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Nuclear Spectroscopy with Harmonic Oscillator Wave-Functions
by Igal Talmi*), Swiss Federal Institute of Technology (Zurich).

(20. IX. 1951.)

Zusammenfassung: Die Beschränkung auf harmonische Zentralpotentiale ermöglicht

die Entwicklung einer neuen (vom üblichen Slaterschen Verfahren verschiedenen)

Methode zur Berechnung der Matrixelemente der Wechselwirkung zwischen
den äusseren Nukleonen im Schalenmodell, welche insbesondere auch den Fall
nichtzentraler Kräfte in einfacher Weise zu behandeln gestattet. Als Anwendung
wird gerechnet: Die Ordnung der Niveaus in der /"-Konfiguration, für einige
physikalisch interessante Fälle; die von der Spin-Bahn-Kopplung zwischen den
Nukleonen herrührende Dublettaufspaltung, und die Lage der untersten Terme
von Li7 bei Berücksichtigung von Spin-Bahn-Kopplung und Tensorkräften.

Introduction.

The discovery of the "magic numbers" and the general success
of the shell model in explaining many experimental facts about
nuclei have led theoretical physicists to work with the methods of
atomic spectroscopy in the calculation of nuclear levels. In this
attempt three main difficulties are encountered :

(a) The form of the interaction potential and its exchange character
are not sufficiently known. In addition, the form of the wave-
functions can be only guessed. These facts make necessary the
examination of various forms of the potential.

(b) There exists a lack of sufficient experimental information about
nuclear spectra. There are only a few excited states for which
the spin and parity assignments have been carried out. Whereas
in atomic spectroscopy it was possible from the vast amount of
experimental material to determine easily the several parameters
used to describe the atomic levels, here these parameters must
be mathematically evaluated.

(c) Non-central interactions, such as tensor forces, must here be
taken into account, whereas in atomic spectra such interactions
give a negligible small contribution.

*) Hebrew University, Jerusalem, Israel.
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Thus, the Slater method, used in atomic spectroscopy, is not
practical in nuclear spectroscopy, because :

(a) one must work with different potentials, each of which must be

expanded in a series of Legendre polynomials, for which the
coefficients are usually complicated functions;

(b) this fact makes impractical the calculation of the matrix ele¬

ments, which now must be completely carried out; and

(c) for non-central interactions the method looses even its formal
simplicity and becomes very much involved.

In the first part of this paper an alternative method is suggested
and developed. Although this method is confined to the use of
harmonic oscillator wave-functions, this limitation does not seem to
be too serious in view of the fact that the form of the wave-functions
cannot be determined if the interaction is not known. We use these
wave-functions only as a model in order to learn the results for
various types of interactions. That our choice of wave-functions is
reasonable is seen from the rough agreement of the level order in the
oscillator potential with that found experimentally. In any case, one
would not expect the exact form of the wave-functions to have a
decisive effect on the results. Due to the separability of the potential
of two nucléons moving in the central field of a (3-dimensional)
harmonic oscillator in the relative and center-of-gravity coordinates,
it is possible to write the wave-functions of two interacting nucléons
as a finite sum of products of functions which depend on these
coordinates. This transformation makes it possible, when calculating
matrix elements to integrate immediately over the center-of-gravity
coordinate, of which the interaction energy is usually independent.
What remains is only to calculate matrix elements of the interaction
energy (which may be a complicated function of the relative
coordinate and of the relative momentum), in a scheme of wave-functions

written in terms of this coordinate.
After a survey of the shell model and the Slater method (§ 1,2),

the proposed method is described and discussed (§3). In § 4 the
transformation of the wave-functions from the coordinates of the
two nucléons to the relative and center-of-gravity coordinates is
considered. The Slater method can be regarded as an approximation
procedure in the neighbourhood of the long range limit, whereas our
method can serve as a good approximation method in the short
range limit, which might be looked upon as the proper approximation

in the case of nuclear spectroscopy (this point is discussed
in § 6).
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In the second part of this paper the determination of the ground
state of the jn configuration is treated. An empirical rule, stated by
Mayer1), is that the total angular momentum J of the ground state
is equal to zero if n is even, and equal to j if n is odd. This rule was
then derived theoretically by Mayer2) and Racah3) for Majorana
forces in the case of ó-type interaction, or, better said, in the short
range approximation. A few cases, however, were found experimentally

where this rule does not hold. Kijrath4) and others have
suggested that these deviations could be explained by considering the
effect of the finite range of the forces. It has already been pointed
out by the author5) that potentials more singular than that used by
Kurath give different results. With the method described in this
paper this problem can be treated quite generally. After the
examination of several interaction potentials it can be concluded that
for physically admissible values of the parameters (range of the
forces and extension of the wave-functions), the order of levels is
that given by the short range approximation. The break down of
the above rule may be due to perturbations from other configurations
or to the action of tensor forces.

In § 5 we present the problem and show how our method may be

applied to obtain directly the values of the energy levels which are
already calculated in the Slater method. The dependence of the
results on the form and range of the potential is treated in § 6 for
the (d5/2)3 configuration. In § 7 the configuration (/7/2)3 is treated
and discussed. The configuration (gf9/2)3 is treated in § 8. In several
nuclei in which these configurations appear (according to the shell
model), the spin of the ground state is not that predicted by the
77-coupling scheme in the short range limit. These cases are especially
interesting as they may give direct information about the nuclear
interactions (in contrast to the other odd-even nuclei whose level
schemes have been classified, in which only the states of the single
nucléon are observed, thus giving information about the central
field only and providing no direct information about the nuclear
forces).

The third part of this paper deals with mutual spin-orbit
interactions. An interesting problem is whether the spin-orbit interaction,
introduced by Case and Pais6) in order to explain the results of
scattering experiments, can give for heavier nuclei sufficientsplitting
between the states j I + 1/2 and j I — 1/2 (of a single nucléon)
to satisfy the requirements of the shell model. We state the problem
and calculate matrix elements of the mutual spin-orbit interaction
in § 9. A few cases of a single nucléon outside closed shells are treated
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in § 10, and the resulting doublet splitting is calculated. With reasonable

values of the parameters an order of magnitude of a few MeV
is obtained. The results are, however, very sensitive to the nuclear
radius in the interesting region.

In the fourth part of the paper the Li7 nucleus is discussed. In
this nucleus only one excited state has been found in the energy
region between the ground state and several MeV. As early experiments

showed that this excited level has a compound nature, it was
suggested by Inglis7) that it may be composed of the four excited
levels of the //-coupling configuration (p3/2)J- V%ii p which may
perhaps coincide (but he was not able, using only central forces, to
obtain such a coincidence). Our method was used to take account
also of tensor forces and to check whether their contribution may
bring coincidence of those excited levels. The (p3/2)^ p3/2p configuration

is treated in § 12 for the case of central interactions with the
various exchange operators. The term values were calculated by the
sum method combined with the use of the quantum number of the
total isotopie spin. In § 13 the matrix elements of the tensor forces
interaction for this configuration are calculated. The results (§ 14)
show that, for reasonable values of the interaction parameters it is
possible to obtain such a coincidence.

As recent experiments have shown that a spin 1/2 for the excited
level is compatible with the known facts8), the natural explanation
arose that the two lowest states are the components of a 22P state
(in LS-coupling). LS-coupling for Li7 is not in contradiction with
the shell model, as Li7 is a light nucleus; it is believed that only for
heavier nuclei does //-coupling take place. It is known that neither
the Thomas interaction nor the magnetic spin-orbit interaction can
give sufficient splitting between the.components of the 22P ground
state. The splitting which results from the Case and Pais interaction
is calculated for the 22P state of the configuration p% pP (§ 15). The
result is of the right order of magnitude but the splitting obtained
is again very sensitive to the nuclear dimensions.

I. The Method of the Harmonic Oscillator Wave-Functions.

§ 1. The shell model.

The term "nuclear spectroscopy" is well defined in experimental
physics ; it means the measurement of nuclear spectra, their classification,

and level assignment. On the other hand in theoretical physics
this term does not usually mean "the theory of nuclear spectra",
but is more limited. It is mostly used in the sense of "the use of
the methods of atomic spectroscopy in explaining nuclear spectra".
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In the past many attempts have been made to apply the methods
of atomic spectroscopy to the calculation of nuclear energy levels.
Meanwhile more experimental material has been gathered,
especially in the region of high excitation energies, and the theories which
successfully explained these facts were statistical in their nature.
Only in the last few years has it become clear that there are regularities

in the nuclei which are not of a statistical nature (magic
numbers). Various "shell models" (which are in fact the former Hartree
approximations) have been proposed, the most successful of which
is the one based on the strong spin-orbit interaction1)9). This model
does not only explain the magic numbers and the spins of the ground
states of nuclei, but can also be applied to the classification of level
schemes in the low energy region10). It appears that experiment now
forces the theoretician to accept a theory which he earlier abandoned
and for the validity of which there are not yet sufficient theoretical
grounds.

The basic assumption of any shell model is that the average field
which acts on a single nucléon can be approximated by a central
field in which the nucléon has a definite state (characterized by
quantum numbers n and I). The nucléons occupy the lowest states
and may form closed shells. A magic nucleus is a nucleus which
contains closed shells only. The characteristics of the ground state
are determined by the interaction of the nucléons outside the closed
shells. This interaction energy is usually taken as a perturbation on
the zero order energy, which is the sum of the energies of the single
nucléon in the central field. The zero order energy is the same for
all the states of a given configuration (i.e., the nucléons outside
closed shells occupy definite states of the central field). In addition
to the central field acting on the nucléons there can also be an
interaction of the spin of a nucléon with its orbital angular momentum
(the usual spin-orbit interaction). If this is large compared to the
mutual interaction of the nucléons, the spins (i.e. total angular
momenta) of the nucléons / are good quantum numbers. Thus every
nucléon has a definite n, I, and /. This is the //-coupling scheme
which is postulated in the shell model of M. G. Mayer.

To the zeroth order the wave-functions of the nucléons are
products of the wave functions of the single nucléon in the central field.
The wave-functions of the nucléons in the states % lx, n212,
nm,l"m< with other quantum numbers ax, a2, am (where a, for
example, could be the magnetic quantum number m) is :

y>A(x1; X2, Xm) Y^Vifai) fa^p^Xz) Vamnmlm(xm). (1)
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The zero order energy is degenerate, since it is the same for all
the states of the configuration. If the mutual interaction of the
nucléons is taken into account this degeneracy is partly removed,
as known from perturbation theory. The first order energies are
then the eigenvalues of that part of the interaction energy which
belongs to the configuration.

The appropriate zero-order wave-functions are definite linear
combinations of the wave functions ipA determined by the quantum
numbers of the interaction energy (these are, for example L and S
in the case of Rüssel Saunders coupling, J in the case of //-coupling,
etc.). Therefore the matrix elements of the interaction energy is a
sum of matrix elements (A \V\ B). The interaction energy has the
form 27 ya where Vtj Vi:i(x{, x/) describes the interaction of the

i-th and /-th nucléons. In evaluating the matrix elements of one
of these terms we can integrate over the coordinates xt,l 4= i,l =t= /,
and obtain:

• J Wapi) y>a2(x2) y>am(xm) Vij'yXi, Xj) rp^xj fb(.X2)

• • • Vh (xm) dxx dx2 ¦ ¦ ¦ dxm oa b oa 6

¦ ¦ ¦ ^ofai Vi ôai+1 bi+1- ¦ ¦ àaj_x b^ àaj + 1 bj+1 ¦ ¦ ¦ °am bm X

x / / Va, (xi) V>lj (xj) Vi j (xi i Xj) fb. (Xi) xpb
_
(Xj) dXi dXj

(2)

Therefore the matrix elements of V in the zero-order scheme are
the sums of matrix elements of the type (2). The coefficients depend
only on the operators commuting with the interaction energy
(quantum numbers) and may be calculated without the explicit
knowledge of the interaction, as they are independent of the exact
form of the wave functions. There are well developed methods for
obtaining them, as given by Condon and Shortley11), G. Racah12)
and others. The explicit dependence on the form of the interaction
is contained in the matrix elements which we shall consider in some
detail.

§ 2. Survey of the Slater Method.

The important feature of the matrix element

ffvk(h) V>k (K) Fi2 fâ. -r~D fbS^ Vbfà dt^d3 r2 (3)

is that the y> are functions of P1 and P2, and V12 is a function of
r\ — P2. The usual way of treating such expressions in atomic spectroscopy

was developed by J. Slater13), who expressed V(P1 — 'Q as
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a function of Px and P2. The procedure is to expand V(P1 — r£) in a
series of Legendre polynomials, the argument of which is the angle
ca12 between r\ and P2 with coefficients which are functions of j t\ |

and Ijr^l :

oo

V(F1 - P2) 27 /* (*i > r2) Pk (cos co12). (4)
k=0

Pk(cos co12) can be expanded in a finite sum of products of spherical
harmonics which are functions of #T, cp1 and ê2, cp2 respectively
(these are the polar angles of Px and P2). At this stage the angular
integrations can be performed, and a sum of radial integrals

Rk(a1 ,a2,b1,b2)=j j Rai(rx) Ra2(r2) fk(rx,r2) E&^) Rb.2(r2) dpdr2 (5)

remains, the coefficients of which are products of two integrals of
the type J 0h0l0l, d cos # (only finite number of these coefficients
do not vanish for definite ax, a2, blt b2). We shall mention in this
work the Fk only, but all the considerations are true mutatis
mutandis for the Gk too

[Fk(a1,a2) Rk(a1 ,a2,alta2) Gk(a1, a2) Rk(a1 ,a2,a2,a1)'\.

This procedure is very useful in atomic spectroscopy because
there the interaction is given by F~12 e2/|r^ — P2\ and there exists
the simple expansion :

1 ^r rh
> —P- Pj. (cos co12) r< Min(r1,r2) r> Max(r1,r2).4-e. Jc-

>'2 I k Q r

The wave functions are not easy to compute, and their radial part
is the only indeterminate factor of the Fk. In fact, the atomic
spectroscopists did not bother themselves with the calculations of
the Fk, as in any case many energy levels were measured, so that
it was easy to evaluate the Fk from some of them, and check whether
these values of the Slater parameters really gave the other levels as
well. In nuclear spectroscopy, on the other hand, this is impossible
as there are usually only very few levels measured and classified.
Therefore if one is to use the Slater-method, the Fk must be
mathematically evaluated. Even for the central forces, however, we do
not know the exact form of the potential. We should therefore
calculate the energy levels for different forms of the potential. However

even in simple cases such as the Yukawa potential, the calculation

of the Fk is so complicated that Slater-method is of little
practical value.
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For complicated interactions, such as tensor forces and mutual
spin-orbit interaction, the expansion is very complicated and of
practically no value (an example of such an expansion is given in
a paper of Marvin14)).

§ 3. The alternative method for the oscillator wave functions.

To overcome these difficulties we make use of the fact that the
interaction energy depends only on the relative coordinate ~r =P2 — Pv
and our procedure is to express also the wave functions as functions
of 7 P2 — ~rx and the other coordinate R (Px +f2)/2 (the coordinate

of the center of gravity of the 1st and 2nd nucléons). This
transformation enables us, when calculating matrix elements, to
integrate immediately with respect to R, and we are left with a

single integration of / y>\(r) V(r) f2(p) dsr which can usually be

carried out without difficulties.
This coordinate transformation is always possible, but the functions

of 7 and R generally turn out to be very complicated. The
success of this procedure depends on the proper choice of the wave-
functions. The best choice would be that one which allows us to
expand the wave-function ipafîi) %2(^2) m a finite sum of products
of functions which depend on r and R respectively. This would
certainly be the case if the potential of the central field, which is
the sum V^r^) + ~Vc(rV), is also separable in the coordinates r and R.

The condition for such a decomposition is :

V. (r2) + Vc (rf> Z7(P2) + W(r*) (6)

Putting r 0 we obtain :

2 7C(B2) U(R2) + const,

and putting R 0 we obtain :

2VPr2) W(4 r2) + const.

If we now put in (6) r2 r\ so that P2 r2 cos2 a, r2 4 rx sin2 a
where 2 a is the angle between 7X and r2 we obtain :

2 Vc (r2) 2 Vc (r\ cos2 a) + 2 Vc ^rî8™*a\ + const.

Differentiation with respect to a yields :

0 — 2r\ cos a sin a V'c(r\ cos2 a) + 2 r\ sin a cos a V'c (r\ sin2 a)

or :
Ve' (r\ cos2 a) Vc' (r2 sin2 a)



Nuclear Spectroscopy with harmonic Oscillator Wave-Functions. 193

which means V'c (r2) const. A,i.e.Vc (r2) A r2 + const. Therefore

the only potential (possessing a derivative) which satisfies this
condition is the harmonic oscillator potential :

co r\ + co r\ --- (4 m2 R2 + co2 r2)

Taking the wave functions of the harmonic oscillator we can
decompose every wave-function f^K) Va, (^2) in*° a finite sum of
terms of the form ipx(R) f2(7) (where y>x, y>2 are essentially functions
of the same kind as fat, y>a).

In order to utilize this method we must, therefore, use a very
special form of the wave functions. This is not such a serious
limitation, however, as the exact form of the potential and hence of the
wave-functions, is not accurately known. We shall therefore be
satisfied with the harmonic oscillator wave-functions, using them
as model wave-functions, in order to learn the behaviour of, say,
the energy levels in terms of the nuclear radius, range, magnitude
and form of the potential.

Compared with other model wave-functions, it seems that, physically,

those of the harmonic oscillator are quite good, as the order of
levels in the shell model is roughly that of an oscillator potential well.

The potential of a single nucléon bound harmonically, besides
being in a central potential, is separable also in Cartesian coordinates.

Therefore every function of the three dimensional oscillator
can be given as a product of three wave-functions of the one dimensional

oscillator depending on the Cartesian coordinates x, y, and z.
This representation of the wave-functions has been extensively
used15)16).The coordinates used in this work are, however, the polar
coordinates, and the wave functions are therefore a product of a
function of r and a spherical harmonic. '

The radial parts of the wave functions

f(r,&,cp)=M-Y^(»,9)

are easily calculated, and can be shown to be of the form :

Rnl(r) Nnle~tr\l+1vnl(r)

where Nni is a normalization factor, and vnl is an associated Laguerre
polynomial17) (properly normalized):

«mW =Lln\\ + i(vr2)
13
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v is given by v comjh, and m and co appear in the Hamiltonian
of the harmonic oscillator:

H -j.— (v2 A- m2 co2 r2).
2 m vjr '

The explicit expression for these I4+Y+1/2 is

With this definition the normalization factor becomes :

_ 2'-"+2(2Z+2w + l)!!îfa3/2
n' (/jTm![(2;+l)!!]2

The first few functions are :

for n 0

Ri(r) JVj e 2 r+1 and iVf — '

for n 1

»ij 1- 2» 2

2Z+3 r

for w 2

«si 1 - 4 v »ft.^
2Z + 3

\/jil •3---(l + 2Z) '

and N2U J^^l^t3).
4r2

(2 Ï+3) (2 2+5)

'1( |/Wl -3 ¦•• (1 + 2Z) '

^.4

[/"„!+! 2i-l (2Z+3)(2Z+5)and M,11
j/?r l - 3 - - - (l + 2 Z)

These are the only wave-functions which will be used in the following.

All of them satisfy :

jR2nl(r)dr=l;
o

the Y;m' (&, cp) should therefore also be normalized to unity.
We shall have to calculate integrals of the form

DO

Inl fR2nl(r)V(r)dr
ö

The integrals Inl with n A 0 can be expressed as sums of integrals
Iol which we shall write simply as It. The respective formulae are:

lll ^ll-(2l + Z)ll+x + ^Il+2
T (2Z+3)(2Z+5) (2Z + 3)(2Z+5) (21+5) (6 1+13)
i2l —

g li 2 iî+l H I x

j- (2Z + 5)(2Z+7) T (2Z+7)(2Z+9) T
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We shall not need here formulae for higher n, but they can be easily
calculated. These Il} as we shall see later, replace the Fk of the
Slater method, but unlike the latter can be calculated by a simple
integration.

§ 4. The transformation to the relative and center of gravity coordinates.

The zero-order Hamiltonian of two nucléons moving in the field
of the oscillator potential is :

^— (pf + m2 co2 r2) + -s— .y,

We make now the canonical coordinate transformation :

r r2 — rx p \
R ^- P P2 + Pr

which introduces the relative coordinate and the center of gravity
coordinate of the two nucléons, with the respective momenta. The
Hamiltonian expressed in terms of the new variables is :

H -^- (P2 + M2 co2 R2) + ^-(v2 + ^ w2 r2)

where :

M 2m, u -çr-m.

This is the Hamiltonian of two harmonic oscillators with masses M
and /j,. The solution of the corresponding wave-equation can be
written as a product of wave-functions of the two oscillator potentials

depending on R and r respectively. The angular momenta and
the number of nodes which characterize these wave functions will
be called L, A and N, n respectively.

If we want to express the wave-function yQk(px) fnlu^Pz) °^ *w0
nucléons with definite quantum numbers nx lx mx and n212 m2, as

a sum of products y>$L(R) f„A we must find out what values of
N, L, M and n, A, m should be taken into account. It is obvious
that the integrals (quantum numbers) of the system must have the
same values on both sides. We thus have the following restrictions :

(1) The ^-component of the orbital angular momentum.

mx + m2 M A- m.



196 • Igal Talmi.

(2) The energy.

fi, co (2n1 + l1-+2 n2 + l2 + 3) ?i co(2N + LA-2n + A+3)
which implies

2n1 + 2n2 + l1 + l2 2N + 2nA-L + A.

(3) The symmetry. Instead of the wave-function ip™p (r\) y>™*h (P2)

(in the case that n{, llt mlt differ from n2, l2, m2) it is useful to take
the symmetric and anti-symmetric combinations :

~ (v&ft) vB.(*0 + y>ZSK) vZSK)) (7)

j= «,(Fx) v:;h(F2) - vCfc(0 <X (K)) (8)

which are multiplied by +1 and (—1) respectively under the
transformation ?\ fa 72, 72 fa r^ (which induces the transformation F fa — r,
Pfa r), and therefore fL(R) y>A(r) is multiplied by (— 1)A (the parity
of fA(r)]. Therefore:

Symmetrical (antisymmetrical) wave-functions contain only even
(odd) values of A in their expansion.

(4) Parity. The transformation Px -» 7X corresponds to 7 fa 2P,

P->r/2. The radial part of the function ipL(R) fA(7), which is the
only part that changes, is /()/2 v R) g(^v r/^2) (the factors 2 and 1/2
multiplying the v of the oscillator potential come from M 2m,
/u m/2). Therefore it is changed under the transformation according

to :

/(^P),()/|r)^/(^^,(^2E) /(|/^f),(^E)
and consequently:

In the same way it is seen that the transformation 72 -> — f^ or
7 -> — 2 P, P -> — F/2 results in :

As a result, the expansion of ipiX^i) yj/^j) should contain y>i(R) fA(?)
and ^i(r) fA(R) only in the combination:

V*(B)^(r) + (-1)^(7)^$). (9)
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It is multiplied in the transformation Px fa — Px by (— l)h, and in
the transformation P% -*— r^ by

(- i)L+A (- iy> (- iy>+1* (-1)1* (-1)'«

(as 2 N + 2n + L + A 2nxP2n2 + lxA- l2).
When we build the symmetric and antisymmetric functions, we

see that if lx and l2 are both even or both odd (and hence L and A
have the same property) both y_r,(P) Va(7) and ipp7) fA(R) may
enter into those functions, and therefore only in the combination
(9). If one of lx, l2 is even and the other is odd, the symmetric function

contains only ipL(R) fA(7) (with A even and L odd) and the

antisymmetric function contain only ipA(R) Wl(7)- Therefore the
coefficient of ipL(R) ipA(7) in the symmetric function should be (—l)'1
times the coefficient of fA(R) y>j,(7) m the antisymmetric function.

Subject to the above conditions, the transformation is most
conveniently calculated in the following manner. The wave-functions
(7) and (8) are written down in the case cpx cp2 cp 0. It is

then easy to express them as functions of P and 7 and compare
these expressions with a linear combination of the admissible wave-
functions ip^L(R) iPnA(7) (according to the above conditions). By
equating respective coefficients, the factors of this expansion may
be easily found. When doing so no account should be taken of the
exponential factor, as

_-fa2 _far2 _^/r2 + r2\ _1-(±P*±P\ 2" m 'I2 ra
e *rie 2i e 2 ll+l) e

2^ 2 >=e 2
e 2

II. On the Order of Levels in j " Configurations.

§ 5. The evaluation of Slater parameters for the harmonic oscillator
wave-functions.

The method described in I will now be used to obtain some results
on level spacings and especially on the order of levels in a few
interesting cases together with a discussion of their dependence on
the range and form of the potential. An important problem in the
shell model based on strong spin-orbit coupling, which leads to the
//-coupling scheme, is the determination of the spin (total angular
momentum) of the ground state of the /" configuration. It was
pointed out by Feenberg18) that for n 2 the spin of the ground
state is zero (for Majorana forces). His argument was generalized
by Racah19) who showed that for any n the ground state has the
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minimum spin allowed by the Pauli principle, namely (for an odd n)
3/2 in the case of three particles (or holes) in a shell, and 1/2 in
other cases. This result is apparently in contradiction with the
empirical rule that the spin of the ground state is equal to the spin
of the odd nucléon. However, Racah's argument was based (as that
of Feenberg) on the long range approximation, in which one
assumes that the interaction potential can be approximated by a

square well in the region where the amplitudes of the wave-functions
are important. On the other hand, results of Mayer2) showed that
with a ò-potential the spin of the ground state is J / if n is odd
and J 0 if n is even. (This is in fact a short-range approximation,
where one assumes that the potential is different from zero only in
a region so small that the change of the wave-functions in that
region is small compared to the wave-functions themselves.) This
result was subsequently proved by Racah3) in a general way.

If we pass continuously (i.e. by a continuous change of some
parameters) from the short range limit to that of the long range,
we see that the order of levels changes continuously, and for different
values of the parameters one obtains different spins of the ground
state. The dependence of the spin of the ground state on the range
of the potential has been treated in some special cases by Kurath4)
and the author5). In the following, our method is used to obtain
general results which are applicable to every potential, and
additional interesting forms of the potential are treated.

The method of the harmonic oscillator wave functions can be
combined with the vast amount of results calculated in atomic
spectroscopy : in these results all the energy levels are expressed in
terms of the Fk ; on the other hand it is possible to express them in
terms of the integrals It. It is therefore always possible to write
down the Fk as functions of the It. This allows us to calculate the
values of the Fk, when using any potential, by first computing the
values of the It by direct integration. The use of this procedure
makes all the formulae derived in the Fk formalism useful for calculations

of the energy levels.
If one is interested in central interactions only, it is not necessary

to calculate the wave-functions of the configuration in terms of R
and 7, as only the Slater parameters Fk are required and with the
above transformation they can be directly calculated in terms of
the II.

The Fk (which differ only by a constant factor from the Fk) are
defined by: œ «,

Fk(ax, a2) JJRIMi) KM /*(ri> ^ dri dr2
o o
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where the fk (rx, r2) are the coefficients of the expansion (4).
The fk are therefore given by

+i
fk(p, r2) —^— j V(\F2 — r[\) P&(cos co12) d cos coX2

-i
(the factor 2/2 fc + 1 is the square of the normalization factor of the
Legendre polynomials), and thus:

„_!*ti f?jV{, - _ -„iw K,W x
J J T-, 7P

-10 0 12x Pj. (cos co12) r2 drx r| dr2 ^ cos <ui2 •

This expression can be integrated also over other angles dû of which
the integrand is independent, thus completing r\ r\ drx dr2 d cosco12
to the differential of the volume element in the space of the vectors
Px and 72. We obtain, after multiplication by a proper normalization
factor Nn,

F*(ai,02)=tf0—2— JJV(K-ri\)—\ jr- x

x Pi (cos co12) d3 rx d3 r2. (10)

This integral can now be transformed to an integral over R and 7.
As F(|fJ — 7X\) is a function of \7\ only, it remains to express

Rl (rA Rl (r,)
—72 h— -2* (cos «12)

'1 '2

in terms of P and r. This is always possible with the help of the
relation

1

rx r2 cos co12 (rv r*2) — (4 P2 — r2)

The result is a function of P, r and the angle <x between the vectors
P and 7—cpk(R, r, a). So the above expression becomes:

Fk 1A+ÌNQJJV(r) cpk(P, r, a) d3P d3r **±±-Na x

+ 1 oo co

x f I"f fv(r) cpk(R, r, a) P2 d Rr2 dr d cos a d Q' -^pl x
fi* -"i o 0

+ 1 oo co

x I f fv(r) cpk(R,r,P) R2dRr2dr d cos a. (11)

-10 0
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Where du' stands for the differentials which form with P2 dPr2 dr
X dcos a the volume element d3P dsr; the integrand is independent
of them and the integration results merely in the dropping of the
normalization constant Na. The integration over a can be easily
done and it is then possible to carry out the P-integration, which
leaves Fk expressed in terms of the r-integrals —II. In this way
the Slater parameters are calculated in terms of simple integrals
without bothering about the expansion of the potential in a series
of Legendre polynomials and without the complicated integrations
in which such an expansion results.

In order to see how this procedure works, we give explicitly the
expression of r\ rk Pk(cos coX2) in terms of P, r and a. This expression

results from the calculation of a configuration in which lx l2

(and therefore fc is even). Putting

Pk(cos coX2) 2J c2n cos2" coX2

fc 2 to, we obtain :

r\ r\ Pk (cos mX2) £ c2n r\~2n r\r2n r\n r\n cos2re coX2

/4 R2-r2\2n P^ / 4 .ß2-r2 \2«

B=0

2Jc2n(r21r.2\ m—n

n=0 ~A 2n\ *
'

X (4El~r2f+R2r2-(R,7)2 m—n

Use was made here of the relation

A rl (—R2^-f+ R2r2 - (P, ?)2
4_R2_?.2

j + P2r2sin2 a

F

4 ; i -- v-> ¦ i y 4

As an example we evaluate in detail F2 of the configuration p2:

+ 1 oo oo
3

N4 5

lvi 2 V(r)e-v^+rlir2r2(j

x r\drx r\ dr2 d cos co12

_ -4-1 OO OO

(fa*28\2 5

cos^ co. -I) X

-10 0

4 R'- + r'

/ji-3

fa(K^)
V(r)e

10 0

4i?2-r2\2

3 /4 if2 r2\2

P2 r2 sin2 a

/4.R2-r2\2

P2 dP r2 dr d cos a
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2 S\2

x 5

\/vv2 8

l/Sr-3

5VP-3
l ry>&

6 j/2fa (2 v)2 8

1 / 4(/jt~-15

5 / V(r) e 2 4^tl5 j/jF

r2 dr

4 \|/2 j-(2 v)s 16 4)/2r2r4

l/W28\2

h+^A-,PÊ^-rA4 \l/2 » (2 v)316 |A>/2 • v/2 • 4 4 /2 v • 2 v • 4 j/v/2 (j-/2)3 16

5^3 J/ji3

6j/2j>(2v)28 j/v/2 (v/2)2 8
A

25

l2~ [(ic + ij-aij
In this way the Fk for the configurations d", fn, and gn were

obtained; these are later used in the discussion of the //-coupling
configurations (d5/2)3, (/7/2)3, and (g5/2)3.

§ 6. The (d5/2)3 configuration with various potentials.

The simplest configuration where the short and long range
approximations give different results is (d5/2)3. In the ó-limit the state
with J 5/2 is the ground state, and in the long range limit the
state with J 3/2 is the lowest. If one passes from one limit to the
other a cross-over of these two levels occurs. This case is also of an
experimental interest as a J 3/2 state of the configuration is
postulated1) for the ground state of Na21. This case was treated by
Kurath4) who used oscillator wave-functions and a Gaussian
potential. It was also calculated by the author5) using the Slater
method with Coulomb field wave-functions and a Yukawa potential'.
The results were different, since the Gaussian potential can be well
approximated by a square well when its range is increased, whereas
the Yukawa potential has a singularity at the origin and does not
yield the long range limit when its range tends to infinity. We shall
discuss in this paragraph the cross-over and its dependence on the
range and form of the potential.

The energy states of the configuration (d5/2)" were calculated by
Inglis20) in the case of ordinary (Wigner) forces between the
particles. The calculation of the levels in the case of Majorana
interaction can be carried out in the same manner (an example of such
a calculation is given later in the case of Li7).
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The results are
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ire:

^9/2 _36P0
"25

72
i?2

5-49
1329

25 • 441 F*

E5/2 5

56 F2
5-49

651

5-441 F*

^3/2 —-F°
5 +

12 F2-T 5-49
627

5 -441 Fi

3-5F° 'tlVo + Id + lth + Is,

3 — F2
49 Ts(Io + h)-Y(I- + I*.

5 — Fi49 -^.h+'U-iVi+'ii

The sign convention is that the Fk are positive and the Majorana
potential is attractive (negative) in symmetrical states.

From the definition of the Fk it follows that in the short range
limit Fk (2 k + 1) F0, while in the long range approximation
FkP:F0. From these relations the order of the levels J 5/2 and
J 3/2 in the two limits can be immediately seen. We calculated
the Fk in terms of the Ix using the procedure of § 5 with the following

results :'

29 j

+ -5--I,:

Remark: In the above results only the combination (P + IA, (ij+ ij) appear,
thus forming with I2 three independent parameters which replace F0, F2, and Ft
of the Slater method. The reason for this fact can be seen as follows: In the wave-
function y>l (rx) y>{ (ra) the product rh ¦ W» appears as a factor, and therefore when

we express it as a function of r and R the sum of the powers of R and r in every
term is equal to lx + l2. The transformation r1^ — r1 which induces r —> 2 R,
R —> r/2 transforms, as we have already seen, / (|/2 v B) g (|/v/2 r) into
/ (l/v/2 r) g(]/2v R). As a result, to every term in which Rm p-+l*-m appears
there corresponds another term which has the same angular part and contains
rm jjk+k—m as a factor. When the angular and JJ-integrations are performed
these two terms give in the /-integration the integrals It +i _m

and Im with the
same factors. Therefore only the combination (Im+It +t _ appears in the result.

It should be remembered that there exists only one set of the It the combinations
of which form the Fk and Ok of the various configurations.

Putting these values in the above formulae we obtain the energy
levels expressed by the It :

ß9|2 25 \ -^(I0 + IJ + 1|5(i-1 +^ 255 j \
IP12)

E5/2 Y (~-*Ì(h + h) + 1r(h + h)- 8 lP
Em y'("-§(j0 + i4) + ^(j1 + 4)- 156.X

8 ll)'.
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From the definition of the Ix it is seen that in the short range
approximation Ix <^ I0 (I > 0) (because for I > 0, Rt vanishes at
the origin), and in the long range limit all the Ii are equal.

This property of the It makes our method useful for approximations

in the short range limit. In the first approximation only the
coefficient of I0 should be calculated (use is made of this fact in
§ 15). On the other hand the Slater method can serve as an
approximation in the long range limit. Near this limit Fk <^F°(k > 0),
so that the first approximation is given by F°. From this point of
view these two methods are complementary, and hence it is natural
to work with the I{ in nuclear spectroscopy where there are good
reasons to believe that the short range approximation is justified.

We have mentioned before that the cross-over should depend not
only on the range of the potential but also strongly on its form.
A flat potential like a square well or the Gaussian potential give the
long range limit as its range tends to infinity, but a potential which
is singular at the origin does not yield the long range limit even if
its range tends to infinity (the important parts of the potential are
in the neighbourhood of the origin). The It (I > 0), though they are
no longer zero, do not approach the value of I0 (alternatively the
Fk, k > 0, are smaller than F° but do not tend to zero). As far as
the order of the levels is considered, such potentials represent an
intermediate case between the two limits.

We shall compare potentials in which the range parameter
appears in the same manner but their forms are different, namely:

(a) the Gaussian potential V e'r'lr«' which for r0 fa oo gives the long
range limit (this potential was used by Kurath4)) ;

(b) the potential V e-r'lr'* /r/r0 which gives in the limit r0 fa oo the
Coulomb potential, and,

(c) the potential V e~r'lr°' /r2lr20 which is still more singular at the
origin.

Although the difference in behaviour was already noted5), we
discuss it again as we shall use here the same wave-functions for all
of them. The J; corresponding to these potentials are calculated
to be:

(a) Il N2fe-v2V(r)r2l+2dr Nfvfe['V r''' r2l+*dr
o o

A2
'

\2+3/2

U + A2 j
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(b) It Nf fé-*'2 V(r) r21+2 dr Nf Vr0 f e~
' " r°" ' *

r2l+1 drei

o

n,l\ i a2 y+i 2
|/5T

FA.
1 /iM'+1 n2_ Kg AT2

2\/P M + ^2/ ' fv

V+-1 r2

(c) Ii N2 e-vr* V(r) r21+2 dr N2Vr2 e
K r° ' r21 dr

o o

2
2Z-I

FA2-2— f-*L_V+*
"Ï+1 \1 + A2J-

A is defined by X r0 ]pv; it is the ratio of the potential range to
l/|/i> which determines the extension of the wave-function. If X

tends to infinity it may be seen that It of the Gaussian potential are
all equal, while in the limit A fa oo for the case (b) (which gives the
Coulomb potential), It is proportional to nf lì; and in case (c) Iz is
proportional to 2/2 I + 1.

The cross over of the levels J 5/2 and J 3/2 occurs where
the I fulfil the equation :

27(I0 + 74)-36(J1 + J3) + 2I2 0. (13)

Relative to the value of I, the values of the I in the three cases are :

W i.~(t5t)'
0.) '.--^-frarj'

and

(°) II ^TTrTlT+A^) '

Using these relations we find that the cross over occurs in case (a)
at the value A 1-326, whereas in case (b) it occurs only at A 4-34.
The effect of the form of the potential appears more pronounced
in case (c) ; in this case no cross-over occurs as A varies from zero
to infinity. [For the left hand side of (13) for A 0 is positive,
and it remains so even when the It attain their maximum value
~ 1/(21 + 1).]

This strong dependence on the form shows that for such problems
it is not enough to consider the range only. Potentials of different
forms which may be adjusted to fit some condition will not usually
give here the same results.

In the preceding section we discussed the effect of the form of
the potential on the order of the levels and the place of the cross-
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over, using the same wave-functions ; we shall now give the results
for the Yukawa potential using harmonic oscillator wave-functions
and compare them to those obtained with the Coulomb field wave-
functions5).

For the Yukawa potential, V(r) V e-r,ujrjrn, the Ii are calculated

as follows :

P Nf / V(r) e-vr* r2l+2 dr Nf Vr0 / e-vr'-rlr"r2l+1dr
d o

N2

yv v1
VX / e-('-fl^2l+1di

where £ \i7r and X ]/vr0. We introduce the constant ß l/2 X

and x | + pi, and obtain :

N2
P l— VX e" / e-x (x-pt)2l+1dx.1

]Pvvi+i J K w

This gives for the integrals which we need :

I0 VX
]/n

¦2pt(l — 0(ip)e^

h ~VX

h-^vx

13=§ ™

2

2

(1+ ^2)-2/, (|+^)(1-#(/,)) e-

x (1 — 0(pt))e"'
2 /, 29 2,5 1 fi\

Ll/fa-(1 + ir^ + T^+6^6)-
-M16- + t-^ + t^ + T^C1-*^))«"'

'4 S™ ^(i +ï^ + ^^ + ï^ + i^8)-
-^(w +^' + S-^ + T^ + i^C1-*^))^]

<Z> is the error function

0(X)
\Jn

-t*dt.

These values of It for various values of /n were substituted into
formulae (12), (13) to give the level spacings corresponding to each jx.
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The cross-over of the levels J 5/2 and J 3/2 occurs at a value
X 9, i.e. for r0/rt 9 j/2 ~ 13 where rx ]/2 v is the parameter
appearing in the wave function of a single d-nucleon. This should
be compared to the value r0/rl ~ 10, obtained with the use of the
Coulomb field wave-functions, where r appears in these functions
in the exponent: JBj(r) Nt rl+1 e~rlri.

It is interesting to see that the results are essentially the same,
thus supporting the opinion that the exact form of the wave-function

is not very important.
The results of this paragraph show that the appearence of the

spin 3/2 in the ground state of Na21 is unlikely to be due only to the
effect of Majorana forces, as the value of A which should then be
assumed is too big, especially if we assume that the potential is a

"deep hole" potential, such as that of Yukawa, rather that a

flat one.

§ 7. The configuration (/7/2)3.

This configuration [and equivalently (/7/2)5] has six states with
spins J 15/2, 11/2, 9/2, 7/2, 5/2, 3/2. For Majorana forces in the
short range approximation the state with J 7/2 is the ground
state, and in the long range limit the state with J 3/2 is the
lowest; above it lies J 5/2 and the state with J 7/2 is next to
it. The cross-over of these three states was found by Kuratii4) who
used a Gaussian potential. We shall in the following discuss this
configuration using also other forms of the potential.

The matrix elements of the Majorana interaction in the (jx, /2,
m3i, rrij) scheme were found in the way described in § 12. The
integrals J(mx, m2 ; m3, m4) were calculated in terms of the Slater
parameters Fk by the usual method. As there are no two states with
equal J in this case the sum method was used to obtain the energies
of the various states with the following results :

Ei5/2 - 90 F0 + 2700 F2 + 7020 FA + 7974 F6

Ejiit — 62 FQ + 1580 F2 + 2736 F4 + 42302 F6

Em =-51F0A- 425 F2 + 6201 F4 + 32765 F6

EV2 - 42 F0 + 1610 F2 + 6930 F4 + 82082 F6

E5j2 - 35 F0 + 665 F2 - 2583 F4 + 80717 Fe

Em r= — 30 FQ — 660 F2 + 4752 F4 + 50622 F6

(14)
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The Fk in the above expressions are defined by :

F =— F F* E Fi F 52F"
0 72 > r 2 32 52 72 > r4 32 72 112 ' 6 32 72 112 J32 •

Using the method described above, these Fk are expressed in the
terms of It as is given in the following formulae :

",<VTI -
¦ ¦¦ '¦

F* "SS t7o + h) - 6 (h + h) + 15 (I2+ /4) - 20 I3]

F4 -**[1S (I0 + Ì6) - 34 (7X + I5) + 19 (I, +14) + 4 Ij
** -448-f143 ^ + 2«) -66& + f«)-15 & + 7*) ~124 Js)]

F° J-- [429 (I0 + J6) + 198 (Ix + I5) + 387 (I, + 74) + 212 /3].

Taking the Gaussian potential we obtain the following results
which are in agreement with those of Kurath: for A < 1-27 the
lowest state is J 7/2; at A 1-27 the level with J 5/2 becomes
the ground level and is the lowest one in the region 1-27 < A <l-35;
for A > 1-35 the J 3/2 state is the ground state. Thus there is a
region where the ground state has the spin 5/2. The configuration
(/7/2)" 1S predicted by the shell model for all nuclei having N or Z
(neutron or proton number) between 20 and 28. The only odd-even
nuclei in this region, of which the spins have been measured are the
following odd-proton nuclei: 21Sc45 and 2-Co59 have the spin 7/2
as required by the shell model, 23VSl has also the spin 7/2 whereas
25Mn55 has the spin 5/2. It was suggested1) that the ground state
of the last nucleus is a J 5/2 state of the (/7/2)5 configuration.
Kurath4) tries to explain the occurrence of the 5/2 ground state by
suggesting that r0 of the nuclear forces and r% of the nucléon orbit
satisfy l-27<A<l-35. Even for the Gaussian potential such a value
of r0 is too big if one determines rl roughly from the nuclear radius,
but a more serious objection is raised if we consider potentials which
are singular at the origin. Taking the potential V(r) Ve~r'lr"Prlr0
we find that for A < 3-3 the ground state is J 7/2, at A 3-3 a
cross-over of this with the J 3/2 level occurs and for A > 3-3 the
ground state is J 3/2. The level J 5/2 crosses the level J 7/2
only at A 9-5 where J 3/2 is already lower. We see that here
the use of a ~ l'/r potential not only shifted the points of crossover

but changes completely the situation: there is no more any
region of A where J 5/2 is the ground state. As far as scattering
experiments are concerned, there is no indication that the Gaussian
potential is better than the Yukawa potential. If one considers it
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just as a model the above calculations show that the results depend
strongly on the model used and it is a little bit early to draw from
them any physical conclusions. We must conclude that it is not
likely that the effect of Majorana forces can alone explain the
appearance of the 5/2 ground state of Mn55.

8. The configuration (g,9:2)

This is the simplest configuration /" in which two states with the
same J appear. The states of the (g1^)3 configuration are: two states
with J 9/2 and eight more states with J 21/2, 17/2, 15/2, 13/2,
11/2, 7/2, 5/2, and 3/2. The sum method cannot give the term values
of the two J 9/2 states but only their sum. The separation of
these energies can be done by diagonalization of the energy matrix,
but with the elaborate methods of Pacah12) this becomes much
easier. One can define two states with J 9/2, one with the Seniority

v 1 and the other with v 3. As the interaction energy does

not commute with the Seniority operator, there is a non-vanishing
matrix element connecting these states and the energies of the
ground J 9/2 and of the excited J 9/2 states can be found by
diagonalization of the two-rowed matrix.

The energy levels with J A 9/2 and J 9/2, v 1, J 9/2, v=S
as well as the matrix element V connecting the last two states were
calculated by Racah21 in terms of the Slater's Fk. We write here
down only the results for J < 9/2 as the other levels lie above these
and are of less physical interest.

Type of force

State Wigner forces Majorana forces
factors of factors of

^0 F* Ft ^6 Fs ^0 F, Ft F« ^8

J=9/2 v=l 3 33 1287 429 2431 - 8/9 407/14 24453/14 1144 24739/18
/=9/2 v=3 3 -A3 - 93-163 -3417 - 8/9 75/14 3153/14 1014 7879/18

F/j/429 0 - 1 105 - 31 51 0 1/2 - 105/2 31/2 - 51/2
J 7/2 3 56 -1488 -595 -2295 - 7/9 100/7 3336/7 542 12379/9
J=5/2 3 -14 962 -728 -2652 -56/81 613/63 -4693/7 5629/9 69992/81
J=3/2 3 -24 -1488 417 ^1947 -17/27 ,-284/21 4272/7 2518/3 15089/27

The Fk are defined by :

F2
4 J2

32112 F,= pi
112132 >

F0 F°,

F,
16 F6

6 32112132
Fs

72^8
112132172
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The two states with J 9/2 are given by the solutions of the
secular equation as follows :

as»-! (ni2+Kl2)-im,2-K2)2+4 v2]1'2

Et,2 y (E*l2 + Ey + imp- Ell2)2 + 4 F2]1-'2.

If one examines the values given above it appears that | V\ is small
in comparison to | E^2 — £'|/21 (it vanishes both in the short range
and the long range limits where v 1 and v 3 are exactly the
ground and excited states with J 9/2). Therefore it is sufficient
to take only the first term of the expansion in powers of Vj\ Eqj2-E§!2 \

(which is the second approximation of perturbation theory). This
gives :

T72 F2Tilff 77U ' 7711 j '
-^9/2 - -^9/2 Tfa ^rp - am + fai pr~ >

\M'»l2~J!'»la\ ¦C,9/2_-C'9/2

V* x,3 F2
E9/2 - Ell2 + T^i ^rp - F 9/2 - ~^i "s - •

I "^9/2 -^9/2 I •ß,9/2~-ß,9/2

The (g1^)3'5'7 configurations are of a special interest, since it was
observed by Goldhaber and Sunyar22) that in nuclei which have
such a configuration according to the shell model there is a state
with spin 7/2 and even parity. This state, 7/2+, lies in a few cases
under the level J 9/2 which is usually observed in these nuclei
(and described as gm according to the shell model) and above it
in the other cases. An assignment g7j2 for this level is in contrast
with the shell model as this state (of the single nucléon) should lie
1-2 MeV above the gr9/2 state (because of the strong spin-orbit
interaction). Goldhaber and Sunyar22) assume therefore that this state
is the J 7/2 state of the (<79/2)n configuration.

The general method described in § 5 was used to obtain the Fk
expressed in terms of the It ; the results are :

F* pSÈs^1* + Jb) - 8 (Ix + P) + 28 (I2 + J.) -
- 66(1, + h) + 70 I4]

F* SSsl17 Vo + !*) - 76 (Ji + !t) + 116 (/2 + J«) -
-52(I3 + I5)-10I4]

Fi AC255 V« + Js) - 480 (Jl + J') + 68 ^2 + ^ ~
- 32 (I, + I5) + 378 I4]

14
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F2 T6lW[1105 V° + X*} - 26° (7l + 7') + 52 ^2 + J«) -
-764(I3 + I6)-266I4]

F0 ^[12155(/0 + I8) + 5720(I1 + J7) + 10868(I2 + I6) +
+ 6248 (J, + I5) + 10658 J4].

With the help of these formulae we calculated the order of the
levels, for Wigner and Majorana forces with the potential V(r)

Ve-r'lr°' / rjr0. As is seen in the table above, the coefficient of F2 in
the case of Wigner forces, is larger for the state J 7/2 than for
the other states. Therefore in the long range approximation this is
the lowest state up to the long range limit where all the levels
coincide. As the potential used does not yield this limit, the resulting
order of the levels is: 9/2", 7/2, 5/2, 3/2, 9/2«. The spacing of the
levels 9/2^ and 7/2 is, for X < 1-5, smaller by a factor ~ 4 than the
distance between the 9/29 and the 5/2 levels. For Majorana forces
with the same potential the lowest state is 9/2" up to A 3-2 where
a cross-over of this level occurs with the J 3/2 level, which is the
ground level for A > 3-2. The 7/2 level does not cross the 9/2" for
any A. When a potential of the form (1 + Px) V(r)/2 is used (equal
Wigner and Majorana forces), the situation is like that in the case
of Wigner forces, except that the levels 9/2-" and 7/2 are not so close.
Also for the Gaussian potential V(r) F e~r'!n' there is in the case
of Majorana forces no region of A in which the ground state has
J 7/2.

The question of the relative spacings of the other levels J 5/2
and J 3/2 is critical in this case because they should be found
experimentally if they are not much higher. In order to clarify this
point, we shall refer to an interesting case discussed by Goldhaber
and Sunyar22). 36Kr83 has an even number of protons and 47
neutrons which are equivalent to three holes in the g9/2 sub-shell. The
spin of the ground state is measured to be 9/2. The isomeric transition

is from a p1/2 state not to the ground state but to a low lying
7/2+ state, 9 keV above the ground 9/2 state. The distance between
the levels pl!2 and 7/2+ is 32-2 keV. If a state with J 5/2 or
J 3/2 were lying in this spacing, not too close to the upper state,
a transition to it would have been preferred upon the observed
transition.

It is interesting that the 7/2 state is close to the ground state also
for small A, so that perturbations from other configurations or tensor
forces and other non-central interactions may bring it still lower.
This question, however, should be considered in more detail.
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III. Mutual Spin-Orbit Interactions.

§ 9. Matrix elements of the mutual spin-orbit interaction.

It is well known that neither the Thomas interaction nor the
magnetic spin-orbit interaction are big enough to account for the
wide separation between the states / I + 1/2 and j I — 1/2
of an odd nucléon as required by Mayer's shell model. Case and
Pais6) introduced in a phenomenological way a strong spin-orbit
interaction, in order to preserve charge symmetry of the nuclear
forces in analyzing high energy nucleon-nucleon scattering. They
also made a very rough estimation and found that this interaction
could give a doublet splitting of the right order of magnitude necessary

for the shell model.
Although there is not yet a conclusive evidence for the existence

of such a strong spin-orbit interaction, it is interesting to calculate
the effects of such an interaction in cases of a single nucléon outside
closed shell«.

The spin-orbit interaction of Case and Pais was assumed to be
of the form :

F12=F(|r^f;|)(î'1) + î'2),L12) (17)

where s^'and ?(2' are the spins of the two interacting nucléons, and

L12 is their relative angular momentum

* ^12 (p~l—¥1) x K - i\) ¦

It is immediately seen why it is extremely difficult to use here the
Slater method. Such interactions were generally treated8) with the
simplification of summation over all nucléons but one, so that
E y(Vi — rx) I (?« + ?<!>, L{ j) became V(rx) (s^, l7x) (in the case

of an odd number of nucléons).
Using the method described above the solution of the problem

becomes very simple, as L12 is exactly the A introduced before. To
obtain the matrix elements, the operator (?(1) + ?(2), L12) is applied
to a wave-function fLl(R) Wa,^) ', this yields a sum of functions of
the same type. When we multiply this sum by another wave-function

ipLl(R) y>As(7) and integrate (the integration on the E-coordinate
can be immediately done) we obtain the result as a sum of the
integrals It [of course, I0 will not appear as A yin0(7) vanishes].

In order to calculate the matrix elements of (17) it is more
convenient not to work with the Ax and Ay components of a vector,
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but instead with the combinations A± Ax ± i Ay. With this notation

(17) can be written in the form:

V(r) [i («!» + sf) A_ +i («<« + si?') /1+ + (*«« + sf) /Ü (18)

The wave-functions with definite tc^ lx and w2, Z2 in the (ml, ms)-
scheme are:

(m±, m±) (m1; m2) (5 (± yLj) ^ (± y ff2)

v». (rx) w™(r2) ô (± 1| cr^ ô (±4 j <r2)

where ct^ and o-2 are the spin coordinates of the nucléons 1 and 2.
The operators s+, s_, and sz, when applied on these functions, give,
as is well known :

s+ ô(ms\a) (y—«s) ò(—ms\a)

s_ ô(ms\a) l-=- + ms| ô(— ms\a) szô(ms\a) ms è(ms\a).

The corresponding equations for a general L are :

L± ipf= (I p m)l (I ±m + 1)1 ipm±1 Lzipm=my>m.

As (17) is linear in s*(1) and ?(2), the only non-vanishing matrix
elements are those which connect states differing at most in one of
the spin eigenvalues. As an example we calculate

J(m+, m2 =2J f f(mx, m2)* ò(\ \ax\ Ò (- ~ jcr2) V12(mx,m2) :

x ô ("2 ai) ô (- y ^) d3rx d3 r2

,d -• «ÌMÌ't)E I (mv m2)* à {-\ aX
a„ap •>

x Az(mx,m2) <5(y ct^ ó^o^d3^ d3r2 0

J(m+, m£) =11 V(r) (mx, m2)* Az(mx, m2) dzrx d3r2

K(m+, m+) / / V(r) (mx, m2)* Az (m2, mx) d3 rx d3 r2

J(m~, m~) — / / V(r) (mx, m2)* Az (mx, m2) ds xx d3r2

K(m^, m2) — / / V(r) (mx, m2)* Az (m2, mx) dsrx dzr2.

(19)
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These matrix elements will be used later on. If there is a difference
in one of the spin values, A+ and A_ may appear; for example:

2J I (m\' m2 )* ^12 (mi> m2~) d3rx d3r2

V(r) (mx, m2) *-^A+ (mx, m2) d3 rx d3 r2.

§ 10. Doublet splitting for a nucléon outside closed shells.

We shall have to calculate matrix elements of 18) in the (mt) ms)-
scheme and make applications for the doublet splitting for a nucléon
outside closed shells (the effect of this interaction on the energy
levels of Li7 will be treated later). If the doublet splitting in such a
case is large compared to the interaction energy between two
nucléons in this unfilled shell, the //-coupling scheme would result.

We start from the (mx, ms)-scheme and use the sum method to
obtain the energies of the doublet components. We use the fact that
Mj (as well as J) is an integral, and also the Lande interval rule
which holds for these interactions. This rule states that the energy
of the state 2S+1Lj is equal to

Ç,s Ls J(J+1)-L(L+1)-S(8+1)
Â

The expansion of the wave-functions (7), (8) in terms of the wave-
functions yL(R) ipA(7) is easily calculated by the method described
above. The results we need are given in the Appendix. We treat the
following cases :

A. A single p-nucleon outside the closed s-shell.
The wave-functions are (m*; 0+0_; 0+0~) where the last two

quantum numbers refer to two s-protons, the other two to two
s-neutrons and the mP refers to the odd p-nucleon. When computing
the diagonal matrix elements which belong to these functions we
see that the only non-vanishing contributions come from the ps-
terms. These are exchange terms if the two nucléons have the same
charge, and ordinary terms otherwise. The matrix elements were
calculated with the help of formulae (19). For example:

d(±l+,0+)-Z(±l+,0+)=yy'F(r)(l,0)*^(l,0)d3r1d3r2

f fV(r) v1±1(r)*v>g(B)*/l, yj"(r) y>°0(R) d3rd3R

fv(r) wtX(r)*A> ft\r) d3r

± fv(r) ^"(r)* ip^(r) d3r=±Ix
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and similar calculations for other matrix elements. The results for
the ps-diagonal elements are:

J(± lP0+)-K(± 1+, 0+) ±IX J(± 1+, 0+) ± -\lx
J(0+,0+) =K(0+,0+) =0

J(±l-,0-)-Z(±l-, 0-) plx J(± 1-.0-) p~ix
J(0-,0-) K(0-, 0-) =0.

With these results we build the following table :

Xj Wave-functions ps diagonal matrix elements Sum of the
energiesordinary exchange

3
2 (l+;0+0-;0+0-) (1+, 0+) (1+, 0+) Hi
1 (0+;0+0-;0+0-)

(l-;0+0-;0+0-)
(0+, 0+)

(fa, 0-)
(0+, 0+)

(1-, 0-) -ÎP
Ì ¦ ¦

As Mj is an integral the following equations can be written :

E(2P,!2)=\lx
E(2P3i2) + E(2Pll2) -^Ix

from which it follows :

E(2P3I2) ^I1
E(2P1I2) -SIX

in accordance with the interval rule. The splitting is accordingly:

AE ^IX.

B. A hole in the p-shell and a closed s-shell.

The relevant pp-matrix elements are calculated to be:

J(±lp0p-K(±lp0+) ±-1-Ix

J(0+, 0+) - K(0+, 0+) 0 J(± 1+, + 1+) - K(±l+, fa 1+).
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For the configuration sipB the corresponding table is:

*j Wave-functions Diagonal matrix elements Sum of the
energies Total

ps ordinary ps exchange pp exchange ps pp

1

(1+, I", -1+, 0+, O";
0+0-; 0+0-)

(1+, 0+)

(1-, 0-)

(-1+, 0+)

(1+, 0+)

(1- 0-)

(-1+, 0+)

(1+ 0+)

[1-i 0-)

(-1+, 0+)

-ih -pp -2 h

From this table we obtain E(2P3j2) — 2 Ix, and with the help
of the interval rule E (2P1/2) 4 Ix. The doublet is inverted and
the splitting is :

AE 6IX.

C. A single p-proton outside a closed s-shell and a closed neutron
p-shell.

The additional matrix elements for this case are (ordinary) :

J(l+,l+) i2 J(l+,0+) -il1+il2 J(0+,0+) J(l+,-l+) 0

from which we obtain:

Xj Wave-functions
pp (ordinary)

diagonal
sum of energies

Total
elements PP ps

3
2 (l+;l+,l-,0+,0-,-l+,

-l-;0+0-;0+0~)
(1+1+) (1+0+) ÌP+ ìh %h lP + ïh

This table gives

and
F(2P3l2)=TIi + Th,

E(2Pll2) -llx-^I2.
Hence the splitting is :

AE p±Ix+^%.

D. A single d-nucleon outside the closed s- and p-shells.

The relevant matrix elements are:

ds

J(2p0+)-K(2p0p~lx J (2+, 0+) \ Ix + i J2
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dp

9
J(2+,l+)-K(2+,l+) ^/1 + ^J3 ,7(2+1+)=-^^

2

9

4 x ' 4 3 v ' i 8 x ' 4

J(2+, 0+) - K(2P 0+) i Ix + 1J3 J(2+, 0+) 17X + 1J2 + ì Ia

Ll1^ afa3_TJlJ(2+,-l+)-iv(2+,-l+) A/1 + lj1 ¦il
j(2+, —1+;

with the help of which we obtain :

3 I -1 I +±IP1! P12+ 8 J3

*7 Wave-functions
diagonal matrix elements sum of

Total
sum

ds dp energies

ord. 1 exch. ord. exch. ds dp

5
2 (2+;l+, 1-0+0-

-1+, -1-;1+,1-,
0+, 0-, -1+, -I";
0+, 0-;0+0")

(2+0+) (2+0+) (2+1+)

(2+,0+)

(2+-1+)

(2+1+)

(2+,0+)

(2+-1+)

ih
+ ìh

T-*l 2 ¦'2
PAIx 4 'S

ih
+ T^3

Therefore

F^P^^h + ^h, E(2D'5/2/ — 4 --1 ' 4

and the splitting is :

3/2/
45 r 63 j

We thus see that :

for p-nucleon interacting with the 4 s-nucleons, the splitting is

2 Jl'
for p-proton interacting with the 4 s-nucleons and the 6 p-

neutrons, the splitting is
21 I +

15 I ¦

for d-nucleon interacting with the 4 s-nucleons and the 12 p-
nucleons, the splitting is

75 h
105
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Case and Pais gave in their paper6) an estimated form of the
potential V(r) to suit the experimental data of the scattering:

"TT I \ -TT I CI 6

* ' ° x dx x
where x r/r0.

The values of r0 and F0 were given roughly as r0 ~ 1,1 X10-13 cm,
F0 ~ 24 MeV. Using this potential the Ix can be easily calculated.
The result is :

I -^il_ 3

where
£^P -fa*MK

/«
2/"»

For this value of r0 and reasonable value of yr the It, I > 2, are
much smaller than Ix. The integral is very sensitive to the value
of pt (and for a fixed value of r0—to the value of ]fv). Some interesting

values are :

pt 1,0 1,2 1,3 1,4 2,0

Ix 1,16 0,57 0,40 0,31 0,07 MeV

We can fix the value of v by determining the nuclear radius in
terms of it :

B2 r2 Nf e-2'r'r2l+i dr
o

21+3
4 v

Using the relation R ~ 1-5 X ^41/3X10-13 cm we obtain for the cases
considered :

AE ~4MeV C. AE ~ 2 MeV D. AE ~ 3-5 MeV.

The first case cannot give any information on He5 or Li5 as there
are no bound states for these nuclei. It is interesting to see that
with the parameters roughly determined from the scattering
experiments the order of magnitude of a few MeV may be obtained as
required by the shell model (although this calculation should not be
considered more than an estimate).



218 Igal Talmi.

IV. The Low States of Li7.

§ 11. The Li7 nucleus.

The most striking fact about the Li7 nucleus is the existence of
only one low lying level, 0-48 MeV above the ground state, and the
absence of any other level up to a few MeV. The most natural
explanation of such a situation is that of the LS-coupling scheme,
where the ground state and the first excited level are assumed to be
the components of a 2P. However, various reactions were believed
to point out that the excited level has a more complicated character
and in certain reactions it behaves like a level with a spin 5/2. It was
therefore suggested by Inglis7) that the //-coupling scheme might
give the right explanation. In this scheme the ground level of the
configuration (p3/2)jy p^p has J 3/2 and there are four higher
levels with the spins 1/2, 5/2, 7/2 and another 3/2 (which lies somewhat

higher than the other three). If there are only Wigner forces
between the nucléons the levels J 1/2, 5/2, 7/2 coincide, and it
was assumed by Inglis that the excited level might be such a
compound one. However, even a rough coincidence did not result from
his calculations and the situation became still worse when Majorana
forces were included too23). There exists, however, another possibility,

that such a coincidence of the first excited levels would result
from the effect of non-central forces, such as tensor forces, and hence
in the next sections the calculation of the configuration (p3/2)Jr p^p
is carried out in the extreme //-coupling, taking into account tensor
forces and mutual spin-orbit interactions in addition to the central
forces.

Recent experimental results show that the assignment J 1/2
to the excited level of Li7 is very probable8), and therefore the
explanation could be once again based on the LS-coupling scheme24).
The splitting of the two levels should then arise from the spin-orbit
interactions. As the Thomas term gives too small a contribution,
we calculate the splitting due to the Case and Pais interaction. It
should be mentioned that the lack of other levels below 5 MeV is
not very well understood in either coupling scheme. Such
calculations should therefore, not be interpreted as successful explanation
but only as a preliminary survey of the various possibilities.

§ 12. The configuration (p3l2)% Ps/2p with central forces.

The energy values of the various states of the //-coupling scheme

can be calculated by the sum method from the diagonal matrix
elements of the (jx, /2, mk, m^)-scheme, in the same way as in
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atomic spectroscopy. The wave-function of a single nucléon with
given n, I, j I + 1/2 and m3- is given by:

¦ {nljm}\l) (21 + 1)-1 Ul A-mj + -jYu (n Im,- — y lW-y ax\ +

i)«(-tW] (2°)+IH — m3- + -g-) m (tc ' trij + -j
(the phases are fixed according to Condon and Shortley25)), or
briefly :

u(nljms\l) fu(nlm3 — -5-IJ óI-0-crjJ + grt« (toÏ»»/ + -5- lì ól — ^-|o"i) •

For I 1 and / 3/2 the / and g are :

3
7Ï) ¦ -—¦

1

"2
1 3

~"2'

/ 1 Vì VÏ 0

g
' 0

-1/fa
F fa V?

|

'

We define the integral J and the exchange integral K of the
interaction by:

(21)

J(nl j ms, n' V /' m/) TJ / I u*(nlj ms \ 1) u*(n' V /' m/12) x

xV12u(n ljrn3\l) u(n'l' j'm/\2) d3rx d3r2

K(nljmj,n'rj'm/) 2J I u*(nljms\l)u*(n'l'j'm/\2)x.
a, cr2

x V12u (n I j m, 12) it (tc' Z' /m/11) d3 rx d3 r2.

Exchange operators can be defined for the various central
interactions in terms of the spin-exchange operator Pa and the space-
exchange operator Px.

Type of force

Wigner
(ordinary) Majorana Heisenberg

(char, exch.) Bartlet

1 P. - Px Pa Pa

When the summation over the spin coordinates is carried out there
remains a sum of integrals on space coordinates only, the coefficients



220 Igal Talmi.

of which are products of /, g (of m}), and of /', g' (of m,). For ordinary
(Wigner) interaction we obtain (the common tc, I, and / were dropped
out) :

J(mj,m/)=f2f'2j(mj~~-^, m/— y; m} — y, m/ — y) -f

+ f2g'2j(mj — y, m/ + y; m,-— y, m/ +y) +

A-f'2g2J[m,j + y, m- — y ; wi3- + 2 »%'—y) +

+ g2g'2 J [m} + y m/ + y ; m, + y, m/ + y)

K(m},m/) f2f'2j{mi — ~,m-—-^ ; m/ —y *%— y|+

+ %ff gg' J{m}— -j, m/ +y ; m/ — y, m3 + y) +

+ g2 gf'2 J^ + y m/ + y ; m'j + y TC13- + y)

where J are the integrals on space coordinates defined by:

J (mx, m2 ; m3, m4)

/ V(r) u*(mx\l) m*(tci2|2) M(m3|l) n(m4|2) d3rxd3r2

(22)

(23)

some of them are the integrals encountered with among the matrix
elements in the (ml, wij')-scheme, e.g.

J (mx, m2 ; mx, m2) J (mx, m2)

J(mx, m2; m2, mx) K(mx, m2).

It is easy to see that in order to obtain the matrix elements of
the Majorana interaction, which is spin-independent in the above
representation, we must take the same coefficients as in (22) and
only multiply V(r) in (23) by the operator Px. This results in a
change in the order of the last two quantum numbers in J(mx, m2,
m3, ra4) which thus becomes J(mx, m2, m4, tci3). [This therefore
transforms J(mx, m2) into K(mx, m2) and vice versa.]

In order to obtain the matrix elements of the Bartlet interaction,
we must exchange the spin coordinates in (21). This can be achieved
by first doing an exchange of both the space and the spin coordinates

and then another space exchange. As a result JB has the same
coefficients as Kw but the last two quantum numbers are exchanged.
This means :

JB KM and KB JU.
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The matrix elements of the Heisenberg interaction should be
related to those of the Wigner interaction in the same way, but for
a change in sign:

JH -KW and KB ~JW.

It is therefore enough to calculate the case of ordinary forces. This
gives the matrix elements in the (jx, /2, mk, m^)-scheme:

J(4'Ì)-J(1'1) K[\,\) K(1,1)

J(4'-1)-3J(1'-1)+4J(1'°) s^'-tH**1«-1)
j(4>-4)=ja-i) x(4>-4) °

^(T.Ì)=y^(0,0) + 4j(l,0) + yJ(l,l)
k(y.Ì)=^K(0,0)A-~J(1,0) + ~K(1,1)

^(i.-|)=|-J(0)0)+|j(l,0) + 4j(0,-l)+yJ(l,-l)
K(~,-~) ^K(1,0)+^K(0,-1) + ±J(0,0;-1,1).

The matrix elements in the scheme (ml, m{), i.e. J(mx, m2, m3, m4)

are easily calculated in terms of the J( from the wave-functions of
the pp-configuration A 3 ; they are (for ordinary forces) :

J(l,l) 4(Jo + 4) J(l,0)=T(I0 + I2)+yJ1

J(0,0) ^(Io + hi-Y11 J(l,-l)=y(I0 + I2)

K(l,l) |(4 + 4) Z(l,0)=|(I0 + J2)-yI1
K(0,0) =|(4+4)-4ii Z(l,-l)=y(I0 + I2)-I1

J(0,0; -1,1) - i-(j0 + 4)+4ji-
To pass from a direct to an exchange integral in this scheme the
integrals I which arise from functions symmetric in the (space)
coordinates of the two nucléons (those of even A, like I0, I2, Iw,
etc.) should be kept unchanged, while those arising from antisymmetric

functions (odd A, like I-,) should be multiplied by —1. In
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terms of these matrix elements the diagonal elements of the (jx, /2,

m3], ra«-)-scheme can be written down.

In order to calculate the energy levels we write down the matrix
elements corresponding to the various Mj [when writing (m3i, mjt ;

m^—mk and mÌ2 are the two neutrons' quantum numbers and mh
is the proton quantum number]. We obtain the following table:

Mj States in the (m,-, to,- ; to,- )-scheme
Diagonal matrix elements

exchange ordinary

7
2

5
2

*,2' 2 ' 27
C-3- J-1
\ 2 ' 2 /

/S SWS 11
\ 2 ' 2 / \ 2 ' "57

/3 1 3W3 1 _ 11
12' 2 ' 2"A 2 ' 2 ' 27

(S IV3. _i.\\2> 2A2' 2/ (f,IMf.i)(W)(M)
3
Y

/3 _ 3 3U3 _ 1 1 V 8 1
\2< "2 ' 271Y> 2 ' 27V 2' 2 -IVI -1 -.31

2 A 2 ' 2 ' 2 7 (a i\(i _n\2> 27 12' 2/

(l"'-f)("2"'-i)
(%-' i) (2 » P (%-> ""?) W' _f)
(t'-f)(l.-l)(f'i)(l'-i)

1

2
("3 _3 1 VI _ 1 IV8 _1
*Y> 2> 2 A 2' Y ' Y7VY > 2

¦-JLV4 1--A1' 2A2' 2 ' 2/
/1 _3 3s!fa 2 ' "57

(A J A (ft -ii12 ' 2 7 \Y> Y7

\Ì'~y)\2"'~'2i
(L-f)

(f ' - I' (y> y) (t' - 2 (y' y)

(y> -y)('2' yay> _y)(y'y)
(h-Mh-i)

Thus we see that there are 5 independent states, namely those
with J 7/2 and J 5/2, the two with J 3/2 and the one with
J 1/2. The sum method can only give the sum of the two states
with J 3/2 but here we can separate the two levels with the help
of another quantum number—the isotopie spin r. 2 neutrons and
1 proton have the projection tz —1/2 of the isotopie spin r, and
therefore the states may have either r 1/2 or r 3/2. The states
which have r 3/2 are also the states of the configuration (p3pP
(xz 3/2). Xow (papp has only one state—J 3/2 (t 3/2) the
energy of which can be immediately obtained from an analogous
table :

Xj
States in the

(to?i to^ TO?-s)-scheme

Diagonal matrix elements

exchange ordinary

3 13. 1 -1)\2> 2' 2/ (A IV-3- -IVI -iiV 2 ' 2 A 2 ' 2 A 2 ' 21 —

The sum of these energies is the energy of the state J 3/2,
t 3/2. When this energy is subtracted from the energies of the
two states with J 3/2, which is obtained from the other table,
the value of the level J 3/2, r 1/2 is left.
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Using the values given above for the matrix elements we obtain
the following values of the energy levels :

\> Type of
^-^¦^. force

State ^-^^
WiGNER Majorana Heisenberg Babtlet

J | *=l \(h +h)+\h îtl0+h)-ih Wo + hì + ih -Wo+h)+-lh
J=2 T=| I0 + I2 + I, h+ h-h -ì(I0 + h) + h ipi0+I2) + I,
J=|- *=i I0+I2 + I, P+h-Ah -UP+ij+p i{I0+I2)+%h
J Y x=\ I0 + I2 + I, h+h-ih -ijh+hì+h Uh+hPîh
J | r=| fiP+ IJ-lP TiP +hi-ih Wo + hPih ~lPo+h) + îh

The same results expressed in terms of the Slater integrals are :

^^-\^^ Type of
^\^^ force

State ^\^^
Wigner Majorana Heisenberg Bartlet

j=I r=| 3^-5^ 2 -p 40 F"3fa+ 3 *» 3F0-5F2 2 F —F„8 * o - 3 2

j=\ t \ 3^0-3^ F0+1F2 -6F2 2^-4^
J=i r=l 3^0-3^2 2- F +^F„9 -^0+ 9^2 -&F2 9 -f0-¥-r2

i=\ *=2 3 J*,- 3F2 _ 2 17 4« p3J'o+ 3 ^2 -6F2 i^O + T^
•> f *=2 3Fa+7F2 4 ji « i?3^0+ 3 ^2 + 1F2 M.-f^.

The connection between the I% and the Fk is given by :

I0 + I2 2F0 + 2F2

IX F0-5F2
or

°~ Ï2 (-^0+^2 U F0 F°

F,=--~(Io+h)-ih F2=F2i2i12

(Only the combinations I0 + J2 appears, and thus there are only
two parameters I0 + I2 and Ix replacing F0 and F2.)

In the short range limit — It 0,1 > 0 (or F2 5 F0), the results
for Wigner forces and Majorana forces coincide, because then only
space-symmetric functions contribute to the energy (the same
applies for Heisenberg and Bartlet, except for a change in sign).

It is interesting to note that in the long range limit, when all the
Jj are equal (Fk 0, k > 0), the term values of the Heisenberg
interaction vanish for t 1/2. This fact can be explained in a
general way. With the help of the isotopie spin t the Heisenberg
interaction can be written as:

Zvik z 1 + 4 (P ') V(\p-rk\)
i<k
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If V(\7t — 7k\) has a constant value in the region where the wave-
functions differ from zero, we can put it out of the integral sign
when calculating the energy, and what remains is the diagonal value
of the operator 27 [1+4(tw, 7K}i))~\/2 belonging to the state consid-

i<k
ered. This value can be immediately found as follows (it is an eigenvalue

if the total isotopie spin x is a quantum number of the given
state) :

T E t C1+4 Fw>?w)) E t+E2 (*(i)> ?w) —4^ +
i<k %<k i<k

+ r(r+l)~nPi\T^ + l)=r(r+l)A-^--n4

T (i) M»)TW+1)

This is the factor of F0 or I0 when It I0, in any state with given
n and r. In the above case n 3 and we obtain:

r y T 3; r y r 0.

The coefficients of F0 for Bartlet forces (and //-coupling) can be
evaluated in the same way was used by Racaii19). He evaluated
the diagonal value of ,27 (1 — PiJe)/2, and therefore, in order to obtain

i<k
the diagonal value of 27 Pik, the value he obtained should be multi-

i<k
plied by —2 and to it tc (w — l)/4 should be added. The result is :

n(n-l) nj(j+l)-J(J + l)
4 (2'+1)2

§ 13. Matrix elements of the Tensor Forces Interaction.

The interaction energy in the case of tensor forces is :

V12=SX2V(r)
î«1) 7\ s2){*'r)/'r)-\(7^) V(r) 7 72-7x. (24)

It appears also in atomic spectroscopy as the magnetic spin-spin
interaction. Also here the development in a series of spherical
harmonics is complicated and would not be practical to work with. The
tensor forces play an important role in nuclear physics. They have
been used to explain the quadrupole moment of the Deutron and,

very extensively, in the analysis of scattering experiments. They
may also give, in second approximation, a contribution to the doublet
splitting.

By our method it is quite a simple matter to obtain matrix
elements of the interaction (24). It consists, in fact, only of the
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computation of matrix elements of spherical harmonics with I 2,
which can be done generally by the use of the Gaunt formula26), or
else by direct integration. The operator <S12 of (24) can be written as :

P ^*wf)-4(?ö),^=(,a)Ä»)+Ä(i)Ä«)) (lsm24fal)+

+ s»1» sf (cos2 &- y) + y (sW sü'+*Ü> sf )sin * cos d e* *-

+ y (41' s+° + s+> ««) sin 0 cos 0 e-** + \ s(P s™ x

x sin2#e2i«fa- ^-s(i)s(2)sin20e-2i'p
4 + +

(25)

__1_(S(1)S(2)+S(1)S(2))Y(1)(^(?) +

+ K^(41,^2) + ^(+42))n-1)(^^) +

+ ~sP s<i> Yf (^, y) + -~ ««> s<2> y<-2>(#, ç.).

In order to obtain the matrix elements in the (/-,, /2, m^, to,-J-
scheme we use the wave-functions A 3. <S12 operates on the spin
coordinates of the two nucléons, with respect to which the
summation can then be carried out, and what remains is a sum of
integrals on the r-coordinate with products of /, g, /', g' as
coefficients. The angular integration can be easily done and the radial
integrals can be expressed in terms of the /;. In addition to the
integrals met with before, there appears also:

I2>W N2NX0f V(r)R2(r) Rw(r) dr =]J\(^IX-^I2).
o

I0 does not appear in these sums because SX2 contains only spherical
harmonics of order 2 [as a result of subtracting (sa\ s"(2))/3].

We shall give here the results for the configuration (p3/2)jr P3/2p.
The exchange integrals K are easily derived from the direct integrals
J by an exchange of only the space coordinates of the two nucléons
(multiplication with Px). This means that integrals arising from
symmetric functions (even A, like J2, J2,io> GJÙG-) remain unchanged,
while those which arise from antisymmetric functions (odd A, like Ix)
are multiplied by —1. This is a result of the fact that the operator
S12 is diagonal with respect to the total spin (of the two nucléons) S,
and that its eigenvalue for the singlet state (S 0) is zero. There-

is
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fore only that part of the wave-function which is in the triplet
state contributes to the matrix elements, and that part is
symmetrical with respect to the two spin coordinates. Thus instead of
spin and space exchange, space exchange alone is sufficient to obtain
the K from the J integral. This is clearly seen in the results :

° \2 ' 2) - 42 ±2

t(s M- 1
T - 1

TJ\T'T)~ 180 ll "84'J2

7(A _L\-A-T _
5 J _ I l/5:T ~-^T +

1 I\2* 2/~180 * 756 2 135^2 fait)- 180 * ^ 84 2

/l'A M-ir.1! * l/^i" -J^r''Ir 2/l^60l1 252 ^2 90|/2fa10~42 2

Wl 1\_ 19 j 4 1/5" _ ?_r J_tl2*2/~ 1134^2 405(/2 2.io~ 135 x + 126 2

7/1 _--U—L T -A*5 T --1 \fÌ 1 -lf_ir\2' 2/ 60 2268 2 810 |/ 2 faio" 135 fa ^e^

K(T'T)=-~ 42 Ia

WA 1W- - I - 1 IÄ\2 ' 2/~ 1802l 84 l2

al2' 2/1- 180 756^2 135^2 2,10- 60 Jl+ 84 2

Kfl^lU-lj^lr-M/5! ^_J_I+1/M.2' 2 fa 60 252 2 90 K2 2'10~ 30 x + 42 a

k/1 1U_J i +A-T
\2 ' 2) 135 * ' 126 2

Wi _iU_lj _
25 / -J-1/1J — ±7 - î I\2' 2/ 60 2268 2 810 |/ 2 ^2,10" 54fa 126 ^2 "

When treating the tensor forces as a perturbation on the strong
spin-orbit interaction which gives rise to the //-coupling scheme, the
sum method can be used to determine the first order contributions
to the energy levels. This is done in the same manner as in the case
of central forces. We give here the results for an ordinary potential
and a potential which is multiplied by the operator Px (this simply
replaces J by If and vice versa). The Iz in the following table are
12 times those defined above, as it is customary to define SX2 as
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3/r2(ff(1), 7) (?<2>, 7) — (a^\ ff(2>) which is 3 • 4 12 times the operator

S12in (24).

State Ordinary potential
Potential with
space exchange

T — 3 T — 3 2 I3 -*1

r _ 7 t — 1 *W« _ X- T, - j 7„if r 72
/ | T Y î J1 + ÏIJ" _ 2 3 r 1 5 r

J \ r -i. -tVA + ^2 -HW
J | T ¥ l'i -±K

The matrix elements of the mutual spin-orbit interaction (17) can
be calculated with the help of those in the (m,', m,)-scheme. The
wave-functions (20) are used and the matrix elements are the sums
of matrix elements in the (ml, /n/)-scheme, with coefficients which
are products of /, g, /', and g'. Here it is seen, much better than in
the (ml, mj')-scheme that the K integrals differ from the J only by
the sign of the I; arising from space antisymmetric functions. The
reason for it is the same as in the case of the tensor forces. The

operator (?(1)+?(2>, A) is diagonal with respect to the magnitude
of the total spin S (S ?(1! + ?(2)) and its eigenvalue in the singlet
state is zero. [In the (ml, m,')-scheme this fact manifests itself in
the vanishing of the matrix elements when mSl ± 1/2 mSl +1/2].
The results are :

•'(+4
¦HP -

Pi fi - "

'(t-tK^+t* J(Ì' ~y)~'6Ii+ 6"1

J(t't)=_9"12 J\2' 2J~9 J2

(~2~'t)=-"6Ji+ T^2 K[~2'~
1 \ 1

j-
1

j.~TJ-~"6"Ji + T1

Pi-ÌPP* Pt- -l)-±I2}9 2'

From these matrix elements the first order contributions to the
energy levels of the configuration (p3/2)|r P112P can be calculated with
the help of the sum method. These contributions are :

J. 5.
2 2

3 42 ¥
3
2"

2 I

1 M T + 3 T
2 Y l+-2-*2 iA+ l|/2 -bh + h 1 1 - 1 1

T 1 6 •
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§ 14. Numerical results.

In order to obtain numerical results we have to evaluate the Iz.
We assume that the potential of the interaction between the nucléons
has the radial dependence of the Yukawa potential. The general
formulas for the Iz in this case were given in § 6.

The value of j/r, which measures the extension of the wave-
functions, can be roughly determined from the Li7-Be7 Coulomb
energy difference. This gives: 1/|/V ~ 2-4xl0~13 cm.

The value of r0 of the Yukawa potential can be taken from the
analysis of scattering experiments; it is between 1-1 and l-4x 10"13cm.
This determines roughly X ~ 0-5,
following values are obtained :

1. For X 0-5, pt, 1 the

0-137 V Ix 0-040 V I2 0-014 V.

For the tensor forces we take the same radial dependence as for the
central interactions, with the same results for the I(.

We shall now show that there are certain values of the interaction
parameters for which the four excited states (or three of them)
nearly coincide. Such a possibility can only mean that the
interpretation in terms of the //-coupling scheme could have been
consistent with the existence of a low-lying compound level, if this were
experimentally verified.

State
Exchange operator

(l + P,)/2
Exchange operator
(l+Px)(i+iPa)/2

y 0 y 3 y 4 \y 0 y 6 y 8

J | T |
J \
J =\
J \
J f T \

0-68

1-00

0-88

0-75

1-38

1-28 (1-98)

1-30(1-80)

1-26(1-76)

1-23 (1-73)

2-34 (2-04)

1-48 (2-18)

1-40 (1-90)

1-38(1-88)
1-39 (1-89)

2-66 (2-36)

0-68

1-50

1-30

1-10

1-86

1-88 (2-55)

2-10 (2-60)

2-05 (2-55)

2-06 (2-56)

3-80 (3-50)

2-28 (2-98)

2-30 (2-80)

2-30 (2-80)

2-38 (2-88)

4-40 (4-10)

For the case in which an exchange operator (1 + Px)/2 multiplies
the potential, the coincidence of the higher levels can be achieved
by adding a tensor force with an exchange operator —Px. If we
take the exchange operator of the central forces to be

Ji(i+pj(faip„)4(4 Tr + i-M-i-H + i-B
where W, M, H, and B are the exchange operators of the Wigner,
Majorana, Heisenberg, and Bartlet interactions respectively, a co-
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incidence can also be attained with the same form of the tensor
forces. The results are given in the preceding table where the energy
values are expressed in units of V/l and V is the constant of the
Yukawa potential in the case of central forces. The corresponding
constant for tensor forces is yV.

If V is equal to 7 MeV the above energies are in units of MeV.
The spacing between the ground state and the excited (compound)
level is then of the right order of magnitude but bigger than the
observed 0-48 MeV. If the contribution of the mutual spin-orbit
interaction is added, this difference decreases. The term values so
corrected are given in the above table in parentheses.

Obviously there are enough parameters to explain the coincidence
and the level spacing. The above calculation points out that with
reasonable values of them agreement can be achieved, but as long
as more exact values of the interaction parameters (magnitude and
range of the potential, exchange character, etc.) cannot be fixed
with the help of other experiments, no decisive conclusion can be
drawn.

§ 15. Splitting of the (p% pP)22P ground state due to

spin-orbit interaction.

As already noted the new experiments favour the assignment
J 1/2 for the first excited level of Li7. It became also clear that
the level is quite sharp and there are no other levels in its close

neighbourhood8). The explanation in terms of the LS-coupling
scheme seems therefore plausible. There is also some evidence that
the ground state of Li6 is 3SX which means that in that nucleus
LS-coupling exists. The configuration p% pP in the LS-coupling
scheme was treated by Wigner & Feenberg27)28), and by Hund29).
For Wigner and Majorana forces the lowest state is a 2P with
r 1/2. According to this the two lowest levels of Li7 should be

interpreted as the two components of this doublet with J 3/2
and J 1/2. With this interpretation the problem still exists where
are the other levels of this configuration, specially the next 2F

(r 1/2) which should not be as high as 5 MeV (for reasonable
values of the parameters). We shall calculate the splitting of the
ground 2P, arising from the mutual spin-orbit interaction of the
type introduced by Case and Pais, as it is well known that the
Thomas interaction and the magnetic spin-orbit interaction give
too small a contribution (a splitting can arise also from tensor
forces, but only in the second approximation).
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The energy of the ground 2P is for Wigner and Majorana forces:

SFn + 18F2
11

(h + h h
(in the notation of Hund it is 3 A + 2 B where A F0 + 4 F2 and
5 3 F2). This energy is not degenerate (some of the energy values
of higher states are twice and thrice degenerate), and thus it is
possible to find the wave-function of the ground state by direct
diagonalization of the energy matrix in the scheme (mh, m,2; mH).
The energy is not degenerate also in the short range limit, so that
we may calculate the energy matrix in this limit, which makes the
calculation simpler.

The wave-function of the ground 2P (or the ground 22P in the
notation <2 t+])(2s+i)JrVj) in the state Mj 3/2 is a linear combination
of those wave-functions (mf1, mf; mp) for which

Ms ms ¦m. TO« and M, m, to. m,= +1.

There are 8 such functions [in the notation (mf m, m, '») 1 and 2

are the neutrons numbers and 3 is the proton number] and they
are listed below:

Vl=(l+,-l + ;l-)
%=(1+, 0+;0-)

y.8=(l+,-l-;l+)
With these functions the energy matrix in the short range limit,
where only I0 is different from zero, can be built and the diagonalization

carried out.

V4 (1-, -1+; 1+) y7 (l-,0+;0+
^=(1+, 1-5-1+) % (0+,0-;l +

?6=(l+,0-;0+)

The energy matrix in units of 1/4 70.

4 -1
i

-1 4

6 -2 2 -1 0 -1
-2 6 -2 0 -1 1

2 -2 6 | -1 1 0

-1 0 -1 5 -1 1

0 -1 1 -1 5 -1
-1 1 0 I 1 -1 5
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The matrix is already reduced and the value of 11/4 I0 of the
energy of the ground 2P is an eigenvalue of the 6-row matrix. The
corresponding wave-function is a linear combination of the 6 functions

ip3, ipt, f., y>6, tp7, ips the coefficients of which are the
components of the eigenvector of the 6-row matrix which belongs to
the eigenvalue 11. The linear equations are easily solved with the
following results for the coefficients (after normalization to unity) :

V (22PlP M, f)- «
(1+, -1-; 1+) - *

(1-, -1+; 1+)
|/15

+ ——- (1+ 1" —IP— -
1

+1+ Q--Q+1+ * fi- 0+-0+Ì —+ 1/Î5 l ' ' ' \/l5[ ' ' ' ]/P5[ ' ' }

1

1/15
(0+, 0-; 1+)

The diagonal matrix elements of the mutual spin-orbit interaction
which belongs to this wave-function can be now calculated with the
help of the matrix elements in the (mx, m2-)-scheme. In order to
obtain the total splitting this function should be multiplied by the
wave-functions of the 4 s-nucleons and so the contribution of the
interaction of the p- with the s-nucleons will be added to the
interaction of the 3 p-nucleons themselves. The calculation is
performed in the same way as in cases B and C above. The results are :

Energy of the
sp-interaction

Energy of the

pp-interaction
Total

15 2 2 Jl
1 k r _ 1 j-j j- 0 12 — ji2 i 11 + TT ^2

This is the energy of the state 22P:3/2-

E(«P/2)=il+llL3/27 — 2

the Lande interval rule yields

E(22Px%) -I-j-I
so that the splitting is :

AE h
The integral Ix was already calculated with the potential given

by Case and Pais. The value of ]/v can be roughly fixed by the
determination of the Coulomb energy difference between Li7 and
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Be7 in terms of it. This gives for the splitting the order of magnitude
of ~ 1 MeV. The smaller level spacing in Be7 can be explained by
considering the Coulomb expansion. It is not possible to make more
exact statements as the value of Ix is very sensitive to the values
of the parameters. Although this should not be considered as an
exact determination of the energies, it is interesting to see that the
right order of magnitude is obtained.

The author would like to express his deep gratitude to Prof.
W. Pauli, under whose guidance this work has been carried out,
and also to Prof. M. Verde and Dr. M. R. Schafroth for helpful
discussions.

Appendix.
Expansion of the wave-functions of two nucléons.

(0,0) V°(B)Vg(r)

(±1,0).

55.

ps.

Al

(0,0).= y?(B)v8(f)

±l,0)o -j^-{(±l,0)-(0, ±1)}
(0,0)o -V»(r)v8(B)

(0,±l)}=y>t\R)y>oo(r)

-w^(r)y,°0(R)
A2

pp.

(±1, ±1)

(±1,0).

(±1,0).

(0,0)

i
(f±2(R)rì(r)-fi2(r)w°0(R))

p: (Vi1(R)y>00(r)-w2±1(r)<(B))

v\ (^(BJvîW-v^WvîW)
^(yl(R)f00(r)-y>l(r)W°0(R))-

-^(w°10(R)f00(r)-WÌo(r)v°o(B))

(±1. fa 1). JtP(fl(tt) f°0(r) - wl(r) y>l(R)) +

+ p^(f%(R)y>00(r)-V>ìo(r)v>00(R))

(±1. TI).- jriyt^Fl) v?\r) - Vi" M W^(B))

A3



Nuclear Spectroscopy with harmonic Oscillator Wave-Functions. 233

ds.

(to, 0). y2
- Or (B) vS « + V?« V8(B))

m — 2, — 1, 0, 1,2.

(±2,0)a ¥l±1(-B)Vi±1W A4

(±l,0)a -A,(^(B) w\(r) + y±i(r) y?(B))

(0, 0)a -L- W (P) Vx"1 (r) + VÌ to Vf1 («))

Only the symmetric functions are listed, the antisymmetric functions

are obtained from them by interchanging R and r.

(±2, ±l)s yfp£*(R) yg<r) -y vi"(B) V2±2to

(± 2, 0)s i#2(B) vSM + 4-vî(-R) V2±2W -
1/2-

Vï"(«) Vs^to

(±i, ±i). ^v3±2(«) vSto —^vî(B) v2±2to

(±2, Tl),= -±= wf\R) wl(r) —JLyfHB) <0(r) +

+ ^Vif(B) vSto --^Vi"(B) vSto +

+ A^HB)w2W

(± 1, 0). - \flwfl(R) W°M +~wt1(B) y%(r) -f o |/6

--j^-Vii1^) vSto —y^vtHR) iï(r)

(0, ± 1). l/130V3±1(B) vSto -^-vtHR) V?oto +

+ -A_-vg(B) V°0(r) +\ft1(R) Wl(r) -
Vf1 (B) V2±2 to - tÌ" VÎ (B) V2" to

|/ë /3
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(±l,+l)s

(0, 0).

\}/lvì(R)<(r)-~fì(R)<(r)-
+ ^TVÏi(B) vSto +~fI1(R) fl(r) -
-^vîW^to-^viW^to

--^- V$(B) VU to + -Ç- v? (R) VÏoto -
- |/J vìi (R) < to -^ vr1 (B) v2 to

- i vî (B) v£ to - fapr ^(E) V2_1 (r) •
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