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Absolute Selection Rules for Meson Deeay

by D.C. Peaslee*, ETH. Zürich (Switzerland)

(18. VII. 1950)

Introduction.

The object of the following discussion is to determine a certain
class of selection rules on the spontaneous decay of a meson, or a

general system of any sort, into several end products. There are
two classes of such rules: i) those depending on the explicit type
of interaction assumed and on the order of the matrix element
involved1)2) 3) 4); ii) those depending only on the transformation
properties of the wave functions for the initial and final states of
the system, regardless of the intermediate states and the type of
interaction5). The first class contains only "relative" selection
rules, which can be removed by going to the next higher order
in a perturbation theory calculation. In meson theory, where the
perturbation approach is by no means certainly justified or rapidly
convergent, these selection rules may have a very weak effect. The
second class contains exclusively "absolute" selection rules, the
validity of which does not depend on the strength of the coupling
constant or any other details of the calculation. The important
difference between relative and absolute selection rules has not
been made clear in the literature, and they have often been treated
as if they were implicitly equivalent. Therefore the object of the
present paper is to explore the complete set of selection rules of
class ii), so that any given selection rule may at once be classified
as relative or absolute and accorded the appropriate amount of
respect.

The derivation is similar to that of reference 5 but is expressed
in a simpler and more pictorial form, which can readily be
generalized to all possible cases. It turns out that selection rules exist
only in the very simplest cases, as might be expected: when the
final state is complex, it is generally possible to find a component

*) AEC Postdoctoral Fellow.
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corresponding to any possible symmetry of the initial state. The
derivation attempts to be plausible rather than rigorous, but follows
exactly the same lines as could be used in a precise treatment. The
outline followed is to discuss as examples some special cases, which
happen to include most of the selection rules; with this as
background, it is then easy to generalize and see that there are few
additional restrictions.

1. Two-photon decay.

As a first example, suppose that the final state consists of two
photons. In the rest system of the original particle, they must have
equal and opposite momenta, the direction of which can be defined
as the z-axis. For convenience, consider all photons to be circularly

(-z) •?»»s£/v>/w • wftwww*- (+z)
r L

I R

I L
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IR

IL

rR

polarized; then the final, two-photon wave function can be of
4 types, illustrated in the diagram, where I and r signify left and
right circularly polarized, and the capital letters L and B refer
to the photon traveling in the ± z direction.

Now photons are emitted in states such that their component
of angular momentum jz along the direction of propagation is

always jz fa 1, regardless of the total angular momentum j carried
by the photon; this jz component is associated with the circular
polarization of the quanta. The total ^-component for both photons
is thus Jz fa. 2 for rL and IB, as seen from the diagram, where
the spins are parallel; and Jz 0 for rB and IL, where the spins
of the two photons are opposed. Since the total angular momentum
J of the system must remain a constant during the decay process,
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we obtain a first lemma: (i) photon functions rL and IB occur
only for J > 2, where J is the spin of the initial system.

For further lemmas, it is desirable to combine the photon wave
functions into symmetrical and antisymmetrical forms:

0+ rB + lL 2+ rL + lB
0- rB~lL 2- rL-lB (1)

where the numbers 0, 2 denote the lowest value of J for which the
combination occurs.

Now exchange the ± z and — z directions by rotating about
180°, so that all angles 0 measured from the z-axis are replaced
by (tc—0). Under this transformation I*—*L, r<—* B, as may be
seen by turning the previous diagram upside down. Then 0+, 0~, 2+
<—? 0+, (fa, 2+, respectively; but 2_ <—? — 2~. Furthermore, since
both J and Jz are conserved throughout the reaction, the dependence

of the original system on the angle 0 is y^z (0) y°j =2 (0)
where Y is a spherical harmonic ; and the spherical harmonics have
the property that y°j±2 (tc — 0) (— 1)J y°j±2(0). Thus we obtain
a second lemma : (ii) only the 2~ photon function can occur for odd
J; and only 0+, 0~, 2+ for even J. From (i) and (ii) the first selection

rule immediately follows:

J 1 is completely forbidden for two-photon decay. (I)

That is, two-photon decay is forbidden for both vector and pseudo-
vector mesons.

A third lemma can be obtained from consideration of parity,
which is also conserved from the intial to the final state. Under
the parity transformation (x, y, z fa —z, —y, —z) the wave function

of the original system is multiplied by P, where P ± 1

or — 1 according as the parity is even or odd; and the photon wave
functions transform as I *-¦* — B, r *-¦* — L. The third lemma is
therefore (iii) for systems of even parity, only the 0+, 2+ and 2~

photon functions can occur; for systems of odd parity, only the
(U photon functions can occur. From (ii) and (iii) comes a second
selection rule :

odd J, odd parity is forbidden for two-photon decay. (II)

Rules (I) and (II) overlap only for J 1, odd parity (vector meson).
We may also consider the final photons as plane polarized, the

correspondence to the circular polarization being given by L
Px + i Pv B*, I px — ipv r*, where the p, P are all real and

may be symbolized as in the accompanying diagrams.
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These photon wave functions are designated as | J or _|_ to indicate
the relative orientation of the planes of polarization. In terms of

Pu py

1

the previous photon wave functions, we have

0+ IL ± rB 2 Be {IL} 2 (pxPx ± pyPy) ||

2+ 2 E, {rL} 2 (px Px -pyPy) \\

0- 2 Im {IL} 2 (px Py - p, P„) ±
0+ 2 Im {rL} 2 (Vx Py ± pv P.) _!_ (2)

combining this with lemmas (ii) and (iii), we have a third rule

for 2-photon decay, the photons are |[ for even J, even parity; they
are ± for even J, odd parity or odd J, even parity. (Ill)

2. Three or more particle decay.

It is next of interest to see how many photons must be present
in the final state to permit decay of the systems forbidden for
two-photon decay. One can immediately guess that there will be

N* (1)
,4.VAWN^ + ZJ

Y
no restrictions for more than two photons, from the following argument

: when only two photons are present, a very special symmetry
obtains in the final system because the photons must have equal
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and opposite momenta; when three or more photons are present,
the necessity for this symmetry vanishes, and with it all the selection

rules. For example, consider three-photon decay in the center
of mass system of the original particle; the z-axis of quantization
is taken as the propagation direction of the first photon. Then this
photon can have only jz + 1 for its angular momentum components;

the other two, however, can have jz 0, A- 1, fa j2, A- j3
if they are of total angular momenta j2 and j3. Thus there is no
lemma corresponding to (i) above.

Furthermore, since the total Jz j2z ± j3z -\-1 is conserved throughout
the reaction, the wave function of the original system can

have the angular dependence yf (0) where \M\ < J. But on reversal

of the 2-axis, yf (tc — 0) (— 1)M+Jyf (0), so that both signs
are possible for the original system under this rotation, and no
selection rule exists corresponding to lemma (ii) above.

The same is true for considerations of parity: the final photon
state has a parity dependence given by yP y™"-y™ but when (x, y, z)

fa (— x, —y, — z) we have î/™ fa — 1)J yf, regardless of m.
Therefore for any system of original spin J, it is only necessary to
be able to write the vector sum J jx + j2 ± j3 so that jx + j2 ± j3

{^d } to allow decay with {^™} parity. Such vector sums
are always possible for any J, so that no parity selection rule (iii)
exists, either.

The consideration for three photons can obviously be repeated
for any larger number; furthermore, they are also true if one or
more of the photons in the final state are replaced by any other
types of particle; thus we have the general conclusion

the symmetry of the final state imposes no selection rules for the
decay of a system into three or more particles of any type, including
photons or other massless particles. There is only the general
conservation rule that the total number of half-odd spins in the initial
and final states together must be even. (IV)

Therefore the statement in reference 2 that three photon decay
is forbidden for the pseudovector meson must be a "relative" selection

rule of class i) and not an absolute rule of class ii). One expects
that three-photon decay is actually possible for the pseudovector
meson, but that the first non-vanishing matrix element contains
the nuclear coupling constant as g4, rather than as g2.

54
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3. Decay into two scalar particles.

There remains only the question what selection rules, if any, arise
when the final state consists of two particles, not both photons.

In the center of gravity system they have equal and opposite
momenta, taken to define the 2-axis. Suppose first that the particles
have intrinsic spin 0 and denote their wave functions by a and B,
where the different letters indicate distinguishable types of wave
functions, and the letters are capital or lower-case according to
the direction along the 0-axis, as before.

The analysis for photons can be copied exactly. Both a and B
have jz 0 (since the expansion of their wave functions in spherical
harmonics contains only y® terms), so that for the whole system
J > 0 and there is no restriction like lemma (i). We form the
symmetric and antisymmetric combinations

cp+ aB ± bA, cp__ aB — bA

On rotation of the 2-axis by 180°, a ¦>—* A, b^^B, so that thus (iv)
even J decay by <p+, odd J by cp_. For the parity transformation,
a<-^ APa, b*-^BPb, where Pa PA and Pb PB are the internal
parities of the respective particles, and can have the values fa 1.
Thus cp± <—>¦ fa PaPb cp±, and if the parity of the original system is
P, the corresponding lemma is (v) the system decays by cp± according

as PPaPb A- 1. Since both (iv) and (v) must be compatible,
they combine to yield the selection rule,

decay into two spin 0 particles is allowed only it P (-l)J PaPb (V)

This rule has direct application in nuclear physics; consider for
instance the photo-disintegration of a light nucleus of type A 4n
into an a-particle and A 4 n — 4. Such nuclei have ground states
of spin 0, even parity; thus P and J of the excited nucleus before
emission of the a-particle will be determined by that of the y-ray.
Now for electric multipole transitions P (— 1)J ± 1 for magnetic
multipole P (— 1)J — 1 ; and since the internal parity of an
x-particle is Pa ± 1, rule (V) implies that if the residual nucleus
has spin 0 and Pb 1 (which is likely), the y-ray transition must
be electric multipole, and if the residual nucleus has spin 0 and
P„ — 1 (unlikely among low levels) the transition is magnetic.
Thus the relative probability of magnetic multipole disintegration
is especially low for these reactions.
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Rule (V) can be further specialized if both particles are identical,
a physically rather probable situation. In this case a b, A B,
so that cp- =0 and we must have J even according to (iv).
Furthermore, Pa Pb, so that PaPb Pa2 1, and thus P 1

according to (v). Thus for this case

decay into two identical spin 0 particles requires P (-1 )J +1 (Va)

This last is the well-known selection rule for the decay of Be8 into
two «-particles.

4. General two-particle decay.

In general the possibility must be allowed that two of the
particles (either the two decay particles or the original system and one
decay particle) have half-odd spins. For the present considerations,
the transformation properties of such wave functions are sufficiently
given by non-relativistic approximation in which the Pauli spin
functions or their analogues for higher spins are employed. The two
half-odd spins can be combined to give expressions with only integral

indices, as before. The particle momentum is taken along the
2-axis, and the large and small letters are used for wave functions
as in section 3. Now, however, each particle can have z-components
of total angular momentum \jz\ < S, where S is its intrinsic spin;

B-
(-') < C— • —C > (+z)

this comes from the yf of its orbital motion compounded with the
intrinsic spin, which may have any component in the ^-direction.
Choose wave functions corresponding to a particular value ma=mA
for \jz\, and distinguish the two possibilities of jz fa ma as a+
and a~. Then from two essentially different wave functions a, b,
with ma, mb 4= 0, form the 8 independent final wave functions

rppp a? B" fa Ap ¥ (2)

where p, q fa. Now corresponding to lemma (i), we have for the
original system

Jz fa | ma ± mb | pq +
Jz ± | ma — mb | p q — (3)
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For rotation of the z-axis, note that a- ¦>—>A~, ò-^^Pfa as is
seen by rotating the diagram ; thus ipvp ^^ fa ip~p ~q. To form
invariant functions under this rotation, take

Xz+ (P±+V^v~~q) and (v-~wzp~g)
xz-^(wpq + w~v~") and (v>+ — w~p~t) (4)

where %zM^-+ ± Xz + mlder the transformation. The wave function
of the original system transforms as y^z (0) <—»¦ (— l)J+Jz yJz fa — 0).
Thus %z± is associated with even and odd values of (J ± Jz), respectively.

This is a very weak restriction, since for decay particles
with non-zero spin Jz can generally have several values; thus any
value J can be associated with %z+ or %z_ by choosing the appropriate

Jz.
Under parity transformation, a± +-^ Pa A±, b± ^^ Pb B± so that

cpi^-r-r-p PaPbf7p. Using these three transformation properties,
we can classify the wave functions (2) individually:

J, I m„ ± mJ J+ J„ I m„ — mJ J7

+Xzt (y}l+ + w+~) -Xzt (ft~+f7+)
+Xz- (wX" —v>+~) ~Xz- (wX~ — v++)
+zfi (vt+ -WZ-) -xU (w-/_-xz+)
+Xz- (f-: +w- -Xz- (y>- +f-'1') (5)

where +% and ~% are associated with the large (J/) and small (J~)
values of Jz, respectively, and under parity transformation %p±*—?

±PaP,XP±-
Consider the wave functions (5) : there is in general no restriction

on ~% since it is always possible to choose \ma — mb\ equal to the
minimum J that could be possessed by the decaying system (0 or f),
regardless of whether half-odd spins are present or not. The only
exception occurs when the decay products are a photon and a spin
0 particle. The photon is a transverse spin 1 particle, which has the
special feature that ma= 1, but ma 0 is excluded*). The scalar
particle has only mb 0 so that for this special case J~ 1, and

~X is associated only with J > 1 for the original system. The same
is obviously true of +%, which leads to the trivial rule that

for J 0, decay into a photon and a particle of spin 0 is forbidden (VI)

*) It is true in general that no massless particle can have more than two independent

spin components (cf. M. Fiebz, Helv. Phys. Acta 12, 3 (1939), but these

components are selected only by a specific rule for each case. For the photon, this
rule is transversality ; but in general it must be left indeterminate, so that massless
and massive particles are treated here in the same way.
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There are a few more restrictions on +%: (vi) it is forbidden for
two photon decay if J < 2, for a photon and a half-odd particle
if J < 3/2, for a photon and an integral spin particle if J < 1,
for two half-odd particles if J < 1. Another restriction comes from
the fact that if J+ 0, then ma mb 0, so that a+ a~ a0,

etc. From (2) and (4) it follows that (vii) for Jz 0, +xf,'+ +Xz°p 0.

None of these restrictions is sufficient to provide a new selection
rule, since there is always one of the 8 wave functions that will
be allowed for any given initial state. A new selection rule would
be obtained only if the number of independent % were reduced.
The most general way of achieving this is to assume both particles
identical; then the initial system must, of course, have integral spin.
Then we have a b, A B, and

ft' =yC~ 0, ftp Pf± + (6)

as may be seen by insertion in (2) ; and hence from (5)

+zf; +zf: -zfi -zf: o (7)

where P is now the parity of the original system, since PaPt>

Pza 1. From (7) we have the immediate lemma: (viii) decay into
two identical particles is permitted for odd parity only with ~~Xz+ >

for odd (J ± Jz) only with +XzP- Even with the reduction to 4

independent % no selection rule is obtained from (vii) and (viii).
Since this is the most restricted case outside of the special ones
treated in the preceding sections, we have shown that

no other selection rules besides I—VI exist. (VII)
Of course the results for two-photon decay follow immediately

from the general treatment of this section: one has only to notice
that Jz 0, fa 2, and lemmas (vi) and (viii) become equivalent to
(I) and (II). In the notation of the present section, the wave functions

of section 1 are

Z± +XÏÎ, 0^-xft (8)

To obtain the results of section 3 for spin 0 particles, we have
a+ a~ a0, etc., and hence f++ f+~ f~+ f— or hence

±XÏX-9+, -XFj-- cp_ (9)

and all other ^-'s vanish.
The author wishes to thank Professor P. Scherrer for the

hospitality of the Physikalisches Institut, and for the colloquium
discussions which instigated the present study.
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5. Summary.

The spontaneous decay of a system has been examined to determine

the complete set of selection rules that do not depend on
specific assumptions concerning the matrix elements involved.
These rules are independent of the charge, mass, and intrinsic spin
and parity of the particles involved, except as otherwise stated.
They apply, of course, to any intermediate state as well as the
final state of the system. In particular, the rules are

I) Two-photon decay is prohibited if J 1.

II) Two-photon decay is prohibited if J odd, P odd.

III) Two-photon decay is || or ± as P( - 1)J ±1.
IV) Decay into two spin 0 particles requires P — 1 )J Pa Pb ;

if they are identical, P (-1)J + 1.

V) Decay into a photon and a spin 0 particle is prohibited for J 0.

VI) All other decay processes are allowed, provided that there is

an even total number of half-odd spins in the initial and final
states.

Any other selection rules are relative, not absolute, and depend
on detailed assumptions concerning the unobserved intermediate
states.
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