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On the Energy Spectrum in Quantum Hydrodynamics
and the Theory of Helium II

by A. Thellung.
Swiss Federal Institute of Technology, Zurich.

(8. III. 56.)

Summary: The eigenvalue spectrum of the quantum-mechanical Hamiltonian of
non-viscous fluids is calculated in the approximation of large sound velocity and
for low densities of phonons and rotons. The anharmonic potential energy in the
Hamiltonian has no influence on the roton energies in the approximation considered ;

all contributions due to the term ~ (q — q0)3 cancel and the term ~ (q — q0)ì only
gives rise to a renormalization of the sound velocity. Several procedures to cut
off large "wave numbers are discussed. They lead to different results, but they all
yield positive rest energies of the rotons and, when applied to He II, energy spectra
of the right form and order of magnitude to fit the experimental data on specific
heat up to temperatures near the A-point.

§ 1. Introduction.

After the energy spectrum of liquid helium postulated by
Landau1)2) had proven to be so successful in explaining and predicting
many properties of He II, several attempts have been made to give
this energy spectrum a more secure foundation. One of these
attempts consists in quantizing the hydrodynamical equations of
a non-viscous fluid and looking for the eigenvalues of the
corresponding Hamiltonian. For the case of irrotational motion this has
been done by Kronig and Thellung3), and the concept of phonons
has thereby become clarified. The theory has been extended by
Thellung4) and by Ziman6) so as to include vortex motions. The
total Hamiltonian is then found to consist of three parts : The pho-
non part of irrotational hydrodynamics, which can approximately
be diagonalized, a roton part, and an interaction between phonons
and rotons. Ziman5) succeeded in finding certain eigenvalues of the
roton part, i. e. the eigenvalues for one roton present. It is also
possible to calculate the eigenvalues of the roton part when two rotons
are present, but this problem is rather academic as long as the
interaction part of the Hamiltonian is neglected, which is easily seen to
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modify the energy spectrum by amounts of the same order of
magnitude as the eigenvalues of the roton part. In order to avoid a
perturbation treatment of the interaction we have first tried a method
analogous to the Bloch-Nordsieck transformation in quantum
electrodynamics6). However, it turns out that the remaining non-
diagonal term in the transformed Hamiltonian, which is a small
perturbation in electrodynamics, is here as big as the original
interaction. Therefore nothing is gained and it is, in fact, simpler to use
conventional perturbation theory for the original interaction energy.
In the case of liquid helium we shall see that this is not a bad
approximation. One might also try to calculate the quantum-hydrodyna-
mical partition function directly without knowing the explicit
energy eigenvalues. However, it is easier first to determine the
eigenvalues approximately.

Meanwhile a paper by Allcock and Kuper7)*) (to be referred
to as AK) appeared which gives the energy spectrum for an
incompressible liquid (sound velocity c0 oo). For c0 large but not
infinite they treat the case of one roton present, passing from second

quantization to the representation of the roton in configuration
space. They follow a method of Lee, Low and Pines8) and Zienau9)
(which is similar to the Bloch-Nordsieck transformation6)) to
obtain a development in negative powers of c0. Setting the anhar-
monic potential energy in the Hamiltonian equal to zero, they give
an explicit expression for the rest energy of a roton ~ cz~l (the rest
energy of order ejj disappears), without however evaluating the
integrals involved. Even its sign is uncertain.

In this paper we calculate the kinetic and rest energies of the
rotons to the first non vanishing order in negative powers of c0 (i.e.
~ c® for the kinetic and ~ c^1 for the rest energy). We do not
abandon second quantization and we use conventional perturbation
theory from the very beginning. The contributions of the anhar-
monic terms in the potential energy are fully taken into account
to order c™1.

In § 2 of this paper we present the basic Hamiltonian. Two special

questions are discussed in § 3 and § 4, namely a renormalization
problem arising from the anharmonic potential energy and the
order of factors in the Hamiltonian. § 5 and § 6 contain the calculation

of the roton energies according to a cut-off method proposed
by Ziman. In § 7 other cut-off procedures are examined, and in
§ 8 the results are discussed and compared with experimental data.

*) The author is indebted to Dr. G. R. Allcock and Dr. C. G. Kuper for
sending him a preliminary form of their manuscript.
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§ 2. The Hamiltonian.

In the quantum hydrodynamics of a non-viscous fluid the Hamiltonian

is known to be simply the sum of the kinetic and potential
energies4)5).

H=jd°x(±VQV + EP(0)). (1)

r
It is most convenient to express the velocity v in terms of a scalar
potential cp, the density q and Ziman's5) variables W, W*,

v -Vcp-^{W*VW-VW*W}. (2)

The four fields introduced fulfil the following commutation
relations5)

[o(x),cp(x')]=U(x-x'), [W(x), W*(x')] d(x-x'), (3)

all other commutators vanishing. We substitute (2) into (1) and
expand all functions of ~ in rising powers of the deviation of ~ from
its equilibrium value q0, in particular

JL J e-go (e-.o)2 /4)
g go g. e.

and (see for instance Kronig and Thellung3) equ. (31))

^tó-Ì|^-^)XÌ(^f)ote-e„)3 + ^(^f)ofe-.„)X-..(5)
The Hamiltonian is then split up into a sum of terms similar to
expressions (l-7a)—(l-7g) of AK, viz.

fîph=/d8a:{|-„(Fi-)- + |^(e-e«)-} (a)

v

Hxot=Jd3x(-j~) {^* VW-VW* W}2 (b)
v

tfint =fdsx~Vcp{W*VW- VW* W) (c)
V

Kh =fd*x[i\vcp (ô-eo) Vcp + Ì(« £) (j_ft).} (d)
V

fîph=/d34(^î)o:^oX (e)

#int J d°x~(Q-q0) {W*VW-VW* W}2 (f)

H^=fd*x(--£r) (p-6o)2{W* VW-VW* W}2 (g)

(6)
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The symbol : (o— £0)4: in (6e) means that later, when (~—p0)4
will be expressed in terms of creation and annihilation operators,
we shall have to write this expression in the form of an S-product
as defined by Wick10), i.e. witb all creation operators to the left and
all annihilation operators to the right. This results from a
renormalization that has to be carried out on the sound velocity, and
will be explained in § 3.

In (6 a)—(6g) the terms with a suffix ph contain only the phonon
fields q and cp. Hmt depends exclusively on the roton fields W, W*,
whereas the terms denoted by a suffix int contain both fields. The
primed and double primed expressions are subsequent terms of the
expansion in powers of ~ — q0. In classical hydrodynamics q — q0 is

very small compared with q0 for vortex motions and sound waves
of moderate amplitude, so we would expect that also in quantum
hydrodynamics the first three terms (6 a)—(6 c) should give the main
contributions to the low energy eigenvalues.

Assuming all field quantities to be periodic in a cube of volume V
we decompose them into Fourier series

kz^S{ak+a~k)e'kxv

^ZVtt^-«-*)«-îkx
(7)

W=A%Zb^ikx, lF* jVìZbt^ikx- (8)
' k * le

Here we have introduced at once the operators a*, a, b*, b, which
are seen from (3) to obey the commutation relations characterizing
creation and absorption operators, i.e.

[ak, at,] [bk, bt,] ôklc,, \

all other commutators being zero. J

Then Hph becomes diagonal3),

ffpn=27^0/.(nfc-fX), (10)

where n^ a% ak are the numbers of phonons of wave vector ft.
Ziman 5) has shown that Hmt takes the form

H f XM2'(7.2 + m2)ò*òm +rot seoF u™-r

+£(k + n) (l+m) bt ò^òfcb^fc+^+J (11)
k,l,m,n J
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Here one has to use a cut-off method which allows for the atomistic
structure of the liquid and the finite number of degrees of freedom.
Ziman has made it plausible that the Fourier series for cp, - and W
should all be cut off at the same maximum wave number K0
so that all sums in (7) and (8) are to be taken only over ft's with
k |ft| <_T0. K0 is determined by the condition that the number of
possible ft's should equal the number of degrees of freedom, i.e.

271 8^. (12)
fe

_<_-„

Nat is the number of atoms in the volume V. We are going to use
this cut-off method troughout in our calculations, except in § 7.

Replacing the sum in (12) by an integral, we obtain for liquid helium
3,

K0 l/l87.2™-?5- 1.57xl08cm-1 (13)
\ TOHe

(mHe =~ mass of the helium atom; q0 density in the absence of
excitations, i.e. at the absolute zero, an 0-145 g cm™3 ")). HI0t can
be written as

HIot=2J(\ + Bo^)N„
m

m< K0

8SoV £ (ft +n)(l + m)b*mb*nbkb,òk + lm + n, (14)

where

k, t,m,n
Tc, l,m,n< K0

H2

k<Kv lc< __0

Nm — b%, bm is the number of rotons of wave vector m. For liquid
helium, the numerical values of the roton rest energy z_0 and the
maximum kinetic energy B0K02, divided by Boltzmann's constant
x, become (using (13))

A 6.7°, XX! 11.20. /16)

In comparison, the maximum phonon energy is

FaAza.
_= 28.6° (17)

(c0 239msec-112)).
HI0t is diagonal for the states where the total number of rotons

^rot^ ZNm (18)
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(which is a constant of the motion) is 0 or 1. The eigenvalues of Htot
can also be exactly determined for _Vrot 2*). The result is that
the eigenvalues show very minor deviations from the spectrum

2 z_0 + B0 (m2 + m'2) (19)

(where m and m' are any wave vectors) which one would have if
only the first term on the right hand side of (14) were present.
This is not surprising, as, roughly speaking, for iVrot <^ 3 Nat the
second term on the right hand side of (14) gives contributions only
of the relative order of magnitude NI0t/S _Vat. For the application
to sufficiently low temperatures, when the density of rotons is small,
this term is negligible. In what follows we shall ignore it. It can
be shown that this is completely legitimate for the calculation of the
thermodynamic functions of helium below the 2-temperature.

Thus we have reached the result that the transformations (7) and
(8) diagonalize Hph and, to a very good approximation (if _Vrot <^.

3 Nat), also HTOt. Simultaneously the total momentum

G=Jdsx±-{ov + vp} (20)

v

becomes diagonal and takes the form

G ^nknk + 2;nkNk. (21)
k k

which shows that the phonons and rotons of wave vector ft carry
a (linear) momentum p %k.

However, iïiIlt (6 c) changes the energy spectrum considerably
(see also AK). These corrections will be calculated in §§ 5 and 6.

Allcock and Kuper have stated that for the calculation of the
roton rest energy even the terms (6d)—(6g) cannot be neglected;
they will be taken into account in § 6. We finish this section by
expressing (6c)—(6g) in terms of the creation and annihilation operators

by means of (7) and (8) :

Hint--^^Zyf;(^km + k2)(ak + ^-k)bt+mbm, (22)

*, m, I k + m | < k,

*) The autor is indebted to Professor W. Pauli for very helpful advice in that
question.
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hp*=~-1/-§£t Zì/klmìf(k>l>m)(aka*a™-~akaia™>
°V U-T/+m.06

k,l,m< K0

y]/klmTf(k,l,m) (a*akai — atatam)\,
* +' 1

k,l,m< ",

(23)

f(k,l,m) ^ + -^ + F-l + Fl(A±Fv ' kl Im mk eg \dQ (j /o

The term
Oo_(AF A
eg \dQ Q Jo

is due to the first anharmonic term in the potential energy. From
experiments by Atkins and Stasior13) its value is found to be
about 5; therefore it cannot be neglected a priori.

Ph 4! c2 \dQ2 q /o4q0V kff+Vm + n 0X
ft, l,m,n< Ka

— 4 «| a *b * fl_„ + 6 a| a* s_m a_„—
^ '

— Aa% a-i o_m a_„ + a-k a_; a_m a_„).

Here we have arranged the operators in the form of an S-product10)
as mentioned before. Further we have

Kt= -*Vl?W«ZYfc (a-k-ak) bt+mbm (A0 + B0 (k+m)m) -
lc,m7\k + m | < Kc

uu wu ,/, it, /, m, n
j,Jc,l,m,n< K0

xblbtbkbl(k + n)(l + m)ôk+lJ+m + n. (25)

Of H'Lt we shall only need the expectation value for no phonons
present, so we can immediately take the vacuum expectation value
of - — q0)2. This yields

(KÒ^-(-^Z^){é0Z(Ao+B0m2)b*mbm +
j < Ka m< K0

+
2AFTc70k Z(k + n)(lFm)bî,bZbkblôk+l,in + n\ (26)

h, l,m,n<Ka S

Again, as in (14), the terms ~ b* b* b b in (25) and (26) can be

ignored for small roton densities.
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§ 3. Renormalization of the sound velocity.

The term ~ (q — g0)4 in the development (5) of the potential
energy leads to a renormalization problem. This question is independent

of the roton fields and, to the approximation considered here,
it is also independent of the third order term for the phonons, Hph.
We therefore omit them in this section and investigate only the
Hamiltonian

H=fd^e0(VcP)2 + ^-(e-Q0)2 + He-Q0)i}, m

where (q — p0)4 is now to be written as it comes from the development

of EP (5) (not as an S-product). A new symbol c0 has been
introduced in (27), because the quantity denoted by this will turn
out to be different from c0 of § 2. We develop cp and p — q0 in Fourier

series analogous to (7)

<P=e/2Zßk(ak+a*-k)eikx
' k

'00 ™™™ ZV* - ("* ~ a-k) e~ÌkX '
V k

(29)

where ak and a% are supposed to be annihilation and creation operators

respectively, thus obeying the commutation relations for the
a's and a*'s in (9). The functions ßk and yk are left undetermined
for the moment ; we merely assume them to be real e-numbers which
depend only on the length of the vector ft. The commutation rule
(3) for - and cp requires that

2ßkyk h. (30)

Now we substitute (29) into (27). By rearranging the a's and a*'s
so as to get all terms into the form of S-products (all a*'s to the
left, all a's to the right) we obtain supplementary terms due to the
commutators, and the final result is

™- 2~(>oZßlh*(aka-k + a*kat + 2aiak + l) +

+ T -çfZy* (— a/ca-k — a-kat + 2a%ak + l) +

+ T {Zvl) Zvt (- 6 ak a.k- 6 a*_k at + 12 a* ak + 3) +

+ -y Zy*yiy™y»(4a*amat—4<4«*4«-.+
k+i+ m+n-0

+ 6akaf a_ma_n — Aaka_ia_ma_n + a_ka_ia_ma_n). (31)
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Now we can bring all terms quadratic in a and a* into diagonal form
by choosing ßk and yk so that

Yeoßlk2 (A\f + 6JrZy2m)yl (82)

Of the quadratic terms in (31) then only those ~ akak nk are left.
From (30) and (32) ßk and yk can be determined. Elimination of
ßk yields yk as a function of fi and the constants occuring in (27) and
of 2Jyt=r. By taking the square and summing over ft one obtains

k
an equation of the third degree for i". It is, however, much simpler
to define a new quantity c0 by

cn |/C + 12^2Vm (33)

and to express ßk and yfc in terms of c0. This is also much more
reasonable, for we shall see that c0 is the physical sound velocity
(i. e. the quantity that has to be identified with the speed of sound
measured experimentally), whereas c0 is only an auxiliary quantity
which can be expressed in terms of the physical quantities by means
of (33). With the definition (33), equ. (30) and (32) yield

/<X5' ^AW' <34>

and the Hamiltonian takes the following form (where :... : denotes
the /S-product)

H =pc0k (a%ak + j) - 3-} (jT^ k)2+

+ T (^YZVklmn:(ak—a~k) (a*—a-i) (4™-i-m) («*—O : (35)

or in x-space :

H fd^{yo(Vcp)2 + AL(e-Qo)2 + F.(Q-ôo)F\-^(Zï~tf- (36)
;go

V k

The equations of motion are

<p Ì[H,y}=f(Q-QQ)+AF.(r,-Q0)s-..
(37)

the commutator of an >S-product with an operator linear in a and
a* being again an S-product.
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From (37), we gather that sound waves of phase velocity c0 are
possible if the influence of the anharmonic term AX :(q — Q0)3- is

sufficiently small. We shall see that there are cases where this term
may be neglected, although c0 is not even approximately equal
to cQ.

To show this, let us consider a Schrödinger function of the system,
which, at a given time, say t 0, is

*. o DYe-d{n-n°y+inS ^iC- j 0 > (38)

|0> and (n\)A(a%)n\0> are normalized eigenvectors of the operators

~m am nm, the first for all nm 0, and the second for nk n
and all other nm 0 (m A k). D is determined by the condition

oo

D22Je-2din~n'y- 1 (39)
n-0

in order that 0 be normalized, too. Further we assume

|/d-n0>l, ]/d<l; (40)

this means that D2e~2dt-n-~n°)1 is practically a ^-function*). From
(29), (34) and (38) the expectation values of ~ — ~0 and cp at t 0

are seen to be

An
go*

where
A

<e-Qo>t-o As™(kx + °)> <p>t_0-=-^cos(fex + d), (41)

l/2y°, (42)

(43)

terms of relative order l/n0 being neglected. The equations of motion
(37), which are knwon to hold for the expectation values as well14),
give for 0

[zft{p-Qo) 0=™ <è).>o — c0 fc _4 cos (ft x + Ô)

[ì{?)}t^={q>)t o=foAsin(kx+ò)+At.A*sin*(kx + ò)

Evidently, if there were no anharmonic term in (37), the expectation

values for any time t would be

(o—Q0)t Asin(kx—c0kt+ò), (cp)t=-=\-A cos (kx—cQkt+ô). (44)

*) Eor our purpose, however, we cannot take a state where the number nk is

exactly given at t 0, because the expectation values of g — q0 and cp would then
be zero.
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But even with the anharmonic term present, (44) is an approximate
solution during a time t not too long but still containing many
periods 2 Tc/c0k, provided that

|A|_42<J. (45)
go

If we suppose \X\ (28) to be of the order of c2/qI (its experimental
value is uncertain, but probably negative13)), condition (45) requires
(see (42))

«0 <^X at 103Ocm™4. ~ for liquid He. (46)

Hence for a macroscopic volume (V «_ 1 cm3), one can easily find
an n0 that satisfies (45) and (40) simultaneously, even if \X\ is several
orders of magnitude larger than c2/q\ and k an ultrasonic wave
number (k ^> 1 cm-1). Thus we have demonstrated that states exist
which correspond to macroscopic sound waves of phase velocity c0.

The proof that in certain cases the terms arising from the expression

4 X : (q — q0) 3 : in (37) are negligible has only been possible
because this term is an S-product. If we had simply 4 X (q — q0)3
instead, the terms with an a* to the right of an a would give rise to
the creation and annihilation of virtual quanta. They would produce
supplementary terms linear in A in the lower equation (43), which,
in general, would not at all be negligible. This statement is
equivalent to the statement that c0 may be quite different from c'0.

To see this let us look at equation (33). We have to compare c2

and 12 (XqJV) Z/ 7m- According to (34), 2. y%\ diverges without a
tn m

cut-off, hence the mathematical quantity c'0 would have to be
infinite (X being negative). But also with the cut-off of § 2 and X

of the order of c2/qq the quantity 12 (|/l|p0/F) 27 ym 1S seen *° De

larger than c2 for the helium data. m

By comparing (41) and (43) with the classical equations of motion
derived from the Hamiltonian (27), we see that X, in contrast to c'0,

means the same physical quantity in quantum hydrodynamics as
in the classical theory. Further terms with higher powers of - — ~0

in the Hamiltonian (27), e.g. a term ~ (q — ~0)6, would of course
renormalize X as well as c0.

As the Hamiltonian (36) is identical with iJph + H'^ (6), apart
from the irrelevant constant — 3 (X/V) (Z/^Qokß co)2> we see that

k
c0 in § 2 already means the physical (renormalized) sound velocity.
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§ 4. Remarks on the order of factors in H.

An alternative treatment of the problem of § 3 consists in
immediately writing the fourth order term in the Hamiltonian (27) as an
S-product and omitting the commutators by the argument that
classically the order of factors is irrelevant. Then the results of
§ 3 are obtained without any renormalization. It is perhaps not
very natural to write an S-product a priori because in x-space this
is a complicated non-local expression. But in fc-space it is very
simple.

This opens the question of what happens if we alter the order
of factors in other terms of the basic Hamiltonian (6), e.g. by
writing them as S-products (which is probably the only reasonable
ordering different from the one used in (6)).

In i?ph (6 a) the reordering of factors can only produce irrelevant
additive constants. In Hint (6c) and iîph (6d) the a's and a*'s can be

permuted arbitrarily, since all commutators vanish (see (22) and (23)).
The order of factors in HI0t (6b) has been studied by Allcock
and Kuper. They conclude that any non-trivial alteration in (6 b)
violates all of the three requirements that HIot shall be positive-
definite*), gauge-invariant (i.e. invariant under simultaneous
transformations of cp, W and W* which do not alter the velocity (2)), and
shall lead to the correct equations of motion for v and -**). As to
(6f) and (6g), they arise from multiplication of {W*VW—VW*W}2
in (6 b) by the successive terms of the expansion (4) of 1/q.
Consequently the arrangement of the Ws and W*'s in (6f) and (6g) must
be the same as in (6 b). The last possibility is to arrange the a's and
a*'s in (- —p0)2, equation (6g), differently. But if we multiply the
expansion on the right hand side of (4) by q g0 + (g — q0), the
result must, by definition, be equal to unity. This is only true if
no term in (4) is altered.

Thus the investigations of §§ 3 and 4 have given a full justification

of the Hamiltonian (6), and we are now ready to calculate
its lowest eigenvalues.

*) It is easy to see that -ffrot (6b), when written as an »"-product, has negative
eigenvalues for N 2. Also, if _?ph + HI0t + Hint (which classically is positive
definite) is taken as an /S-product, it has negative eigenvalues in the perturbation
approximation for large c0.

**) This can only be understood if one has a definite opinion about the order
of factors in the equations of motion.
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§ 5. The roton energy to order c0,.

We take
H0 Hvh + Hmt (47)

as unperturbed energy with the eigenvalues

X 27*-ofc (nk + i)+Z (-"o + Bo™2) #». •

(48)
_ < J_o m < __„

a is characterized by the quantum numbers nk and JVm. All other
terms of (6),

H' H.int + H'ph+H;h+.-.+Hit+Hïnt+..-, (49)

are considered as a perturbation. As - — q0 is proportional to cjf *

(see (7)), (6) can be considered as a development in negative powers
of c0. The different constituents of H are proportional to the powers
of c0 written below as follows

(50)

A perturbative treatment of H' will therefore yield an expansion
of the energy eigenvalues in negative powers of c0, as Allcock and
Kuper's method does. The dimensionless perturbation parameter
in question turns out to be the ratio of the maximum kinetic energy
of the unperturbed rotons to the maximum phonon energy

(51)

H0 -Hint H'Vh HVh " ' • -Hint -Hint

co 4 4*) o • ¦ r * c"1

Hc„Kn

For c0 ^> BK0/% we may expect good results. In the case of liquid
helium the data (16) and (17) give

e 0-A, (52)

so we might obtain at least something of the right order of magnitude.

For all perturbed energies (phonon energy, rest and kinetic energies

of the roton) we only calculate the highest term in c0 that is
different from zero. Nothing of the order c0 is added to the
unperturbed energies, so we do not compute any correction to the
phonon energy.

*) We have assumed that (d/dcx c2/g)0 an(l (d2/d(A c2/q)0 are of the order of
magnitude of c2/q2 and c2jqI respectively. For liquid helium this is justified for
the first term13) ; for the second term it is a reasonable supposition.
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The only correction to the roton energy ~ cJJ comes from the
second order perturbation expression

nì-z^j- (53)

through the term

K-Z^if- («)

The terms of the form 2J(H'ph)aß (HlJìt)ßa/(Ea — Eß) would seem to
ß

give a contribution ~ c\] too, but in view of (22) and (23) they
vanish. (54) and (22) give

F, _ hH0 y,(2km + k2)2 (N ,-i\N v« ~ sFV ^ k fc + m + ' m
"** k,m

k,m,\k + m\<K (KK\

V f ZZk L W-fe+1 1

I hc0k-B„(k2 + 2km) T -n,e0k-B0(k2+2km) J "

In the case of liquid helium the denominators can never vanish
because of (51), (52) and the condition fc, m, |ft +m| < K0. For
the same reason as earlier we neglect in (55) the terms of higher
than the first degree in the N'a and n'a, i.e. we take only*)

p/ K2 y,(2km + h2)2 N 1
fi.a" 8QoV A> V- m, B0(k2 + 2km) ¦ [ '

^v k,m 1^ — —

k,m,\k+m\<K„ hc0k

For a fixed m we replace the sum over ft by an integral and introduce

polar coordinates with m as axis (z cos ¦& km/km). This
leads to an integral of the form

i_„ +i
fk2dkfdz...

o -1

(fc2 + 2fcm- + m2<.K2)

As long as fc + m < K0, z may vary between — 1 and + 1. If

*) Por small k, nk may be large even at low temperatures, but in the calculation
of the thermodynamic functions the influence of small k's is strongly reduced by

"o
the factor fc2 in fk2dk ¦ ¦ ¦ ¦ An exact analysis shows that it is completely negligible

0

for helium below the A-temperature.
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fe + m > K0, z is restricted to values between — 1 and (K2 — fc2 —
m2)/2 km. Therefore we get finally

m<Kt

Kl-V
K„-m +1 K„ 2km

dkJdz+fdkfdz (g;;+g-y. (57)
K°-m -1 ' 1+ hcFk

This integral can of course be evaluated analytically, but gives a
rather involved expression. However, we can develop the denominator

in powers of Bo(^2 + 2 kmz)/fic0k (which is always smaller
than 1) ; this gives just the expansion in powers of e. Besides we
are interested only in small wave numbers m, so we expand (57)
also in powers of m. This yields

E^2JNm[-A0(l-^e + ^-e2--..)
m<K0

B0K0m(T-Te + T-2

+ B0m2(A\ + le-^e2-.¦)+¦¦¦]. (58)

We have thus reached the result of AK that to order c°0 the rest
energy (m 0) of the roton in (48) is exactly compensated by (58).
Therefore we have to carry the calculation of the rest energy further
to order c^™1, and all terms written down in (49) and (50) have to
be taken into account. Fortunately this is not necessary for the
kinetic energy (terms ~ro, m2).

If one evaluates (57) exactly in e, but develops in powers of m,
one obtains for e 0-4

#a=27-^m[-0-76zlo + 0-54BoIfom +0-29B0m2+ •••], (59)
m

m<Ka

which shows that already the first terms of the expansions in (58)
give good results.

The restriction of the calculations to small m is sufficient for low
temperature investigations. The factors exp [— (A + B0m2)/kT] in
the partition function give only minor contributions for large m,
because B0K2/xT 11-2°/T; therefore the exact shape of the
energy for large m is not important, unless the unperturbed energy
for large m is strongly modified by Hint. But an exact evaluation
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of (56) for m K0 shows that the correction to A0 + B0K2 is only
— 0-51 A0 for e 0-4.

We have only calculated the energy corrections due to the diagonal
elements of the second order perturbation matrix (53). There exist
non-diagonal elements of TP(2)

"Ace Z. Ea-Eß [0V1

"on the energy shell" (i.e. for E EA, corresponding to scattering
between rotons and phonons. These non-diagonal elements influence
the energy eigenvalues, but again, for the case of small phonon and
roton densities, they can be neglected.

§ 6. The rest energy of the rotons to order c0x.

In order to avoid unnecessary complications, we consider now a
state a where _V0 rotons of wave number 0 are present, all other
-ZVmS being zero. This is sufficient because we do not calculate the
kinetic roton energy to ordere^1. We also suppose all nks to be zero.
The argument is the same as in § 5 : For small phonon densities the
terms ~ nk Nm can be neglected.

We expect contributions from the perturbation matrices of first,
second, third and fourth order, viz.

W^Kcc, (61a)

HaßHß

Ea-Eßv&-Z'-ë=àr> (6ib)

H„„ H,, a Ho
ay yp Mw®>= y ay yß pg (61 ciKK~~ Z. (Ea-Eß)(Ea-Ev)' ^1L)

ß,y

fW Y" H' H' H' H' I -
ß,Y,6

1

2 (E0L-Eß)2(Ea-E0)

1 l^

E 2 (Ea-Eß)(Ea-Ed)2
(61 d)

For the particular state a, characterized above, there are no non-
diagonal matrix elements W(*\ similar to (60), on the energy shell.
The reason is that all constituents of H' conserve the total number
of rotons. The energy Ea of the state a is JV0 A0 (apart from the
zero point energy of the phonons). Hence the energy Es of the state
e is N0 Ac, + kinetic roton energies + energies of phonons produced,
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which are all positive contributions. Ee is equal to Ea only if there
are no rotons with a momentum %m A- 0 and no phonons in the
state £, i.e. if e a.

Now let us look at the different parts of H' (49). Their orders
of magnitude are given by (50) and their structures in the creation
and annihilation operators by (22)—(26). It is easy to see that there
are no energy corrections of order c™*. The contributions of order
Cgl to the W(s), (61a)-(61d), arise from the following terms (apart
from the contribution calculated in § 5) :

W(1):
oca * l"int/aa (62 a)

Pf/©." aa • ~ -"int "int (62 b)

W(3)."aa* no contributions (62 c)

aa
TJX TJ3 rj'-"int» ~-nint-rlph> ~ H2 77'2 (62 d)

It is obvious what is meant by the symbols used here : For instance
~ _-_fnt H'ph means that three of the factors H'„ in (61 d) are

replaced by (Hint)av and one by (i?ph)a_, of course in all possible
permutations. Other contributions —c^1 than (62 a)—(62 d) do not
occur. In particular, there is no term ~ Hfnt Hph in (62 c), just
because i?ph (24) is an S-product. So we have the result that iîph does
not give any contribution to the roton energy in order cjf1.

The calculation of (62 a) and (62 b) is simple. By using (26) and
taking into account that

--£r£ft-4».S. (63)

_<__„

(look at (15) and replace the sums by integrals) we get

(fO..-8-Vtf,. (64)

In view of (22) and (25) the contribution to W® (62 b) becomes

yi (Hxat)aiß(Hm%)ßa. y-i (^intW(-^intW

^ Ea-Eß +Z^ E^-Eß

SA0e
4

l

4 2 NH. (65)

In order to evaluate (62 d), we first take the term ~ i_?nt i. e.

equation (61 d) with each H' replaced by Hint. Now if we look at
(22) and remember our special state a, we see that the state ß (see
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(61 d)) can only be of the following type: There are iV0-l rotons of
momentum 0, one roton of momentum fik and one phonon of
momentum — fik. ft may be any wave vector for which fc < K0. For
the state y, however, there are several possibilities. For instance,
there may still be _V0-1 rotons of momentum 0, one roton of momentum

fi(k + m) and two phonons of momenta — fik and — firn
respectively, m is subject to the restrictions m < K0 and |ft + m\ <
K0. As ô must be an intermediate state between y and a there are
two possibilities in the case of the y chosen above, namely (A) ô is
identical with ß or (B) ô contains one roton of momentum firn and
one phonon of momentum — Urn, apart from the N9-l rotons of
momenta 0. In the first case the contribution to (61 d) is

(A) CY\-k(2k™+m?2}N«y ' /—> A m(k + m) J u
k. m

k,m, |fe-fm|<A's

with the abbreviation

and in the second case

(B) CZ[~(2km + k^mkm^]}Na.
A in

k, m, \k+m | <K,

In the energy denominators the roton energies are neglected; they
only yield corrections ~ cz~2 to W£L

Another possible state y is the following one. There are N0-2
rotons of momenta 0, one roton of momentum fik and one of
momentum Hm, and two phonons of momenta — fik and — firn respectively.

Here we have only the conditions fc < K0 and m < K0, but
not \k + m\ < K0. For ô there are the same two possibilities as
before. So we obtain two further contributions to (61 d), namely

(C) CZ[-^]N0(N0-1)
k, m

l',m<K0
and

(ß) cx [-£9 *-.(*-.--)•
k, m

k,m<Kt,

The last possibility is that y is identical with a, and ô contains
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_V0-1 rotons of momenta 0, one roton of momentum Urn and one
phonon of momentum — Urn. This gives

(E) C27[yfcm2 + ^fc2m]^2.
k,m< "0

Again, there is no correlation between ft and m.
(A), (B), (C), (D) and (E) are all contributions to (61 d) due to

Hint alone. We have not considered the terms where ft m or where
y contains no phonons but two rotons of opposite momenta %k and
— Uk. These terms are of thetypel/F22. •••> not 1/V22J2J..., an<I

k km
therefore they give an energy contribution of relative order 1/3 _Vat

(Nat number of atoms in V) which tends to zero for a macroscopic

sample of the liquid.
Adding up (C) and (D), we see that the denominator is cancelled

by a factor fc + m in the numerator. Taking into account that ft
and m in each term may be interchanged, we see that the terms
~ N20 in (C), (D) and (E) cancel. The final result of (A) + (B) +
(C) + (D) + (E) is:

CÌ Z[-i(kkmY - * m(km) -km2] +£km2\N0 (67)
I k,m k,m I
k,m, \k+m \<K„ k,m<K0

The contributions ~ Hfnt ffph and ~ H2nt H'pXi in (62 d) are evaluated

in a similar way. First we take those with one factor Hph in
(61 d). The terms ~ (Hph)ai(H^)^(Hlnt)vß(HM)ßa and ~(Hlnt)ac5X
X(Hlnt)ey(Hint)yß(H;h)ßa together yield (see (22) and (23))

(A') 2C Y k(2kl + l2)(-m2) „ ffi'/'?° Nu,
k+l+m o

(k + l)(k + l + m) »'
k, I, m< J_o

and the terms ~(i?lnt)ad (Hpb)ey (Hlnt)yß (Hlnt)ßa and ~ (HlM)aö (Hlnt)ôy x
x (Hph)rß (Hini)ß0L give

(B') 2C Z ^kl + l^m2^^-^,k+l+m 0
K '

k, l, m< __0

Then we take the contributions due to two factors Hph in (61 d). The
terms ~ (Hph)aä (Hph)ây (i?lnt)y/. (HiTit)ßa and ~(iîlnt)aô (Hint)ôy (Hph)yß
(-HphX yield

1

(C) 2c\Z Z l'Almn--^f2(l,m,n)x
.k<K0 l,m, n<K(t

X a i +i z i +_2 k2(l + m + n) T 2 î(ï+b-H)M
Y kHmf(-k'Um)f{k'l'm)\NAj hAm 2k2(k + l + m) jiV0'k + i + m 0

k, l, m<K0
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and the terms ~ (H'ph)ai (Hlnl)iy (Hph)yß (Hint)ßa and ~ (Hint),_. (HphW x
x (HinUyß (#pXa give

| Y Y kHmn\ (l/g)/U"».H)
(D') 2CI 41 z™™' ¦lmn[ k(l + m + n)(k + l + m + n)
\ J fc l ™r m ™r n — u

l £<£.(, l,m,n<K0

(1/2) f2(k, l m) (1/2) f (k, I, m)f(-k, I, m)
k(k + l + m) (2 k + l + m) k(l + m) (k + l + m)

y- u?m _ _______Q___iij_!_ i ^A^iniccmi /\,-K,i,m) N-T S, «,<•'«¦ fc(fc + Z + mH2/k + .+.m> + /. fZ + mWfc-t-Z + ml I I «

_, Z, m<K0

From the term MSint)<*(ffphM#ph)y/»(Hii_0/ta we obtain the
contribution

,*.- I F r ?;»lmn[ __/g_Ì!__i^ ">
"

'fc<Ä0 I, m, n<K0

+ Y kilm\_ (1/2)f2(k,l,m) _ (1/2)/2(--_,/,m)l)
fc+7+m o l fca(2fc + ü + w.) fc2(Z + m) J »

k, I. m<K,

and from the term ~ (HplXd(Hint)oy(Hint)yß(H'vh)ß0L

Z Z ^1' (1/6) f2 (I, m,n)
(F') C- Y i+^tn-o L (* + >» + »)2(k + J+™ + ™)

I i<i.o m. n<A'0

4. V" M/m[ d/2)/2(fe,/,m) (1/2) f2(k, I, m) l| „
^+£m_0 */"•[ (& + Z + m)2(2/. + Z + m) (fc + Z + m)2 (Z + m) J j --
fc, i, m<K0

(A')-(F') are all contributions to (62d) ~ Hsnt Hph and ~ Hfnt iîpg.
Again terms of the relative order 1/3 _Vat have been omitted. On the
other hand, there are even terms of the relative order 3 _Vat with
respect to the ordinary ones (which are independent of ATat), viz.
the first terms in (C), (D'), (JE'), and (F'), but they are easily seen
to cancel. When (A')-(F') are added up many terms compensate
and we obtain the verv simple result for (.4') + (B') + (C) + (D') +
(E') + (F'):

C Z [4-^2-r4m(fcm)|lV (68)
k, in

k, m,\ k+m | < "0

According to the expression (23) for / (ft, I, m), (A') — (F') contain
linear and quadratic terms in (g2/c2) (d/dg c2/g)0. It is remarkable that
all these terms have cancelled in (68). This means that also the
anharmonic potential energy of the third degree in g — g0 is without
influence on the roton energies in the approximation considered
here.
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The contributions (62 a)—(62 d) to the roton rest energy ~ c^1 are
now given by (64), (65), (67), and (68). (64) and (65) compensate
each other to order e""1 *), (67) and (68) give in view of (66)

XX)X£'-"*™.P'"!K «
k,m< K0 k, m, I k + m 1 < K0

where to order c0
1

and to order <-°>

«-*(4+S.«
A-.|b0k0, b \k,

This can be calculated similarly to (56) in § 5 and yields

E';=§A0eNa. (70)

(58) and (70) now show that the unperturbed energy spectrum
(48) is transformed by H' (49) into

Ea + E'a + K=- Z%c0k{nk + ±) +
k < __„

+ 2J(A + Am + Bm2 + ---)Nm + ---, (71)

(72)

(73)

The rest energy of the rotons is now proved to be positive for small
e. In contrast to the second energy spectrum proposed by Landau2)
A is positive here. For He II (e 0-4) the numerical value of (72)
is according to (16)

X 3-5°. (74)

If the contributions of (58) and (65) to A are calculated exactly
(instead of taking only the first terms of the expansion in e) one
obtains

4 4-8». (75)

But this is not very consistent since for the rest of our calculation A
is only computed to order e.

*) This is probably not accidental, for in classical hydrodynamics (6 a)—(6 c)
give an absolutely sufficient description of an only slightly excited liquid, so that
one might be tempted to omit (6d)—(6g) in quantum theory too. It is therefore
surprising that (6d)—(6g) give a noticeable contribution at all. Maybe a cut-off
method that corresponds better to physical reality makes this difference vanish.
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§ 7. Different cut-off procedures.

Artmann*) has suggested an alternative cut-off method. He
observed that the roton fields W and W* occur exclusively in the
combination W*VW— VW* W, and it is only this expression (not W

and W* themselves) which has a direct physical meaning (being a

momentum density apart from a constant factor). Therefore it
seems more natural to cut off this whole expression, not W and W*
separately, by putting

rp* \71p_vw* W ~ JT btbmi (k -- m) e^n-V*
k, m

\ m - k I < Äu

4™ Z b*k'- m' «W W + 2m')e- i*'.
k'\mf
k'< K»

(76)

For cp and q — g0 the same cut-off as previously is used. As m' in
(76) is not restricted, an infinite number of degrees of freedom is

left in the theory, but all the same this does not lead to any
divergencies.

This cut-off method and the previous one do not give equal
results. If we use the same K0 in (76) as for cp and g — g0 (this means
that the "resolving power" of the liquid due to its "graininess"
(Ziman5), p. 264) is supposed to be the same for the Fourier
components of cp, - — g0 and the expression (76)) we obtain for the
roton Hamiltonian (6 b)

HIot=Z;(A0 + AB0m2)Nm + ~b*b*bb (77)
m

instead of (14). Thus the rest energy of the unperturbed rotons is the
same, but their mass is already different. Moreover, with the cutoff

(76) the sums (55) and (56) are only subject to the condition
k < K0 (not m < K0 nor |ft + m\ < K0) and B0 is to be replaced
by 4 B0. Consequently one obtains instead of (58)

E'a^£Nm[-A0(l-^Ae + ...)+B0m2(-^ + ...)+...]. (78)
m

Furthermore, the condition (ft + m\ < K0 in (A) and (B) of § 6 is

dropped. The other expressions (C)—(E) and (A')-(F') remain
unaltered. So, instead of (70), the contribution to (62d) becomes

K A0{-l-^)eN0. (79)

*) Private communication from Mr. F. Aetmann, T. H. Delft.
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Also H'int now takes a form different from (25), and the
contributions ~ e to (62a) and (62b) do not cancel. In this way Artmann's
method yields an energy spectrum of the type (71), too, where now
to the same order in e as (72) and (73)

A Ö725-A0e, A 0, B ^B0. (80)2016 ° ' ' 3

In the case of an incompressible medium (e 0) this result is identical

with the result of AK (3-6) obtained by using their
"incompressible" Hamiltonian (3-4) from the very beginning. This is not
the case when Ziman's cut-off method is employed (see (73)). Thus
Artmann's cut-off seems to be preferable for an incompressible
liquid. However, if one deals with a compressible fluid (g not
constant) it is doubtful which method is the better, because Artmann's
method is also unable to cut off all physical quantities in the same
way. If for example a momentum density is cut off according to
(76), the corresponding velocity, which differs by a factor 1/g, is cut
off in a different way. From the point of view of pure hydrodynamics

it is probably impossible to see which cut-off procedure
corresponds better to physical reality. An investigation of that problem
would go far beyond the framework of the present article.

If one carries out the transition from second quantization to the
representation of the roton in configuration space (AK equation
(4-2)), Artmann's cut-off is simpler to take into account than
Ziman's. In the case of He II, however, there are practical reasons
for using Ziman's cut-off procedure. It is of course possible to
calculate (56) as modified by Artmann's method without a development

in powers of 4 g (which would be wrong because A e 1-6).
But in none of the energy denominators in (A)—(E) and (A')-(F')
of § 6 may the roton energies be neglected. The calculations would
therefore become very cumbersome. Besides, the whole expansion
(6) of the Hamiltonian in rising powers of g — g0 looks rather
questionable in quantum mechanics, if the maximum kinetic energy of
the rotons is larger than the maximum energy of the phonons. The
only thing one could do is simply to omit (6d)—(6g) by the argument

used before that classically (6a)—(6 c) give a sufficient
description of a but slightly excited liquid.

A third cut-off procedure consists in combining Ziman's and
Artmann's methods by putting

y*VW-VW* W y ]Yb%bmi(k + m) e<("«-*)*. (81)
k. m

k,m, \m—k\<K„
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This yields still another HI0t, namely

Hxot="Z(Ao~l B0K0m + -J B0m2)Nm + ~b*b*bb (82)
m

m < ..„

and leads again to a spectrum of the type (71), where now (A to
order e, A and B to order e°)

A=Â^A0e, A 0, B -|bo. (83)

Like (80), it gives the correct limit for an incompressible liquid.
For practical reasons, we have always cut off sharply. Instead,

one might introduce smooth cut-off factors, but this cannot change
the energy spectrum drastically.

§ 8. Discussion of the results.

With the energy spectrum (71), (72), (73) we can calculate the
partition function and the thermodynamic properties of the fluid.
For He II, (72) and (73) can only be expected to give the right order
of magnitude because e 0-4 (instead of e <^ 1), and because of
the arbitrariness introduced by the cut-off procedure. If A/x is
chosen aa 7° and A and B considerably smaller than in (73) (but
still of the same order of magnitude) the theory gives the correct
specific heat15) from absolute zero up to temperatures even near
the /l-point. Also the spectra of § 7, which are of the same form as
Landau's first spectrum (A 0)1), have the right order of magnitude

to fit the specific heat data.
The theory of the two-fluid model1)16) can also be applied to

the spectrum (71), and one can calculate e.g. the velocity of second
sound. The result agrees qualitatively with experiment when values
for A, A and B fitting the specific heat are used*).

Unlike in Dbbye's theory of solids, the numerical results here
depend considerably on how one cuts off the momenta of the
excitations. The reason is that the constants A, A and B in (71) are
determined by sums over virtual quanta which also have high
energies.

We have simply tried to find the energy spectrum of
hydrodynamics. We have not discussed the question whether the hydro-
dynamical variables are suitable coordinates to describe an ensemble
of atoms in a liquid. This problem is much more difficult here than

*) The author wishes to thank Dr. W. R. Theis for some numerical calculations.
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in the theory of solids. The investigations by Feynman17) seem to
indicate that hydrodynamics provides a fair description of a Bos e

liquid at low temperatures. On the other hand, the hydrodynamical
description of an ensemble of Fermi particles seems at least to be

very incomplete. It is probably at this place that the difference
between 3He and 4He comes into play. (In hydrodynamics one does not
speak about the statistics of the particles composing the liquid. The
phonons and rotons as defined here must obey Bose statistics, since
a quantization with anticommutators would never yield the limit
of classical hydrodynamics.)

One should therefore try to give the hydrodynamical approach
to He II a secure foundation. If this is found, it will perhaps also

yield a better cut-off method.

The author wishes to thank Professor W. Pauli for his continuous

interest and for helpful advice. He is also indebted to Professors

R. Jost, 0. Klein, R. Kronig, to Dr. W. A. Barker, Dr.
W. R. Theis and Mr. F. Artmann for valuable discussions.
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