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The Magnetic Exchange Moments for H3 and He3

by Felix Villars.
(12. IX. 1947.)

Zusammenfassung. Es wird gezeigt, dass im Grundzustand des 3-Nukleon-
Systemes der Ladungsaustausch einen Beitrag zum magnetischen Moment gibt.
Die Rechnung wird auf Grund der symmetrischen Pseudoskalartheorie
durchgeführt. Eine rohe Abschätzung ergibt für den Betrag des magnetischen Austauschmomentes

~ 1/3 Kernmagneton, ferner positives Vorzeichen für H3, negatives für
He3. Dieser Befund erlaubt eine Interpretation der Messung von /iB durch Bloch
und Anderson.

Summary. Charge exchange is shown to give a contribution to the magnetic
moment of the three-body system in its ground state. A calculation, carried through
for the case of the symmetrical pseudoscalar meson theory gives a value of ~ 1/3

of a nuclear magneton for this exchange moment. The sign is positive for H3, negative

for He3. This result furnishes an interpretation of the value of /iHz measured
by Bloch and Anderson.

§ 1. Introduction.

Recently, the ratio of the magnetic moments of the H3-nucleus
and the proton has been measured1) by the nuclear induction
method, with the result that

HH 1.0666 pip,

or, taking a value of 2.789 n. m. for the proton moment :

piHs pip + 0.186 n.m..

A value /%3 piP was to be expected if the H3-ground state were
a pure 2S-state. This is not quite true, since the spin-orbit coupling
(tensor force) gives rise to small admixtures of higher states (2P,
4P, *D). But these admixtures can hardly be made responsible
for the excess piEt—piP, on the contrary, as was shown by Sachs
and Schwinger2), they even reduce the magnetic moment*).

*) Recently R. G. Sachs3) has discussed the conditions under which the
admixtures would be able to give the correction required by the experiment. This
correction can only be obtained with the help of the 2P- *P interference term,
but this requires that the 2P and 4P admixtures are relatively strong (20% and
8%, respectively). However, such an assumption can hardly be justified.
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However, Schwinger's phenomenological formalism4) is not
fitted to the description of the charge exchange phenomena connected

with the interactions of nucléons. On the other hand, these
phenomena are known to give rise to exchange moments5). In
the case of the Deuteron, the magnetic exchange moment vanishes
on account of the symmetry properties of the Deuteron ground-
state. It will be shown that this is not the case for the ground
state of the three body system.

The following investigation will be carried through for the case
of the symmetrical pseudoscalar meson theory which, apart from the
fundamental r~s difficulty in the tensor force potential, is known
to give the best qualitative agreement with experiment.6) Below,
we shall presuppose that the influence of the spin-orbit coupling is
small and does not mix up the ordering of the energy levels as given
by the central force approximation. It may, however, affect to a
certain degree the expectation value of the exchange moment,
since the diagonal element (28 |Mexch| 2S) will prove to be rather
small ; but we think that at present our still incomplete knowledge of
the H3 and He3 ground-state eigenfunction does not justify a more
detailed investigation. The result is therefore merely supposed to
give the sign and the order of magnitude of the effect to be expected.

§ 2. The Magnetic Exchange Moment in the Pseudoscalar Theory.

We start with the well known Hamiltonian of the symmetrical
pseudoscalar theory7):

H T È [à*x{nl (x) 7 Igrad ç,B (a)|» + A*V_ 0)}
a= 1 *

+ ^/j; T£(<r*-gH-d ?«(**)). w
_l,a

zA is the position of the nucléon A, cpx and cp2 are the charged fields
and the connection with the fields cp and cp* of the charged theory
is given by

<p l/|/2 • (<??! - i cp2) cp* 1/1/2 -(<px + i (p3).

The charge and current densities due to the fields <px cp2 are :

Qm e-(9>a9»i — 9>i <Pn)

sm e-{{?2 grad cpx - cpx grad cp2) - )ßLif£oAd(x-zA) ¦ (ç>xrf-cp2tA).
A

In order to satisfy the continuity equation

Ò 7 div s 0 (2)
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we must add to qm and sM the corresponding expressions due to
the charge of the nucléons:

Qs eZò(x-zA)-^Ì
A

s_7 e27<Ka A\.'A 1+r3
(3)

-!T) -Z
A

Equation (2) is then easily verified with the help of the relation

xA i [H, rf] 2 ]/Ân f ¦ aA {grad q>x (zA) rA — grad <p2 (zA) rA}. (4)

The magnetic moment operator is given by

M ~fdv(xXs) =~Jdv(xXsM + sif) MM + MN. (5)

This expression is of course not translationly invariant ; it can, however,

be split into an invariant part (viz. a function of the relative
position of the nucléons alone) and a part due to the motion of the
center of mass of the system; this latter part is of no interest to us.
The evaluation of MM is most easily accomplished in the momentum

space, where the Hamiltonian (1) reads:

h yZ I'^fc{p.(fc)-p«(-fc)+fc.ï«(fc)-««(-fc)}

+ J^[d3kZ<(°A-k)-eik*AqAk); *% =>/** + &. (6)
n)/*J A, a

A canonical transformation is then performed:

H' eilwHe-^w H + if[W, H]-~f2[W[W, H]] + --- (7)

which, in a first approximation (up to terms in /2) gives a
separation of H into a free-meson part and an interaction energy
between the nucléons. The transformation function W is

W=^Zj^1\^e-i^ri(aA-h). (8)
n\

The transformation (7), (8) will likewise be applied to MM,
•which is of the form MM=M^+f. _MW. Arranging M'M according
to powers of /, we have

MM M<°>7/ {« [W, M<°>] 7 M«1*} 7 /2 j^1 [W[W, M<°>]] +i [W, M(1>]1

i¥'<°>7/-M'(1>7/2-M'<2>. (9)
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M'(°) is the contribution of the free mesons and will therefore be

neglected; the expectation value of M'W is zero since this expression
is linear in the field variables ; M'<2) is a function of the nucléon
coordinates alone and represents the so-called exchange moment. Its
evaluation is straightforward and yields

«(/-")2 \-»/„_tx,_*. I1Mexch=-^2VxrB<
2 ___¦ v" '- ' 13

A<B

zAB(zAB,aAxaB) /1+_1
r\B \ l*rAB

e-P'AB + 1/2 (zA + zBxzAB)-V(AB)\,— (aA X aB)

where zAB zA — zB, rAB \zAB\ and V(AB) is the interaction
energy of the pseudoscalar theory

V(AB) =l-(aA-aB)+ (1' + ___ + _J _V T «

—,

TAB-Zia Z ]}* Z ]-(o--o*)
'AB

With the help of the expression for the total current Su :

SM=-e(fß)*Z(rAXr\zAB-V(AB)=eZ;
A<B A 2

and with the notation zA Z + t,A, (Z center of mass of the
system) we can split from MM the part

t(ZxSm)=±Z{ZxP)$. (10)*2~ -2

*) It may be noted that the expectation value of (10) is cancelled by a
contribution from the orbital part of the magnetic moment

^orb -f 2. f*4 X ^ ^P-
Z A À

The first term gives, together with y2 (ZxSM), the expression

whose expectation value vanishes; the second term represents the intrinsic
orbital moment and the third the moment due to the motion of the center of mass.
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The remainder depends only on the relative positions of the
nucléons and it is this part which will be called exchange moment
below. Thus finally we may write

Mexch=-^27(T-XT*)3^
A<B [r

zAB(zAB,(a*xoB)) /1+ 1

r\K \ VrABAB

e'^AB+iß (t,A 7 HBxzAB)- V(AB)\, (11)

in accordance with Moller-Rosenfeld's result*).

§ 3. The Eigenstates of a System of Nucléons in the Central
Force Approximation.

In this approximation, the tensor force is entirely neglected ; the
interaction energy takes then the form

V =2J(rA-rB)-(aA-aB)-U(AB), (12)
A<B

in which, for not too small distances rAB, U(AB) is Ytjkava's
potential function const. exp(-pirAB)-r~B.

We shall first discuss in a somewhat more general manner the
properties of the eigenstates of a system with an interaction given
by (12). The Hamiltonian

A

of the system is invariant under simultaneous rotations of all spin
or all isotopie spin vectors. The quantities

and A KA K

T^ l/2£rA T2 £T\
A

are therefore integrals of motion and define the quantum numbers
S, M and T, N, M and N being the eigenvalues of S3 and T3
respectively. The corresponding eigenfunctions of S2, Ss and of
T2, Ts will be written as

gs,M an(j yjT,A respectively.

*) Note that in Moller-Rosenfeld's paper4) a different definition of 7p (tpv

<f2, ç)3) and t is utilized. Our vectors ci and x are obtained from M-R's, by a
rotation of n around the 1-axis: cpv tp2, tp3 -> tpx, — tp2, — cp3 and rx r2 t3 -> Tx, — t2,
— t3. Accordingly, in M-R's paper the'nucleon charge is represented by y2. (1 — ré).
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As is well known8) there exists for any pair of quantum
numbers S, M or T, N a set of functions £a (a 1... hs) and »?„ (pi

1.. hT) which are transformed into each other under permutations
of the spin or isotopie variables and which generate an irreducible
representation of the permutation group. Let P be the permutation
which transforms the set of variables 1,2, n into px, p2, p„;
then we have

P Sa (1.. -n) |_(Pl p2.. .pn) £ D'l(P) iß(l...») (13)
ß

and analogously for n. The representations D8 and DT are uniquely
determined by 8, T and the number n of particles. (Equivalent
representations are considered as equal.)

The hs-hT products |a • rjß are likewise transformed into each
other under permutations simultaneously applied both to I and n.
The representation DsxDT thus induced is in general a reducible
one. Its decomposition into irreducible parts

DsxDT 2Jcnr-Dr (14)
r

is obtained by means of an orthogonal transformation 77^ e, which
in the /i,s-/iy-dimensional vector space of the fa rjM sets up a new
basis

a n

The olj. give the number of irreducible representations Dr contained
in DsxDT and are expressed by the formula

*r ^ZcXs(c)XT(c)Zr(c) (16)
c

in which #(c) are the group characters of the representations Ds,
DT and D1, c the class of permutations and c the number of elements
in c9).

Let P be the symmetry class reciprocal to r, defined as follows:

D'xß (P) ôp D£ß (P) ; òp=±l for £edn} permutations.

Let then Ff (1.. .n) be a set of functions transforming under
permutations according to Dr:

PFr(l...n)=Fr(Pp..p)=YDl(P)-FÎ(l..,n). (17)
c

Then it is easily verified that the sum of products

W 2JFf(l...n)-0f(l...n)
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is antisymmetrical under simultaneous permutations of the
arguments of F and 0.

In application to our problem let F be a function of the space
coordinates alone: Fr Fr(xx x2 xn); then

yr 2JFf(xxx2...xn)-0r
e

is antisymmetrical and the most general function satisfying the
exclusion principle is therefore

y^-ZFfi*! *«• • -*j-0f(i- • ¦»)• a«)

If we introduce the matrix elements of H with respect to the
variables r and £ :

H0r jr(r's'\H\rE)-0L,
r: e'

we obtain the following Schroedinger equation for the F:

Z{(Ve' \H\re)- (r's' \ l \ rs)-E}F';(xx x%. ..xn)=0. (19)
r, e

The matrix elements (Ve' \ H | re) are easily evaluated with the
help of the relations

(aA-aB) =2PSAB-1\ I ab
,20)

(rA-rB)=2PlB-l
where PA(P indicates the transposition (1 A B n) ->
(1 B A n), applied to the variables of I (rj). Employing
(15), we obtain

r2

A
(Ve'\H\re)=Z^Ar(Ve'\l\re)

+ZU(AB) i £ 77^ tU^ (2 Df (P^) - Ó, J • (2 D* (P^) - oJ).

This expression can be simplified into

Z4m (F'£' I11 ^ +Ì7 U(^B){(4D?. (P^) 7 Ôc,e)-(V\1\D
A ZM A<B '

-HE U^,.^,,' üfa (P^ + 2" UU, PZ, e D?„ (Pab)\ 1
• (21)

[aßp ocpv J I
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Provisional information concerning the ordering of the energy
levels may be obtained from (21) by forming the mean values of
the diagonal elements of the potential energy V for a definite class :

(r | V | P) 1/V 2 (^e i "f71 re). We obtain
e

(TJvyr)=2Jü(AB).
A<B

{i+j~xr(cì)~^Zxr(P)[xs{P)xT(P-PAB)+xs(P-PAB)yAP)]\.
(22)*)

If hr 1, formula (22) may replace (21) for calculating the diagonal
elements of V.

§ 4. Application to the Three-Body System.

The quantum number S (T) may take the values 1/2 or 3/2. The
corresponding states will be designated as spin (charge) doublets
or quartets. The latter are symmetrical states, viz. invariant under
permutations of the variables, whereas the doublet states induce
the two-dimensional representation of the permutation group S3.
The three irreducible representations of this group will be denoted
as follows:

I: the symmetrical,
A: the antisymmetrical,
A : the two-dimensional representation.

In table I we give a list of the corresponding characters x'-11)

Table I.

Class c xHc) XA<0 XA(C)

Ctf identity
c2: (12) (13) (23).
c3: (123) (132)

1

3

2

1

1

1

1

-1
1

2

0

-1

*) Another formula for a rough evaluation of (F\ V\T) is obtained from
replacing TJ(AB) by U(0). (Long-range approximation, see e.g. Feenbebg and
Phillips10).) In this case, the formula

ZDL(P) oßxXr(c)-clhr
Pec

may be applied to (21) with c c2 {Pab)> we ^us obtain

(r'e'\v0\re) ir'e'\i\re)-u(0)^L^h+±^-2=sj-=
2 ^ fop fl$

-2 h m
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The reduction of the product (14) with the help of (16) gives for
S T 1/2 (Ds DT A): AxA I + A + A. The following
six cases will therefore be considered:

Table II.

Case: «i «2 «3 h \ c

r / A A A A /
r A I A A A A

8 1/2 1/2 1/2 1/2 3/2 3/2

T 1/2 1/2 1/2 3/2 1/2 3/2

(A is self-reciprocal, viz. A is equivalent to A.)
Let us now evaluate, for the six cases mentioned in table II,

the mean values (P | V | P) according to (22) :

ax): (I\V\I) + 5-£V(AB)
az): (A\V\A)
a3): (A \V\A)
bi-2- A \v\A)

¦S'2JU(AB)
A<B

l-ZU(AB)
A<B

¦1-£V{AB)
A<B

(24)

c): (I\V\I) + l-£U(AB)

A more detailed investigation requires a special choice of the I
and n. Expressed in terms of the eigenvectors a. (A) and ß (A) of
aA 12) and of the rotational invariant a(AB) x(A) ß(B) — ß(A)
ct(B), they may be written as follows:

S -J: l3/23/2=a(l)«(2)a(3)
|S/2i/2 1/j/3-. [a (1) a(2) ^ (3) + a(i) ^ (2) a (3)

7/5(1) a (2) a (8)], etc.

S ~: i\23/2 l/j/6 • (a(23) a (1) 7 a(13) oc (2)) (25)

|i/2i 2 i/j/2.a(12) a (8)

fi«-i« lye .(0(28) /5(1) 7 a (13) /?(2))

|f"1/2= 1/1/2 -o(12)j9(8).

The isotopie spin functions rj are built quite analogously.
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The matrix 77^1>, can now be determined : 77 is the unit matrix
except for 8 T 1/2. We shall give a list of the new basis vectors
for this special case:

01 1/1/2 • (Ìx rjx + h %) 0{ 1/1/2 • (- h rix 7 l2 rjz) I
,n„.- ¦ (26)

6H 1/1/2 • fo % - |a ,,i) 6*2 1/1/2 • (li % + h nx) I

With the help of (26) all matrix elements of V can be determined.
We need not go into the details of this investigation; we wish,
however, to emphasize the following important result: As may
be seen from table I, the character %A (c2) vanishes, a fact which
immediately follows from the self-reciprocity of A (compare (17)).
On account of the orthogonality of the representation matrices
Daß (P), this is equivalent to the statement

K(Pab) -K(Pab) j

K (PAB) - 7 Di (PAB) |

With the help of (27) we easily verify that the vector 0A (26)
is an eigenvector of the operator (aA ¦ aB) (rA ¦ rB) :

(aA-aB)-(rA-rB) 0A - 3 0A.

The antisymmetric state a2 is therefore an eigenstate of the
system. According to (18) the corresponding space function F (xx x2
x3) is symmetrical in 1, 2, 3. Because the kinetic energy takes its
minimum value for space symmetrical states and because of the
low value of the potential energy (24) for a2, we conclude that a2

represents the ground-state of the three body system.
This assumption is strongly supported by the values of the spin

contribution to the magnetic moment of the system:

Km Z °A (I/2 • (Mp + /»s) + 1/2 • (f*P - t*s) <)
A

- (/*_> + Ps) ¦ S + 1/2- (pip- Hn)Z°A rt - (28)
A

In order to evaluate the diagonal elements of Mspin with respect
to S and T, we note that

(S|^|S) (a|e^0S)|a')-£
and (T\rf\ T) (pi \ qa(T) | pi')- T3 1S)
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The matrices qa are calculated with the help of (26). We then
obtain

{ST a p \oArA\ STx'pt') (ol\qa (S) | oc') ¦(f\qa (T) I /0 * § T3,

and from this
(STre\]ToATA\ ST Te)

STz.£z;u£lhtuzl,i,{ST*r \EaA<\sr«y).
a a' j-// _L

The results are given in table III: (Supposed L 0, N — 1/2.)

Table III.

Case ZCATA
A ò Magn. Moment

Numer. value
(n. m.)

ax

«2

»3

c

20/3-8 T3

-4-ST3
±ß-ST3
4/3- S T3

4ß-ST3
4/3-sr,

- 1/3 Hp+ 4/3 fly
Up

1/3 np+ 2/3 ^
1/3 pp+ 2/3 /^

/-P+ 2 //jy

i"p+ 2 i"A-

- 3.478

+ 2.789

-0.344
-0.344
-1.033
-1.033

From table III we see that all cases besides a2 may definitely
be ruled out.

§ 5. The Expectation Value of the Exchange Moment.

The magnetic exchange moment (11) consists of two parts with
different symmetry. If we take into account the results of § 4, we
see that the expectation value of the part containing (£,AjrÇ,BxzAB) •

V(AB) vanishes; we can therefore restrict ourselves to the expression:

k^= "-If-Z^r^i^-^y^-^ilA X

r2rAB l1*AB

(aAxaB)\e-^rAB.

Our purpose is first to evaluate the matrix elements of M'exch

with respect to the variables S, M and T, N:
The vector products (aAxaB) satisfy the relations

[(aAxa\,Sl\ i-(aAxaB)l
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viz. the commutation rules of a vector; their diagonal elements
with respect to S are consequently of the form:13)

(Soc | (aAxaB) | Sol') (a | AAB(S) | a') • ,§.

The matrix A is easily evaluated and becomes, for S 1/2:

(1 | _4(y2) | 1) (2 |J.(i/2)|.2) 0,

(1 | A (%) I 2) - (2 J A (i/2) | 1) 4*/]/8, l '

for each AB 12, 23, 81.

Taking into account the complete symmetry in the description
of the spin and the isotopie spin, we have at once

(rA*|(^xT*),|ry) c«|^(T)|/)-r8.
The evaluation of zAB-(zAB, (aAxaB)) may be carried through in

the following manner: We introduce the total orbital angular
momentum L and the total angular momentum J L + S. Then
(zAB, (aAxaB)) is evaluated by means of the well known formulas
for the scalar product14) and finally the diagonal element of the
complete expression with respect to L, S, J is formed. We thus
obtain for L 0, J S 1/2

(JLSa | zAB-(zAB,(aAxaB)) \ JLSoc')i=0 A r2,, (oc | A (%) | oc')• J

and therefore
s=y*

3

(a v | M' | a' v')

-î^(a\A(y2)\a')-(v\A(y2)\v')-T3JZ:U~ 2)e-^AB.
Z-" A<B d V ß AB I

In terms of the new variables P_, the matrix elements of M' are :

(P_ | M' | Ve') =££ U^. 77?;, (av | M' | a'v').
a a' v v'

We are interested in the expectation value of M' for the ground
state of the three body system:

{M'}aT -^)2T3J2,i;(a|_4(y2)|a')-(v|_4(1/2)|v'" aa' v»'

UtUAv,.fdv\Fi(123)\2Z±(-J 2
J aZb A \ VrAB

(30)
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From the UAV as defined in (26) (and from (29)) it follows

EE Ut ^v (« I A (%) I a') • (v | A (VL) \v')=~ 16/3,
aa' vv'

and therefore
/M \ =4- „3 pt
{Mexch}av=+l\e-^LNI.j

du IP11 (123) t2 (— 2 •«-"'». (31)

In order to have {-Mexch}av in units of nuclear magnetons, let
us introduce the ratio y of the nucléon mass M to the meson
mass pi. Then we have

e^=2y(fpi)2-^ 2yij^)2

nuclear magnetons. Considering still J S 1/2, we obtain for
the exchange moment in nuclear magnetons

ttexch= + iy(ffiYNI (32)

N takes the values 7 1/2 (He3) and — 1/2 (H3); I is given in (31).

Numerical evaluation

The space function F is supposed to be symmetrical in the
arguments xx x2 x3 and to represent an S- State. We are only interested
in the order of magnitude and the sign of the exchange effect; the
choice of the simple trial function

F(123) const, exp (—f (r22 7 r\3 7 r\3))

will be quite sufficient for this purpose. Since nothing precise is

known about the best value for a, we calculate the integral I for
different values of (pi2/a). By elementary methods we find

1 .-|/6« |
4 -,/LÄ (g 2 ft2

0 is the Gauss error integral. The numerical values of I are:

^2/a: 0.5 1.0 2.0 3.0 4.0 5.0 7.0 10.0

I: 70.132 -0.142 -0.227 -0.224 -0.205 -0.183 -0.156 -0.131

As to the values of y and (fpi)2, the question arises whether the
meson mass should be taken from cosmic ray data, which favour
a value near 200 mel15), or the value obtained from proton-
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proton scattering16), which give pi 327 mel and (Jpi)2 1/4.
This larger value pi has again received some interest since the connection

between cosmic ray mesons and the mesons responsible for the
nuclear forces has become somewhat questionable17). For a meson
mass of 200 m (fpi)2 would be somewhat smaller, say 1/10. y(//^)2
varies thus from ~ 0.9 for the smallest up to ~ 1.4 for the largest
mass considered. Large meson masses, however, involve larger
values of /<2/a, because the "radius" of the H3-nucleus will be deter-

/*BXthlYUltf

12 ;¦

u'lx

Fig. 1

mined rather by the binding energy than by the extension of the
potential well, and pi2/cn may thus vary say from 2 up to 5. A glance
at fig. 1 shows then that the variation in the value of y (fpi)2 is
nearly compensated by a corresponding diminution of I (pi2/a).
According to (32), we finally obtain for H3 (N —1/2) :

i"oxch - 0.3 nuclear magnetons,

a value which just fills up the gap between Bloch's value of
2.975 n. m. and the value calculated by Sachs and Schwinger2)
without charge exchange and for a P-state probability of 4%: pi
2.71 n. m.

The magnetic moment of He3 is expected to have the value
— 1.86 n. m. — |/Mexch|, viz. — 2.1 n. m. (compare2)).

The author wishes to thank Professor Pauli for suggesting this
problem to him, and also to thank Dr. R. Jost for many stimulating

discussions.
Zurich, Physikalisches Institut E. T. H.
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