1 \, dr - \frac{\pi}{4}\right).$$

Beobachtet man jetzt, dass  $v_0 = v_1$  wird für  $r = \infty$ , und setzt

$$\tau = \int_{\nu_0=0}^{t=0} v_0 dr - \int_{\nu_1=0}^{t=0} v_1 dr,$$

so findet man durch Befriedigen der Grenzbedingungen (28 a, b):

$$|\eta_{1J}|^2 = \frac{1}{4}\sin^2 \tau$$

Wenn  $\psi$  identisch 0 wird, so wird  $\mu_0$  identisch gleich  $\mu_1$  und nach Gl. (27)  $\tau = \beta + \gamma$ .

E. C. G. Stueckelberg.

Im speziellen Fall  $\psi^{id}_{=} 0$  und  $\alpha = \varepsilon/r^2$  erhält man für

$$|\eta_{1J}|^2 = \frac{1}{4} \sin^2 \left( \sqrt{J^2 + \varepsilon^2} - \sqrt{J^2 - \varepsilon^2} \right) \pi.$$

Für grosse J wird dies  $=\frac{\pi^2}{4} \frac{\epsilon}{J^2}$  (wie es auch die Matrizenauswertung gibt) so dass  $q \propto \sum_J |\eta_{1J}|^2 \cdot J$ 

nicht konvergiert. Im Falle  $\lambda \ge 1$  konvergieren also die Wirkungsquerschnitte weder im *Grenzfall* (§ 12) noch im *Resonanzfall*. Dass der *Resonanzfall*  $\psi R = 0$  sich ganz anders verhält als der *Grenzfall*  $\psi R = \infty$  ist auch aus LONDON's Arbeit ersichtlich:

Seine Funktion  $\omega$  (bei uns in § 7 mit g bezeichnet) macht beim Übergang von  $\psi R = \infty$  nach  $\psi R = 0$  einen Phasensprung.

Ausser zwischen identischen Systemen, wird unseres Erachtens, nur der Grenzfall für *kleine*  $\psi_{\infty}$  von Bedeutung sein, d. h. der im § 12 behandelte Fall

# § 14. Bestimmung des Wirkungsquerschnittes im Fall II (Überschneidungsfall).

Hier machen wir wie LANDAU<sup>8</sup>) die Annahme, dass, wenn der Schnittpunkt bei imaginären  $\nu$  liegt, die Übergangswahrscheinlichkeiten  $|\eta_{1J}|^2$  verschwinden im Vergleich zu denen bei reellen. Für sehr kleine reelle Schnittpunktgeschwindigkeiten

$$v_J = \sqrt{p_m^2 - rac{J^2}{r_0^2}} \simeq 0$$
 ,

d. h. für  $J \simeq p_m r_0 = J_m$  würden die Landau'schen  $|\eta_{1J}|^2 \gg 1/4$ . Unsere Methode (§ 9) gilt zwar für ganz kleine  $\nu$  auch nicht mehr, aber sie gilt doch solange als

$$\frac{\alpha^2}{\psi' p_m} < \int_{r_0=0}^r v_0 \, dr < p_m \cdot (r_0 - r_{v_0=0}) \, .$$

Jedoch geht unser  $|\eta_{1J}|^2$  nie über 1/4 hinaus. Es ist also auf alle Fälle länger richtig als Landaus Formel. Führt man die Funktion

$$f_{2}(k) = \int_{0}^{1} dz \cdot \left( e^{-k \frac{z}{1-z}} - e^{-2k \frac{z}{1-z}} \right)$$

ein, und setzt

$$z = rac{J^2}{p_m^2 r_0^2} = rac{J^2}{J_m^2},$$

so ist der W. Q., wegen (7), (10), (17) und (29):

$$q = \pi r_0^2 \cdot 2 \left( \frac{p_m}{p_0} \right)^2 \cdot f_2 \left( \pi \frac{\Lambda^2 p_m}{r_0^2 \psi'} \right); \quad q \ge 0 \text{ für } p_m^2 < 0.$$
(42)

Die Funktion  $f_2$  ist für  $k \ll 1$  gleich 4 k/3, erreicht für k = 0,8 ein breites Maximum im Werte von 0,164, und geht für grosse k wie 1/2 k. Für kleine k geht (42) in den Landau'schen Ausdruck (Landau's Formel (27)) über: Der maximale W. Q. im Falle II hat also die Grössenordnung von  $\pi r_0^2$ , wo  $r_0$  den Radius der Überschneidungsstelle bedeutet.

Wollen wir eine "Resonanzkurve" zeichnen um die Grössenverhältnisse der Fälle I und II vergleichen zu können, so setzen wir

$$r_0 = 10^{-8} \,\mathrm{cm}, \ M = 10 \,M_H.$$

Für  $\psi'$  setzen wir  $\psi_{\infty} \cdot 10^8$ , da ja  $\psi_{\infty}$  meistens schon bei r = 2 bis 3 Atommessern (10<sup>-8</sup> cm) erreicht sein dürfte. Dann kann man q aus Formel (42) mit den q aus (38) vergleichen. Dieser Vergleich ist in Fig. 6 durchgeführt.

Man sieht sofort, dass der Überschneidungsfall (42) nicht den Charakter eines "Resonanzvorganges" hat, da der W. Q. für wachsende Resonanzschärfe nur wie  $1/\psi$  abfällt. Die experimentellen Ergebnisse (eine Zusammenstellung findet sich bei KALLMANN und LONDON<sup>5</sup>), neuere Messungen liegen vor von ZEMANSKY<sup>14</sup>)) zeigen aber deutlich Resonanzcharakter.

Was die Grössenordnung anbetrifft, so zeigt Fig. 8, dass, entgegen Landau's Auffassung, die W. Q. in der Nähe der Resonanz ohne Schnittpunkt meist grösser sind, als diejenigen mit Schnittpunkt. Die ersteren übersteigen sogar die gaskinetischen W.Q.\*)

## § 15. Die Ionisation von Edelgasen durch Alkalionen.

Der Fall der Überschneidung hat aber noch eine andere Bedeutung. WEIZEL und BEECK<sup>4</sup>) erklären nämlich die Versuche von BEECK und MOUZON<sup>3</sup>) durch Überschneidung von Potentialkurven. Die experimentellen Ergebnisse sind kurz folgende:

Die Ionisation eines Edelgases durch Stoss positiver Ionen steigt bei einer Ionengeschwindigkeit, deren kinetische Energie

\*) Der W. Q. und Resonanzcharakter lässt sich im Fall II dem Fall I annähern, wenn man  $r_0$  mit kleiner werdendem  $\psi_{\infty}$  entsprechend wachsen lässt.

<sup>&</sup>lt;sup>14</sup>) M. W. ZEMANSKY, Phys. Rev. 36, 933 (1930).

erheblich über der Ionisationsenergie liegt, plötzlich stark an. Unterhalb dieser kinetischen Geschwindigkeit ist die beobachtete Ionisation von kleinerer Grössenordnung. Die gewöhnliche Ionisation durch Stoss schwerer Teilchen kann, wenigstens qualitativ, durch das Verfahren von MORSE und STUECKELBERG<sup>6</sup>) (§4, Gleichung (36) und Fig. 3 der betreffenden Arbeit) dargestellt werden. (In dem dortigen Bild ist die Figur  $\beta = 10$  zu wählen.) Von einem plötzlichen Einsatz kann dort nicht die Rede sein. Es muss sich aber hier um einen Stoss erster Art handeln, da die auftretenden langsamen Elektronen beobachtet werden.

WEIZEL und BEECK<sup>4</sup>) erklären nun den Vorgang durch ein Überschneiden der Potentialkurven von  $K^+ + A$  und  $K^+ + A^+$ . Allerdings erwähnten WEIZEL und BEECK nicht, dass es sich dabei um ein Überschneiden der Potentialkurve  $K^+ + A$  und der, den verschiedenen reellen Geschwindigkeiten v des abgetrennten Elektrons im Unendlichen entsprechenden Schar von Potentialkurven  $K^+ + A^+$  handelt. Für jede einzelne dieser unendlich nahe beieinander liegenden Kurven hat man aber einen andern Schnittpunkt und ein anderes Matrixelement.

Dieses Problem im Komplexen durchzuführen scheint hoffnungslos. Für die Näherungsmethode in (42)  $(f_2(k) = \frac{4}{3}k)$  hat man aber, wenn  $\frac{dQ_v}{dv}$  die Anzahl von Elektronenzuständen per dv ist:

$$q = \int d \, q_{v} = rac{8 \, \pi^{2}}{3} \cdot \int\limits_{v}^{\infty} rac{p_{m}^{3}}{p_{0}^{2}} \cdot rac{\Lambda_{v}^{2}}{\psi_{V}^{'}} \cdot rac{d \, Q_{v}}{d \, v} \cdot d \, v \, .$$

Wir wissen aber, dass  $\Lambda_v^2 \frac{dQ}{dv}$  mit steigenden v schnell abnimmt (siehe Morse und Stueckelberg<sup>3</sup>) p. 597), und für v = 0 seinen Maximalwert hat<sup>15</sup>). Wir ersetzen daher das Integral  $\Lambda_v^2 \cdot \frac{dQ}{dv} \cdot dv$ durch eine mittlere Grösse  $\Lambda^2$ . Das heisst mit anderen Worten wir ersetzen die unendliche Schar von Potentialkurven durch eine mittlere Kurve, welche sehr nahe bei der Kurve, für v = 0 liegt.

Ohne auf die Diskussion, ob die Kurven sich schneiden einzugehen (darüber siehe (14)), wollen wir einmal annehmen, dass die Überschneidung eintritt. Dann haben wir, wenn  $V_0$  und  $r_{0A}$ , in Volt resp. Å gemessen, die Koordinaten der Überschneidungs-

<sup>&</sup>lt;sup>15</sup>) E. C. G. STUECKELBERG und P. M. MORSE, Phys. Rev. 36, 16 (1930).

stelle<sup>\*</sup>) sind und wenn  $\psi'_V$  in Volt per Å gemessen ist und V die Voltgeschwindigkeit der positiven Ionen bedeutet, statt (42),

![](_page_53_Figure_2.jpeg)

Wirkungsquerschnitt q für Ionisation von Argon durch Kalium-Ionen als Funktion von  $(V-V_0)^{3/2}/V$  in cm<sup>2</sup> und  $\sqrt{\text{Volt}}$  logarithmisch aufgetragen.  $(\psi_V'/\Lambda^2 = 23,8$ Volt/cm<sup>2</sup>). Die gerade Linie liegt unter 45°. Die eingetragenen Punkte sind die Messpunkte von Nordmeyer.

NORDMEYER<sup>3</sup>) hat ebenfalls neuere Messungen an  $K^+ + A \rightarrow K^+ + A^+$  angestellt, die die Resultate von BEECK und Mouzon<sup>3</sup>) im Ganzen bestätigen, aber auf höhere Geschwindigkeiten ausdehnen (bis 1000 Volt). Seine Messpunkte sind in Fig. 9 mit Gleichung (43) logarithmisch verglichen. Für  $V_0$  wurde ein solcher Wert gewählt, dass die ersten Punkte auf einer Geraden unter

<sup>\*)</sup> Im Diagramm der Potentiellen Energiekurven (Fig. 1).  $V_0$  ist dann  $= E(r_0) - E(\infty)$  auf der Kurve  $A_0$ , gemessen in Volt.

45° liegen (kleine  $k: 3 f_2(k)/4 k = 1$ ). Da  $M \simeq 40 \times 40/80 = 20$  ist, ist m = 2. Daraus bestimmt sich

$$V_0 = 55 \text{ Volt}; \ \frac{\Lambda^2}{\psi'_V} = 0.42 \text{ Å Volt}^{-1}.$$

Die höheren Messpunkte geben die Abweichung von  $3 f_2/4 k$ gegen 1 an. Für 1000 Volt entspricht diese Abweichung einem k-Werte von der Grössenordnung 0,02. Setzt man  $\psi'_V = 16 \text{ Volt}/1 \text{ Å}$ , so bestimmt sich  $\Lambda^2$  zu 0,67. Die grössenordnungsweise Bestimmung von k ergibt  $r_0$  zu 1,5 Å.

Die Weizel-Beeck'sche Erklärung scheint also auch quantitativ richtige Ergebnisse zu liefern. Es wäre interessant die Versuche zu höheren Geschwindigkeiten auszudehnen, um das bei k = 1liegende Maximum zu bestimmen. Wenn die Abschätzung von  $r_0$ richtig ist so liegt dasselbe allerdings erst bei ca. 500000 Volt, sein Wert beträgt aber nur ungefähr das Doppelte von dem bei 1000 Volt.

## § 16. Zusammenfassung.

Ein dem W. K. B.<sup>2</sup>) Verfahren entsprechende Anschlussmethode der Näherungsfunktionen zweier gekoppelter Differentialgleichungen wird ausgearbeitet.

Dieses Verfahren lässt sich auf Stösse zweiter Art zwischen Atomen anwenden. Es sind zwei Fälle zu unterscheiden. Im Fall I (§ 10) schneiden sich die für die elastische Bewegung verantwortlich zu machenden potentiellen Energiekurven in nullter Näherung nicht. In Fall II (§ 9) schneiden sie sich bei reellen Geschwindigkeiten. In gewissen Fällen darf das Anschlussverfahren durch das übliche Störungsverfahren ersetzt werden (§ 6 und § 11).

Zur Bestimmung der Wirkungsquerschnitte für Stösse zweiter Art angewendet zeigt sich, dass im Ganzen Fall I für diese Erscheinung verantwortlich zu machen ist (§ 14). Für Stösse zwischen positiven Ionen und Atomen hingegen dürfte der Fall II von Bedeutung sein (15).

Eine weitere Anwendungsmöglichkeit des beschriebenen Verfahrens bieten die Prädissoziation und eventuell die Vorgänge beim Zusammenstoss von  $\alpha$ -Teilchen und Atomkernen.

Basel, Physikalische Anstalt der Universität.