Zeitschrift:	Helvetica Physica Acta
Band:	12 (1939)
Heft:	V
Artikel:	Über Schallgeschwindigkeitsmessungen in flüssigem Argon
Autor:	Liepmann, H.W.
DOI:	https://doi.org/10.5169/seals-110948

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. <u>Siehe Rechtliche Hinweise.</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. <u>Voir Informations légales.</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. <u>See Legal notice.</u>

Download PDF: 13.10.2024

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

von H. W. Liepmann.

(24. VI. 39.)

§ 1. Einleitung.

Aus Messungen der Schallabsorption¹) weiss man, dass die Schallfortpflanzung in Flüssigkeiten quantitativ nicht durch die auf klassischer Hydrodynamik und Wärmeleitung fussende Theorie von STOKES-KIRCHHOFF beschrieben wird, sondern dass die Verhältnisse in Flüssigkeiten viel komplizierter sind, als man nach dieser Theorie erwartete. Es erscheint unmöglich, auf der Grundlage einer Kontinuumsvorstellung ohne Kenntnis der Molekularstruktur der Flüssigkeiten eine befriedigende Theorie des Schalles aufzubauen. Aus diesem Grunde liegt es nahe, Untersuchungen der Schallfortpflanzung in möglichst *einfach* gebauten, d. h. einatomigen Flüssigkeiten anzustellen.

Im Bereich normaler Temperaturen ist Quecksilber die einzige einatomige Flüssigkeit, die ausserdem durch ihren Metallcharakter eine Sonderstellung (z. B. wegen der grossen Wärmeleitfähigkeit) einnimmt. Die einzigen nichtmetallischen einatomigen Flüssigkeiten sind also die kondensierten Edelgase, Flüssigkeiten, die wegen ihrer Einfachheit auch spezielles thermodynamisches Interesse besitzen.

Eine Untersuchung des Schalles in verflüssigten Gasen bei tiefen Temperaturen erfordert aber spezielle Versuchsanordnungen. Eine Ausdehnung der in der Ultraschall-Technik gebräuchlichen Methoden der Schallgeschwindigkeitsmessung auf tiefe Temperaturen wurden dann auch fast gleichzeitig von verschiedenen Seiten in Angriff genommen. Die Methoden der Schallabsorptionsmessung waren auch im Bereich normaler Temperaturen noch kaum so weit entwickelt, dass man eine Ausdehnung der Messungen auf verflüssigte Gase ins Auge fassen konnte.

Zuerst bestimmte BÄR²) mit Hilfe des Effektes der Lichtbeugung an Ultraschallwellen die Schallgeschwindigkeit in siedendem Sauerstoff, und anschliessend wurde von LIEPMANN³)

^{*)} Das Thema dieser Untersuchung wurde von der Universität Zürich für die Jahre 1937/38 als Preisaufgabe gestellt. Der vorliegenden Arbeit wurde der volle Preis zuerkannt.

(im Folgenden zitiert als "Arb. I") gleichfalls im Züricher Universitätsinstitut, die Methode der Lichtbeugung systematisch für tiefe Temperaturen entwickelt und auf Messungen der Schallgeschwindigkeit in flüssigem Sauerstoff als Funktion der Temperatur angewandt. Andererseits wurden die interferometrischen Methoden der Schallgeschwindigkeitsmessung im Mac Lennan Institut in Toronto auf verflüssigte Gase angewandt und zuerst Messungen in Sauerstoff und Wasserstoff am Siedepunkt angestellt⁴), Untersuchungen, die in neuster Zeit die Messung der Schallgeschwindigkeit in flüssigem Helium ermöglichten⁵). Entsprechend stellte sich uns im Anschluss an die optischen Messungen in flüssigem Sauerstoff die Aufgabe, diese Untersuchungen auf ein einatomiges verflüssigtes Gas auszudehnen. Das einzige Edelgas, das hierfür in Frage kam, war Argon, da die zur Verflüssigung von Neon und Helium nötigen Temperaturen in Zürich nicht erreichbar und andererseits die beiden hochsiedenden Edelgase Krypton und Xenon zur Zeit noch schwer erhältlich sind.

Das Ziel vorliegender Arbeit war es also, die Schallgeschwindigkeit in flüssigem Argon zwischen Tripel- und normalem Siedepunkt als Funktion der Temperatur zu messen. Im Lauf der Arbeit stellte sich dann heraus, dass auch eine Kenntnis der Schallgeschwindigkeit in flüssigem Stickstoff und in Argon-Stickstoffgemischen wünschenswert wäre, so dass auch noch orientierende Messungen in N₂ und N₂-A-Gemischen angestellt wurden.

§ 2. Versuchsanordnung.

Die prinzipielle Anordnung ist die gleiche, wie sie in Arb. I³) für flüssigen Sauerstoff benutzt wurde, nämlich die Bestimmung der Schallgeschwindigkeit durch Messung der Beugungswinkel des an der Schallwelle gebeugten Lichtes in Autokollimationsanordnung:

Das Licht der Quecksilberlampe QL (Fig. 1) wird mit Hilfe des Kondensors K auf dem waagrechten Spalt S gesammelt. Bei B kann ein Zeiss'sches B-Filter in den Strahlengang geschoben werden, das nur die Quecksilberlinie mit $\lambda = 5461$ Å.E. durchlässt. Die von S ausgehenden Strahlen werden durch die Linse L_1 parallel gemacht und von dem totalreflektierenden Prisma P senkrecht nach unten in das mit flüssigem Argon gefüllte Kondensationsrohr KR (vgl. auch Fig. 2) geworfen. KR taucht in ein Kältebad B, bestehend aus flüssigem Sauerstoff. In KR geht von dem Piezoquarz PQ senkrecht zum Gang der Lichtstrahlen eine ebene Schallwelle aus. Nach dem Durchgang durch die Schallwelle wird das

Licht durch den planen Spiegel Sp in sich selbst zurückreflektiert, durchläuft also wieder Schallwelle, Prisma und Linse L_1 und wird dann mit Hilfe des halbdurchlässigen Spiegels HS seitlich aus dem ursprünglichen Strahlengang herausreflektiert. In der Brennebene F von L_1 entsteht dann das System der Beugungsspektren. Im Gegensatz zu der bei Sauerstoff verwandten Methode, bei der die Beugungsspektren photographiert und ausgemessen wurden, wird hier mit Hilfe der auf einem Schlitten fein verstellbaren Lupe L_2 mit Fadenkreuz der Abstand zweier Spektren direkt ausgemessen. Das hat den Vorteil, dass die benötigten

Prinzip der Anordnung.

Lichtintensitäten und Messzeiten kleiner gehalten werden können als beim Photographieren und dass die Messergebnisse sofort vorliegen und kontrolliert werden können. Der Nachteil der kleineren Messgenauigkeit der hier benutzten Mikrometerschraube gegenüber dem Komparator bei den Plattenausmessungen kann durch die grössere Anzahl Einzelmessungen und die durch die kürzere Messzeit bedingte grössere Schärfe der Spektren ausgeglichen werden.

§ 3. Einzelheiten der Apparatur.

a) Dewargefäss und Temperaturregelung.

Während der prinzipielle Aufbau im wesentlichen der gleiche war wie bei den Sauerstoff-Messungen³), musste die innere Anordnung im Dewargefäss geändert werden, da das Argon in der Apparatur selbst verflüssigt werden musste und nicht wie der

Sauerstoff schon im flüssigen Zustand eingefüllt werden konnte. Ausserdem musste wegen des kleinen in Frage kommenden Temperaturbereiches (A: Tripelpunkt —189,3°C, Siedepunkt —185,8°C) für einen möglichst guten Temperaturausgleich gesorgt werden. Endlich sollte die benötigte Argonmenge und damit das Schallfeld möglichst klein gehalten werden.

Fig. 2 zeigt einen Schnitt durch das Dewar-Gefäss. Die Messingkappe K schliesst das Dewargefäss D oben vakuumdicht ab. Die Dichtung erfolgt durch Apiezonwachs, das in eine Nut von K, die der Form des Randes des Dewargefässes angepasst war, eingestrichen wurde. Wird das Dewargefäss nur leicht an K angedrückt, so hält eine solche Dichtung sehr gut vakuumdicht und ist auch leicht wieder zu lösen, was gegenüber einer Gummidichtung vorteilhaft ist. Die Kappe K trägt mehrere Bohrungen mit Führungsstutzen, und zwar sind folgende Einführungen vorgesehen:

- 1. Für das Kondensationsrohr KR, das eigentliche Messgefäss.
- 2. Für das Dampfdruckthermometer DT.
- 3. Für den Schwimmer S.

Ausserdem gehen durch die Kappe K noch folgende, in der Figur aus Gründen der Übersichtlichkeit fortgelassene Zuleitungen:

- 4. Eine Zuleitung zur Pumpe (Gaedesche Öl-Kapselpumpe), die zum weiteren Abkühlen des Kältebades dient.
- 5. Eine Zuleitung zu einem Torricellimanometer, um den Dampfdruck des Kühlbades kontrollieren zu können.
- 6. Ein Rohr, das zum Nachfüllen des zur Kühlung benutzten flüssigen Sauerstoffes dient.

Das Kondensationsrohr KR besteht aus einem Rohr aus Sibor-Glas von ca. 27 mm ø und 300 mm Höhe. Das Rohr ist unten geschlossen und oben leicht trichterförmig aufgeweitet, knapp unter der oberen Aufweitung trägt es den Einführungsstutzen E, der zum Einleiten des Argons dient. Bei U ist KR leicht aufgeblasen, um das Einkitten in die Kappe K zu erleichtern. In das Rohr KR taucht mit nur wenig Spiel das Quarzrohr Q, das mit einem Wulst auf dem trichterförmigen Rand von KRaufliegt und dort mit Apiezonwachs verkittet ist. Q ist oben plan geschliffen und trägt das totalreflektierende Prisma P, das mit Pizein aufgekittet ist. Unten ist das Quarzrohr Q mit einem ca. 30 mm langen Zylinder Z aus amorphem Quarz von ca. 20 mm ø verschmolzen, der oben und unten plan geschliffen ist und so ein dickes planparalleles Fenster bildet, durch das das Licht in das flüssige Argon eintritt. Q wird durch einen seitlichen Ansatz vor dem Einkitten evakuiert, um jegliche Kondensation im Rohr zu verhindern. Z trägt gleichzeitig die Halterung für den Piezoquarz PQ und den Autokollimationsspiegel Sp (vgl. Abschnitt c.)

Der unterste Abschnitt von KR, in dem sich das Argon kondensiert, ist dicht mit einem ca. 30 mm hohen Hohlzylinder SZaus 1,5 mm dickem Silber umgeben, der für einen guten Temperaturausgleich sorgt. Das Dampfdruckthermometer DT ist gleichfalls mit Silberblech SB umwickelt, das an SZ angelötet ist. Ausserdem wird ein Temperaturgradient in senkrechter Richtung im Kühlbad noch durch das Kupferrohr KZ vermieden. KZ hat eine Wandstärke von 2 mm, ist ca. 60 mm lang und trägt eine, sich fast über seine ganze Länge erstreckende Heizwicklung W aus emailliertem Kupferdraht von 0,3 mm \varnothing . Durch diese Wicklung W wird über Widerstand und Ampèremeter Wechselstrom von 50 Perioden geleitet. Die in dem Kupferrohr KZ auftretenden Wirbelströme dienen zur Heizung. Die Zuleitungen zu dieser Heizwicklung konnten dünn gehalten werden, da nur der Wechselstrom-Widerstand der Zuleitungen klein gegen den der Wicklung sein muss. Die thermisch noch günstigere Methode einer Wirbelstromheizung von aussen durch eine über das Dewargefäss geschobene Spule⁶) erfordert ein Dewargefäss mit geschlitzter Versilberung, das nicht zur Verfügung stand. An den Kanten war das Kupferrohr mit Asbestpapier umwickelt, das sich fest an die Wand des Dewargefässes anschmiegte und den Zylinder an seinem Ort hielt.

In dieser Weise befindet sich das Kältebad nur in dem Ringgebiet zwischen Silber- und Kupferrohr, so dass ein schneller Temperaturausgleich erfolgt. Der flüssige Sauerstoff wurde auch während eines Versuches nachgefüllt, so dass die Oberfläche des Kühlbades immer in ungefähr der gleichen Höhe und zwar ca. 1 bis 2 cm über dem oberen Rand von KZ gehalten wurde. Kontrolliert wurde der Stand des Kühlbades durch den aus dünnem Glas geblasenen Schwimmer S. In dem flüssigen Argon in KRsorgt die Messinghalterung des Piezoquarzes PQ für einen Wärmeausgleich. Die ganze Apparatur lässt sich bequem in einem Dewargefäss von 60 mm \emptyset unterbringen, das Schallfeld in KR hat eine Grösse von etwa $10 \times 10 \times 20$ mm. Gebraucht werden etwa 7 Liter gasförmiges Argon, um genügend Flüssigkeit zu erhalten.

b) Kondensation und Reinigung des Argons. Dampfdruckthermometer.

Das Schema der zum Argoneinlass dienenden Glasapparatur und des Dampfdruckthermometers zeigt Fig. 3. Der Einführungsstutzen E des Kondensationsrohres KR ist mit Hilfe einer Glasfeder mit dem Torricellimanometer M_1 verbunden. Eine weitere Verbindung führt über die Hähne H_4 , die Ausfrierfalle F und den Hahn H_5 zu dem Argon-Vorratsgefäss V. Durch den Hahn H_1 ist die Apparatur mit einer Vakuumpumpe verbunden, durch H_2 bzw. H_3 und die Einlasskapillare EK kann Gas aus einer Bombe eingelassen werden.

Mit Ausnahme des Vorratsgefässes V ist die ganze Apparatur aus Sibor-Glas geblasen. Die Falle F ist so eingerichtet, dass zur Vergrösserung der Kondensationsfläche auch noch in das innere Rohr R_i flüssiger Sauerstoff gegossen werden kann, während

die ganze Falle in ein mit flüssigem O_2 gefülltes Dewargefäss taucht. Das Vorratsgefäss V besteht aus einem oben und unten mit eingepassten und verlöteten Eisenscheiben geschlossenen Stahlrohr von ca. 25 cm \varnothing . V wurde so gross gewählt (etwa 22 Liter), dass die in KR kondensierte Argonmenge den Druck in der Apparatur nicht unter den Dampfdruck des A am Tripelpunkt herabsetzte (A: Tripelpunktsdruck 516 mm). Dadurch wurde ein Füllen von V unter Druck oder ein Überpumpen von V nach KRvermieden, da dann beim Abkühlen von KR auf etwa Tripelpunktstemperatur sich eine genügende Menge A in KR verflüssigte.

Fig. 3. Schema der Apparatur zur Argon-Verflüssigung und des Dampfdruckthermometers.

Werden dann die Hähne H_4 und H_5 geschlossen, so kann die Temperatur in KR wieder erhöht und der zugehörige Dampfdruck am Manometer M_1 abgelesen werden.

Zur Verfügung stand nur technisches Argon, das Beimengungen von Stickstoff und etwas Sauerstoff enthielt, und zwar nach der Analyse der Fabrik rund 10% N₂ und 0,2% O₂. Die Sauerstoffmengen waren also so klein, dass eine Befreiung des Argons von ihnen nicht nötig schien*). Die Reinigung des Argons von Stick-

^{*)} Zur Sicherheit wurde der O₂-Gehalt des verwendeten Argons noch einmal im Chemischen Institut der Universität Zürich geprüft. Die Analyse ergab einen Sauerstoffgehalt von 0,15%.

Für die Ausführung dieser Analyse möchte ich auch an dieser Stelle Herrn Prof. Dr. G. SCHWARZENBACH herzlich danken.

stoff erfolgte durch fraktionierte Sublimation, indem in KR eine gewisse Menge technisches Argon verflüssigt, dann verfestigt und der Dampf darüber mehrfach abgepumpt wurde. Eine Prüfung des Reinheitsgrades erfolgte durch einen Vergleich des Dampfdrucks mit den bekannten Dampfdrucken über A-N₂-Gemischen⁷) und zwar so, dass die Temperatur bei einem Dampfdruck von 500 mm Hg abgelesen wurde. Ein Vergleich mit der 500 mm Isobare der A-N₂-Gemische liefert dann direkt den Stickstoffanteil der Flüssigkeit. Im allgemeinen wurde mit einem Argon von 98% Reinheit gearbeitet, da eine noch weitergehende Reinigung mit viel Argonverlust verbunden ist. Ein gelegentliches Arbeiten mit nur 1% N₂ zeigte, dass keine die Messfehler überschreitende Änderung der Schallgeschwindigkeit mehr auftrat, was im übrigen auch eine Extrapolation aus Mischungsmessungen ergab (vgl. hierzu § 4).

Fig. 3 zeigt auch die Anordnung des O₂-Dampfdruckthermometers. DT ist mit Hilfe einer Glasfeder mit dem Manometer M_2 verbunden, einem U-Rohr, dessen einer Schenkel als Barometerrohr ausgebildet ist. Das Quecksilber wird immer so hoch gehalten, dass der Meniskus in dem Barometerrohr die Glasspitze GS berührt. Der in DT herrschende Dampfdruck lässt sich dann einfach an einer Skala, die in GS ihren Nullpunkt hat, ablesen. Das Thermometer war mit reinem, aus Kaliumpermanganat gewonnenem Sauerstoff gefüllt (betreffs der Füllung vgl. Arb. I). Die Temperatur wurde auf 0,1^o abgelesen und konstant gehalten.

c) Halterung des Piezoquarzes. Sender.

Die Entwicklung der Halterung des Piezoquarzes wurde durch zwei Forderungen bestimmt: das Schallfeld musste möglichst klein (vgl. Abschnitt a) gehalten werden, und ausserdem musste die Quarz- und die damit verbundene Spiegelhalterung so gebaut sein, dass eine Justierung vor dem Einsetzen des Quarzrohres Q(siehe Fig. 2) in das Kondensationsrohr möglich war. Das heisst, der Autokollimationsspiegel Sp (Fig. 4) musste exakt parallel zu den Stirnflächen des Quarzzylinders Z orientiert sein und der Piezoquarz PQ senkrecht dazu stehen.

Zu diesem Zweck wurde die Halterung aus einem Stück starkwandigem Messingrohr gedreht. Das Messingrohr wird auf der einen Seite so dünn ausgedreht, dass es sich federnd über den Zylinder Z schieben lässt. Die andere Stirnfläche wird so weit ausgedreht, dass sich der Spiegel Sp, bestehend aus einer kleinen, versilberten Scheibe aus amorphem Quarz, mit etwas Spiel in

die entstandene Büchse legen lässt, die dann durch den passend gedrehten Zapfen ZP geschlossen wird. Auf zwei diametral gegenüberliegenden Punkten wird der Hohlzylinder flach gefeilt (siehe Schnitt A-B Fig. 4), sodass zwei Öffnungen von ca. 10×10 mm entstehen. Auf die eine dieser Flächen wird der Piezoquarz PQ mit der einen versilberten Fläche gelegt und in dieser Lage durch die Presspanplatte Pl und die Feder aus Aluminiumfolie Al ge-

Fig. 4.

Halterung des Piezoquarzes (Schnitt).

halten. Die Aluminiumfolie bildet dann die eine, die mit dem Messingrohr leitend verbundene Silberschicht die andere Elektrode. Die Zuführung der Wechselspannung erfolgt über zwei dünne Kupferdrähte.

Betrieben wurde der Piezoquarz mit einem quarzgesteuerten Gegentaktsender (Philips 410 als Steuerröhre, 2 Philips TC 04/10 in der Gegentaktstufe).

Der den Schall erzeugende Piezoquarz wird so genau auf der Frequenz des Steuerquarzes von 7,508,8 kHz gehalten.

H. W. Liepmann.

d. Gang eines Versuches.

Zuerst wird das Dewargefäss mit flüssigem O_2 gefüllt und dann dieses Kühlbad durch Abpumpen auf ca. —189° C gebracht. Während durch langsames Pumpen diese Temperatur konstant gehalten wird, strömt durch Öffnen der Hähne H_4 und H_5 (Fig. 3) das A ein und beginnt sofort zu kondensieren. Blickt man in die Lupe L_2 (Fig. 1), so erkennt man die Kondensation bald an dem Verschwinden des Spaltbildes infolge der Streuung des Lichtes an der unruhigen Oberfläche des flüssigen Argons. Bei weiterer Kondensation wird schliesslich der Punkt erreicht, bei dem das Quarzfenster Z (Fig. 2 und 4) in die Flüssigkeit taucht, ein Punkt, der sich durch das plötzliche Auftreten eines klaren Spaltbildes in F (Fig. 1) scharf bemerkbar macht. Es wird dann noch einige Zeit weiter Argon verflüssigt, bis die Flüssigkeit ca. 5 mm über dem unteren Rand von Z steht. Dann werden die Hähne H_4 und H_5 (Fig. 3) geschlossen, und die Apparatur ist messbereit.

Durch Einschalten des Heizstromes bzw. durch Abpumpen des O₂ kann eine beliebige Temperatur zwischen Tripel- und Siedepunkt des A eingestellt werden. Hatte sich ein konstanter Druck in den Manometern M_1 und M_2 (Fig. 3) eingestellt, so wurde der Schall eingeschaltet und das Fadenkreuz der Lupe auf das + 1. Beugungsspektrum eingestellt; anschliessend wiederholte sich das gleiche bei der -1. Ordnung. Die Differenz beider Ablesungen der Mikrometerschraube gibt den Spektrenabstand. Um eine möglichst definierte Temperatur zu haben, wurde der Schall nur für die zur Einstellung des Fadenkreuzes auf ein Spektrum nötige Zeit, d. h. nur wenige Sekunden eingeschaltet und gleichzeitig von einem zweiten Beobachter die Temperatur am Dampfdruckthermometer abgelesen. Jede Messung wurde mindestens dreimal wiederholt. Der Abstand der Beugungsspektren erster Ordnung betrug bei A, bei der Schallfrequenz 7508,8 kHz, der Lichtwellenlänge 5461 Å.E. und der verwendeten Linse L_1 (Fig. 1) von 400 mm Brennweite etwa 3,5 mm, die Ablesegenauigkeit etwa 0,005 mm.

§ 4. Ergebnisse.

Aus bekannten Gründen (vgl. Arb. I) empfiehlt es sich nicht, aus den gemessenen Abständen der Beugungsspektren mit Hilfe der Brennweite der Linse die Schallwellenlänge und damit die Schallgeschwindigkeit nach der Strichgitter-Formel zu berechnen, da kleine optische Fehler der Anordnung, z. B. nicht exakt paralleles Licht, Schrägstehen des Piezoquarzes, kleine Fehler der Spiegel-

431

flächen usw. das Ergebnis übermässig stark beeinflussen. Empfehlenswerter ist der Anschluss an eine Flüssigkeit bekannter Schallgeschwindigkeit. In diesem Fall war das Einfachste der Anschluss an flüssigen O₂, der genau wie das A in KR (Fig. 2 und 3) aus der Bombe verflüssigt wurde. Angeschlossen wurde an den in der Arb. I erhaltenen Wert bei -183,6°C und 7,5 10⁶×Hz von 911 m/sec, ein Wert, der innerhalb der Fehlergrenzen von ± 4 m/sec inzwischen noch einmal bestätigt wurde¹⁵).

1	Somerigeser	a white angle of	m muchigem		·
Datum	Schall- geschwin- digkeit V m/sec	Tem- peratur & C	Datum	Schall- geschwin- digkeit V m/sec	Tem- peratur ∂°C
12. 10. 38.	865	189,0	22. 10. 38.	860	189,4
6	860	187,9		846	187,0
	854	187,7		838	186,8
	849	187,3		848	187,5
	841	186,6		854	188,5
14, 10, 38,	879	190.0		858	189,0
1	858	188.8		865	190,0
2	854	187.2			
	848	186.7	23. 10. 38.	853	187,0
	848	186.6	2	858	188,0
	848	186,8	4	868	189,0
13	862	188,8	10, 11, 38,	865	189.8
18. 10. 38.	852	187,5		855	188.2
<u>8</u>	847	187,4		845	187.4
	845	187,0		837	186,5
	843	186,9			
2360	843	186,7			х.,
8	855	188,1			
66	855	188,0	8		s
0 8 0	860	188,8			
	862	188,7			
	866	189,5			
	5. 1				

Tabelle	I.	
Schallgeschwindigkeit in	flüssigem	Argon.

Die unter Zugrundelegung dieses Wertes für die Schallgeschwindigkeit in flüssigem Sauerstoff erhaltenen Werte für flüssiges Argon zeigt Tab. I. Die Messungen gliedern sich in sechs Messreihen, deren Punkte in der in Tab. I angegebenen Reihenfolge gemessen sind, und zwar besteht jeder Messpunkt, wie erwähnt, aus mindestens drei Einzelmessungen. Jede dieser

H. W. Liepmann.

Messreihen ist für sich an flüssigem Sauerstoff angeschlossen und zwar so, dass die Messung des Spektrenabstandes (vgl. § 3 Absch. d) für flüssigen Sauerstoff unmittelbar vor oder nach den Argonmessungen ausgeführt wurde. Der relative Verlauf der Schallgeschwindigkeit in flüssigem Argon als Funktion der Temperatur wurde aus jeder Messreihe einzeln graphisch ermittelt. Die erhaltenen Kurven zeigen alle den gleichen Charakter, nämlich einen fast linearen Verlauf der Schallgeschwindigkeit als Funktion der Temperatur, sie unterscheiden sich im wesentlichen nur durch eine Parallelverschiebung, d. h. im absoluten Betrag der Schallgeschwindigkeit. Aus diesen sechs Kurven wurde wiederum eine mittlere Kurve gewonnen, die in Fig. 5a zusammen mit allen

Schallgeschwindigkeit in flüssigem Argon als Funktion der Temperatur. Schallgeschwindigkeit in flüssigem Stickstoff als Funktion der Temperatur.

Messpunkten dargestellt ist. Man sieht, dass die Schallgeschwindigkeit vom Wert 842 m/sec bei $-186,5^{\circ}$ C etwas schwächer als linear auf den Wert 867 m/sec bei $-189,5^{\circ}$ C ansteigt. Die Genauigkeit dieser bei einer Frequenz von 7508,8 kHz gemessenen Werte kann man auf $\pm 0,5\%$ schätzen.

Diese Messungen wurden, wie erwähnt, in Argon ausgeführt, das noch ca. 2% Stickstoff enthielt. Die Vermutung, dass innerhalb der Fehlergrenzen die angegebenen Werte der Schallgeschwindigkeit auch für reines Argon richtig sind, wurde noch durch Messungen in A-N₂-Gemischen bestätigt:

Zu diesem Zweck wurde zuerst die Schallgeschwindigkeit in flüssigem Stickstoff von 99,8% Reinheit gemessen. Das erwies sich als nötig, da die Messungen der Schallgeschwindigkeit in flüssigem Stickstoff von HIRSCHLAFF⁸) wohl kaum in reinem Stickstoff ausgeführt sein konnten, da sie sich bis zu einer Temperatur von -218° C erstrecken, also weit über den Tripelpunkt des N₂ hinaus (N₂: Tripelpunkt $-210,1^{\circ}$ C).

Die Messresultate der Schallgeschwindigkeit in flüssigem Stickstoff zeigt die Tab. II und graphisch die Fig. 5b. Die Messungen wurden analog den Argon-Messungen ausgeführt, nur wurden nicht soviel Punkte gemessen, da die Untersuchung lediglich zur Orientierung gedacht war. Es ergab sich (Fig. 5b) ein lineares Anwachsen der Schallgeschwindigkeit vom Wert 868 m/sec bei -197° C auf 929 m/sec bei -203° C. Die Messgenauigkeit dürfte etwa 1% betragen.

Datum	$\begin{array}{c} {\rm Schall-}\\ {\rm geschwindigkeit}\\ V {\rm \ m/sec} \end{array}$	Temperatur & OC
19. 10. 38.	915	201,6
	925	202,8
	933	203,8
	866	197,0
	877	198,7
	904	200,8
11. 11. 38.	918	201,0
	920	201,4
	899	199,7
	868	196,6
	924	201,9
	876	197,7

Tabelle II.						
Schallgeschwindigkeit	\mathbf{in}	flüssigem	Stickstoff.			

Man erhält in der Tat eine starke Abweichung gegenüber den Messungen von HIRSCHLAFF, die bei -197° C etwa 990 m/sec und bei -203° C etwa 1000 m/sec ergaben.

Die Messungen in Argon-Stickstoff-Gemischen zeigt die Fig. 6. Dargestellt ist eine "Schallisotherme", d. h. die Schallgeschwindigkeit in A-N₂-Gemischen bei einer Temperatur von -190° C als Funktion des Argongehaltes der Flüssigkeit. Die Messungen wurden hintereinander durchgeführt und zwar so, dass zuerst reiner Stickstoff gemessen wurde, dann sukzessive Argon zugefügt und zum Schluss über dem verfestigten Gemisch der Stickstoff abgepumpt wurde (vgl. § 3b). Die Genauigkeit einer solchen Kurve darf nicht überschätzt werden, da wegen der Änderung des Schmelzpunktes bei Konzentrationsvariation die Werte bei höherem Stickstoffgehalt auf die Temperatur -190° C extrapoliert werden mussten. Die Kurve dient lediglich zur Bestätigung der Annahme, dass ein Stickstoffgehalt von ca. 2% die Schallgeschwindigkeit in flüssigem Argon kaum noch beeinflusst*).

Man kann also sagen, dass die angegebenen Werte für die Schallgeschwindigkeit in Argon, obwohl sie in Argon mit 2% Stickstoff Beimischung gemessen wurden, auch für reines Argon innerhalb der angegebenen Fehlergrenzen richtig sind.

Schallgeschwindigkeit in verflüssigten A-N₂ Gemischen bei -190° C als Funktion des Argongehaltes der Flüssigkeit.

§ 5. Diskussion der Ergebnisse und Vergleich mit statischen Messungen.

Aus den gemessenen Werten für die Schallgeschwindigkeit gelangt man unter Verwendung einiger thermodynamischer Beziehungen zu den mit statischen Messungen vergleichbaren Grössen, nämlich der isothermen Kompressibilität und den spezifischen Wärmen:

^{*)} Der Grund, warum die Schallgeschwindigkeit so sehr viel unempfindlicher gegenüber Verunreinigungen ist als etwa die spezifischen Wärmen C_p und C_v , ist der, dass die Schallgeschwindigkeit nur von $\varkappa = C_p/C_v$ und der Kompressibilität, also $C_p - C_v$ (vgl. § 5) abhängt. Kleine Änderungen in den spezifischen Wärmen heben sich also weg.

Zuerst erhält man die adiabatische Kompressibilität χ_s aus der Dichte ϱ und der Schallgeschwindigkeit V

$$\chi_S = \frac{1}{\varrho \ V^2} \ , \tag{1}$$

die isotherme Kompressibilität χ_T ergibt sich dann aus der Beziehung

$$\chi_T = \varkappa \, \chi_S \,, \tag{2}$$

wobei $\varkappa = C_{p}/C_{v}$ das Verhältnis der spezifischen Wärmen ist. Andererseits gilt für die Differenz der spezifischen Wärmen die Gleichung

$$C_{p} - C_{v} = T \left(\frac{\partial p}{\partial T} \right)_{v} \left(\frac{\partial v}{\partial T} \right)_{p}, \qquad (3)$$

aus der unter Benutzung der Beziehung

$$\left(\frac{\partial v}{\partial p}\right)_{T} = -\frac{\left(\frac{\partial v}{\partial T}\right)_{p}}{\left(\frac{\partial p}{\partial T}\right)_{v}}$$
(4)

folgt

$$C_{p} - C_{v} = -\frac{T\left(\frac{\partial v}{\partial T}\right)_{p}^{2}}{\left(\frac{\partial v}{\partial p}\right)_{T}}$$

und schliesslich unter Benutzung von (1) und (2) und Einführung des Ausdehnungskoeffizienten α

$$\varkappa - 1 = \frac{T \alpha^2 V^2}{C_p} \,. \tag{5}$$

Um also aus Schallgeschwindigkeitsmessungen Aussagen über das Verhältnis bzw. die Differenz der spezifischen Wärmen machen zu können, bedarf man, abgesehen von den im allgemeinen bekannten Dichten und dem Ausdehnungskoeffizienten, noch mindestens *einer* statischen Messung, und zwar entweder

a) der isothermen Kompressibilität χ_T (Formel 2) oder

b) des thermischen Drucks $(\partial p/\partial T)_v$ (Formel 3) oder

c) der spezifischen Wärme bei konstantem Druck C_p (Formel 5).

Bei flüssigem Argon sind alle diese Grössen bekannt und zwar: Der thermische Druck $\partial p/\partial T$ nach direkten Messungen von SIMON und KIPPERT⁹). C_p nach Messungen von CLUSIUS¹⁰) und ausserdem C_p und C_v aus Messungen von EUCKEN und HAUCK¹¹). Aus C_p und

 C_v erhält man nach (4), aus den Werten für $\partial p/\partial T$ nach (3) die isotherme Kompressibilität χ_T .

				344	,011.				
д	V.	≈ −1	ϱ_4^ϑ	χs (L.)	χ <i>T</i> (L.)	$\begin{vmatrix} \chi_T \\ (EH.) \end{vmatrix}$	χ _T (SK.)	C_{v}	С _v (ЕН.)
• C	m/sec			1	0 ⁻¹² cn	n²/dyn		$\mathbf{cal}/$	mol
-186	837	1,20	1,404	102	224	245	180	4,54	5,50
187	846	1,21	1,410	99	. 219		<i>x</i>	`	1 ¹ 4
188	855	1,22	1,417	97	215				
189	863	1,23	1,424	94	210			4,48	5,55
					े ठ				

Tabelle III. Argon.

Tabelle IV.

Stickstoff.

	д	V	×-1	ϱ_{*}^{ϑ}	χs (L.)	χ <i>τ</i> (L.)	χ _T (SK.)	C_v
	• C	m/sec			10-	$^{-12} \text{ cm}^2/\text{d}$	yn	cal/mol
	-197	869	0,96	0,815	163	320	047	6,96
3	199	889	0,99	0,824	154	3 06	247	
	201	909	1,01	0,834	145	292	-	
	203	929	1,02	0,843	138	281		6,75

 $\chi_S(L.), \chi_T(L.) = adiabatische bzw. isotherme Kompressibilität nach LIEP-$ MANN.

 χ_T (E.-H.); χ_T (S.-K.) = isotherme Kompressibilität nach Eucken-Hauck bzw. SIMON-KIPPERT.

 $\vartheta = \text{Temperatur}, V = \text{Schallgeschwindigkeit}, \varrho = \text{Dichte}.$

 $C_v =$ Molwärme bei konstantem Volumen.

Der Ausdehnungskoeffizient α wurde nach BALY & DONNAN zu 4,54·10⁻³ bei A und zu 5,88·10⁻³ bei N₂ angenommen.

In Tab. III sind die aus den Schallgeschwindigkeitsmessungen berechneten Werte für die Kompressibilitäten χ_S und χ_T , das Verhältnis der spezifischen Wärmen \varkappa und die spezifische Wärme bei konstantem Volumen C_v angegeben. Zugrundegelegt wurden die C_p -Messungen von CLUSIUS¹⁰) und die Werte von BALV und DONNAN¹²) für die Dichten ϱ und den Ausdehnungskoeffizienten α . Die Clusius'schen Messungen ergaben C_S^*) = 10,02 cal/mol bei -186,6° C, einen Wert, den man erfahrungsgemäss als konstant bis zum Schmelzpunkt annehmen kann. Die Korrektion von C_S auf C_p ist hier unbedeutend, da es sich immer um Dampfdrucke

*) C_S ist die spezifische Wärme im Sättigungszustand.

436

unter einer Atmosphäre handelt. Nimmt man also den Wert von C_p innerhalb des in Frage kommenden Temperaturintervalles von etwa —186° bis —189° C zu 10,0 cal/mol an, so wird man sicher keinen ins Gewicht fallenden Fehler begehen.

Die Messungen von CLUSIUS¹⁰) für C_S bzw. C_p wurden gewählt, weil bei diesen Messungen besondere Sorgfalt auf die Reinigung des Argons gelegt wurde. Die Messungen von EUCKEN und HAUCK¹¹) ergaben Werte für C_p , die um ca. 5% grösser sind als die Werte von CLUSIUS, doch scheint aus einer Schmelzpunktsbestimmung hervorzugehen, dass bei den Eucken-Hauck'schen Messungen das Argon nicht ganz rein war, da es eine geringe Schmelzpunktserniedrigung gegenüber dem von CLUSIUS bestimmten Schmelzpunkt zeigt (A: Schmelzpunkt nach CLUSIUS -189,35° C, nach EUCKEN-HAUCK -189,65° C). Allerdings erklärt diese Differenz die grosse Abweichung der C_p -Werte nicht völlig.

Die in der angegebenen Weise berechneten Werte der isothermen Kompressibilität χ_T werden mit den, aus den Messungen von SIMON und KIPPERT und EUCKEN und HAUCK bestimmten Kompressibilitäten verglichen (Tab. III), ausserdem ist in der letzten Spalte noch der Wert von EUCKEN und HAUCK für die spezifische Wärme bei konstantem Volumen angegeben.

Die entsprechenden Daten für flüssigen Stickstoff zeigt Tab. IV. Sie wurden auf die gleiche Weise berechnet wie die Argon-Werte. Zugrundegelegt wurden wiederum die C_p -Messungen von CLUSIUS¹³), die in dem in Frage kommenden Temperaturintervall wieder fast konstant sind: bei $-199,7^{\circ}$ C $C_p = 13,69$ cal/mol, bei $-204,8^{\circ}$ C $C_p = 13,64$ cal/mol. Die in der Tab. IV angegebenen Werte für den Ausdehnungskoeffizienten und die Dichten sind wie beim Argon von BALY und DONNAN¹²) gemessen. Verglichen werden die isothermen Kompressibilitäten nur mit dem Wert von SIMON und KIPPERT, da andere Daten nicht vorliegen.

Vergleicht man die aus der Schallgeschwindigkeit berechneten Werte für die isotherme Kompressibilität χ_T und die spezifische Wärme C_v mit den statischen Messungen (Tab. III und IV), so sieht man, dass Differenzen auftreten, die die Fehlergrenzen weit überschreiten. Während die Fehlergrenzen der angegebenen Daten höchstens $\pm 6\%$ betragen sollten, übersteigen die Abweichungen 20%. Über die Gründe dieser Abweichungen kann nur wenig ausgesagt werden.

Berücksichtigt man bei einem Vergleich der isothermen

H. W. Liepmann.

Kompressibilitäten mit den Werten von SIMON und KIPPERT⁹) noch die Ergebnisse der ersten Arbeit³), so bietet sich folgendes Bild:

	χ_T aus der Schallgeschwindigkeit	χ_T aus dem thermischen Druck
O ₂ A N ₂	$egin{array}{c} 164 imes10^{-12}\ CGS^{st})\ 224 imes10^{-12}\ ,,\ 315 imes10^{-12}\ ,,\ \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$

Anscheinend nimmt also die Differenz der Ergebnisse der Schallgeschwindigkeitsmessungen und der Werte, die SIMON-KIPPERT aus $\partial p/\partial T$ -Messungen erhielten, mit wachsender Kompressibilität zu. Doch ist natürlich keineswegs sicher, dass dieser Gang reell ist.

Die Messungen von EUCKEN und HAUCK¹¹), die bei flüssigem A noch zum Vergleich herangezogen wurden (vgl. Tab. III), sind von verschiedenen Autoren kritisiert worden und sollen grössere systematische Fehler enthalten¹⁴). Doch bezieht sich diese Kritik nicht direkt auf die Werte für die spezifischen Wärmen des flüssigen A, sondern auf andere in der gleichen Arbeit mitgeteilte Resultate, z. B. auf die spezifische Wärme des festen Methans. Eine Wiederholung der C_p -Messungen bei flüssigem A durch CLUSIUS¹⁰) ergab, wie erwähnt, um 5% kleinere Werte als die Messungen von EUCKEN und HAUCK. Die C_p -Messungen von EUCKEN und HAUCK sind bisher nicht wiederholt worden.

§ 6. Zur Frage der Schalldispersion in einatomigen Flüssigkeiten.

Nach diesem Vergleich der Resultate der Schallgeschwindigkeitsmessungen mit den statisch ermittelten Daten kann man sich fragen, ob man die grossen Differenzen der Messungen systematischen Fehlern zuschreiben soll oder ob sich dahinter eine physikalische Realität verbirgt. Beschränkt man sich zunächst auf den Fall des flüssigen A, so würde eine reelle Abweichung der aus der Schallgeschwindigkeit abgeleiteten Werte, z. B. für C_v , von den statisch bestimmten Werten das Auftreten einer Schalldispersion in einer einatomigen Flüssigkeit bedeuten.

Abgesehen von dem verschwindend kleinen Dispersionseffekt, den die Stokes-Kirchhoff'sche Theorie liefert, gibt es folgende

^{*)} Dabei wurde die Molwärme des flüssigen O_2 zu $C_p = 12.8$ cal/mol angenommen. (Landolt-Börnstein, Physikalisch-Chemische Tabellen, 5. Auflage.)

Möglichkeiten, die das Auftreten einer Schalldispersion verursachen könnten:

Die Schallfortpflanzung ist kein streng adiabatischer Vorgang.
In der Flüssigkeit ist ein Teil der Atome assoziiert.

Zu dem Punkt 2 ist noch zu sagen, dass man statt von "Assoziation" der Atome einer Flüssigkeit zu sprechen auch den Ausdruck "Kristallstruktur der Flüssigkeit" im Debye'schen Sinn hätte gebrauchen können. Beide Ausdrucksweisen sollen im Grund nur besagen, dass es in der Umgebung eines Atoms der Flüssigkeit gewisse ausgezeichnete Orte gibt, derart, dass die Wahrscheinlichkeit, ein Nachbaratom zu finden, an diesen Orten ein Maximum besitzt.

1) Die Annahme, dass die Schallgeschwindigkeit ein adiabatischer Vorgang ist, gilt natürlich nur unter gewissen Bedingungen, z. B. muss für den Grenzfall, dass die Wärmeleitung der Flüssigkeit über alle Grenzen wächst, die Schallfortpflanzung sicher isotherm sein. Um den Bereich der Gültigkeit dieser Annahme abzuschätzen, kann man folgendermassen vorgehen:

Man nimmt eine ebene, harmonische Schallwelle der Kreisfrequenz ω und der Geschwindigkeit V an und betrachtet eine räumlich feste, zur Fortpflanzungsrichtung der Welle senkrechte Ebene. Auf dieser Ebene schwankt die Temperatur zeitlich im Rhythmus der Schallfrequenz. Die Fragestellung lautet: gibt diese Ebene während einer Schwingungszeit merklich Wärme an ihre Umgebung ab? Man hat also eine Lösung der Wärmeleitungsgleichung zu suchen, die mit der "erzwungenen Schwingung" auf der Ebene (z. B. x = 0) verträglich ist. Das ist ein bekanntes Problem, das z. B. auch bei dem Eindringen von Temperaturschwankungen in die Erdkruste auftritt: als Lösungen ergeben sich ebene, gedämpfte "Wärmewellen":

$$\vartheta = \vartheta_0 e^{-\alpha x} e^{i\omega \left(t - \frac{x}{U}\right)}$$

wobei $\alpha = \sqrt{\frac{C_v \, \varrho \, \omega}{2 \, \sigma}}$ und $U = \sqrt{\frac{2 \, \sigma \, \omega}{C_v \, \varrho}}$ ist.

 $\vartheta = \text{Temperatur}, \quad \sigma = \text{Wärmeleitungskoeffizient},$ $C_v = \text{spez.}$ Wärme bei konst. Volumen, $\varrho = \text{Dichte.}$

Soll ein Temperaturausgleich innerhalb der Schallwelle erfolgen, so hat man zu fordern, dass die Geschwindigkeit der Wärmewelle grösser, mindestens gleich der Schallgeschwindigkeit ist. Dazu tritt als zweite Bedingung, dass die Absorption der Wärme-

H. W. Liepmann.

welle nicht zu gross sein darf. Die erste Bedingung liefert die Ungleichung

$$\frac{2\sigma\omega}{C_v\rho} \ge V^2.$$

Setzt man die Zahlenwerte für flüssiges Argon ein, so erhält man die Bedingung für ω :

$$\omega \geq \sim 10^{15} \,\mathrm{Hz}$$
.

Ohne auf die zweite Bedingung eingehen zu müssen, zeigt dieses Ergebnis bereits, dass für alle erreichbaren Schallfrequenzen die Schallfortpflanzung ohne merklichen Wärmeausgleich, d. h. adiabatisch verläuft*).

Es sei noch bemerkt, dass die einzige Flüssigkeit, bei der man nach der obigen Abschätzung eine isotherme Schallfortpflanzung erwarten könnte, flüssiges Helium unterhalb des λ -Punktes ist. In diesem Fall würde nämlich die erste Bedingung wegen der grossen Wärmeleitung von He II die Ungleichung

$$\omega \geq 10^6$$
 bis 107

liefern, also Frequenzen, die praktisch leicht erreichbar sind. Doch ist die Voraussetzung, die man bei der Anwendung dieser Überlegungen auf den Fall von He II macht, dass sich das gemessene grosse Wärmeleitvermögen im klassischen Sinn durch einen Koeffizienten beschreiben lässt, wohl kaum noch zu rechtfertigen¹⁵).

In einer erst nach Abschluss dieser Arbeit erschienenen Mitteilung kommt GROENEWOLD¹⁶) auch auf Grund klassischer Überlegungen aber unter Berücksichtigung einer endlichen freien Weglänge zu dem Schluss, dass die Schallausbreitung in Helium II adiabatisch verläuft.

2) Auf die Möglichkeit des Auftretens von Assoziationen in flüssigem Argon wurde bereits von EUCKEN¹⁷) hingewiesen und zwar im Hinblick auf den grossen Temperaturgang der spezifischen Wärme bei konstantem Volumen C_v , der sich bei den Messungen von EUCKEN und HAUCK¹¹) ergeben hatte. Nach diesen Messungen nimmt nämlich C_v von dem Wert 4,6 cal/mol in der Nähe des kritischen Punktes bis zu dem Wert 5,6 cal/mol am Schmelzpunkt zu, ein Gang, der sich durch das Auftreten von Assoziationen bei tieferen Temperaturen in der Umgebung des

^{*)} Allerdings zeigt das Ergebnis auch, dass die oft benutzte Erklärung für den adiabatischen Charakter des Schalls, die kurze Zeitdauer einer Schwingung, nicht richtig ist, sondern dass auch die Materialkonstanten der Flüssigkeit berücksichtigt werden müssen.

Schmelzpunktes erklären liesse. Bei den schnellen thermischen Schwankungen beim Durchgang einer Schallwelle dagegen wäre es denkbar, dass das Assoziationsgleichgewicht nicht mehr folgen kann und praktisch konstant bleibt. Die entsprechenden "Assoziationsfreiheitsgrade", die einen Beitrag zu der spezifischen Wärme C_v geben würden, fallen dann aus; ein analoges Verhalten zeigen z. B. teilweise dissoziierte Gase.

Man hätte in diesem Falle zu erwarten, dass die aus der Schallgeschwindigkeit berechneten Werte für \varkappa grösser sind als die statisch gemessenen. Die Berechnung von \varkappa hätte in diesem Fall nur unter Verwendung statischer Messungen für $C_{,p}-C_{v}$, d. h. der isothermen Kompressibilität zu erfolgen (also etwas anders als in Tab. III!), da man im Falle von Assoziationsbildung nur $C_{p}-C_{v}$ als frequenzunabhängig anzusehen hätte. Führt man diese Rechnung auf Grund der Resultate von EUCKEN und HAUCK¹¹) durch, so erhält man $\varkappa = \chi_{T}/\chi_{s} = 2,4$ (vgl. Tab. III), während das Verhältnis der von EUCKEN und HAUCK direkt gemessenen spezifischen Wärmen $\varkappa = C_{p}/C_{v} = 1,9$ (nach EUCKEN-HAUCK: $C_{p} = 10,5$ cal/mol $C_{v} = 5,5$ cal/mol) beträgt.

Obwohl also ein Effekt, der für Assoziationen spricht, vorhanden zu sein scheint, so kann man doch infolge der Unsicherheit der statischen Messungen und des kleinen Temperaturbereiches der Schallgeschwindigkeitsmessungen keine sicheren Aussagen machen. Das Ziel einer weiteren Arbeit müsste es sein, den Temperaturbereich der Schallgeschwindigkeitsmessungen in flüssigem Argon bis zum kritischen Punkt hin auszudehnen, um so vielleicht weitere Anhaltspunkte zu gewinnen.

Zusammenfassung.

Unter Verwendung des Effektes der Lichtbeugung an Ultraschallwellen wird die Schallgeschwindigkeit in flüssigem Argon und Stickstoff als Funktion der Temperatur gemessen. Eine entsprechende Anordnung wird beschrieben.

die isotherme Kompressibilität werden berechnet und mit statischen Messungen anderer Autoren verglichen.

Die vorliegende Arbeit konnte nur dank einer Unterstützung unternommen werden, welche von der "Jubiläumsstiftung der Universität Zürich" den Herren Professoren R. Bär und EDGAR MEYER zur Ausführung von Ultraschall-Untersuchungen gewährt worden war.

Physikalisches Institut der Universität Zürich.

Literaturverzeichnis.

¹) L. BERGMANN, "Der Ultraschall", V. D. I. Berlin (1937).

²) R. BÄR, Nature London 135, 265 (1935).

³) H. W. LIEPMANN, Helv. Phys. Acta 11, 381 (1938).

4) A. PITT & W. J. JACKSON, Canad. Journ. Res. 12, 686 (1935).

⁵) J. C. FINDLAY, A. PITT, H. GRAYSON SMITH & J. O. WILHELM, Phys. Rev. 54, 506 (1938).

⁶) E. JUSTI, Phys. Zeitschr. 35, 3 (1934).

⁷) Internat. Critical Tables, 1. Auflage.

⁸) E. HIRSCHLAFF, Proc. Cambr. Phil. Soc. 34, 296 (1938).

⁹) F. SIMON & FRIEDA KIPPERT, Zeitschr. Phys. Chem. 135, 113 (1928).

¹⁰) K. CLUSIUS, Zeitschr. Phys. Chem. 31, 459 (1936).

¹¹) A. EUCKEN & F. HAUCK, Zeitschr. Phys. Chem. 134, 161 (1928).

¹²) E. BALY & F. DONNAN, Journ. Chem. Soc. London 81, 907 (1902).

¹³) K. CLUSIUS, Zeitschr. Phys. Chem. 3, 41 (1929).

¹⁴) R. WIEBE, K. H. HUBBARD & M. J. BREEVORT, JOURN. Amer. Chem. Soc. 52, 611 (1930). C. J. EGAN & J. D. KEMP, JOURN. Amer. Chem. Soc. 59, 1264 (1937).

¹⁵) F. LONDON, Phys. Rev. 54, 947 (1938).

¹⁶) H. J. GROENEWOLD, Physica 6, 303 (1939).

¹⁷) A. EUCKEN & H. SEEKAMP, Zeitschr. Phys. Chem. 134, 178 (1928).