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Covariant Hyperquantization*)
by J. M. Jauch.

Dept. of Physics, State University of Iowa, Iowa City, Iowa, USA.

(29. III. 56.)

Abstract. The differential equations for the vacuum expectation values of
chronological products of field operators are transcribed into an operator formalism
which is covariant under the Lorentz group. This is accomplished by introducing
a new set of field operators with the same transformation properties as the ordinary
fields to which they correspond. They operate in a certain linear vectorspace Q
and they satisfy very simple commutation rules. The vectors in Q have no relations
to the statevectors of the system. They represent instead the solutions of the
Heisenberg field equations provided they are suitably restricted by certain
subsidiary conditions, subsequently called the field-conditions. The vectors which
satisfy these conditions are constructed in closed form.

It is shown that the scalar product in Q cannot be the positive definite product
characteristic for the Hilbert space. In fact the scalar product in _3 must be

symmetrical in the two factors for a covariant formalism.

Introduction.

The present paper has a two-fold purpose. On the one hand we
shall base the formalism of hyperquantization ^2)3)4) on the well-
known mathematical notions of multilinear algebra. On the other
hand we develop this theory in a relativistically covariant form.

The two points are not unrelated. Indeed as we shall see the
emphasis of the purely algebraic aspects of the formal manipulations

involved here show clearly that the scalar products of the
hyperquantization space subsequently called Q play an entirely
different role from the scalar products of the state vectors in Hilbert
space. Whereas the latter are directly related to observable quantities

(viz., expectation values and matrix elements), the former are
not. In fact it is possible to develop the formalism without specifying
the scalar product. The choice of the scalar product is essentially
determined by the requirement of the relativistic covariance of the
formalism. The decisive point is the transformation properties of

*) This work was supported by the National Science Foundation.
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a spinor field. Because the spinor components transform with the
complex coefficients of a non-unitary matrix, the only covariant
scalar product of the hyperquantization space Q is a symmetrical
scalar product. This space is therefore not a Hilbert space in
contrast to the space of the state vectors.

In the previous work ^2)3)4) the assumption has always been
made that the scalar product in Q is the unitary product characteristic

of a Hilbert space. The formalismwhich arises from this assumption
has very awkward transformation properties under the Lorentz

group. For instance the scalar product (Equation (26)) of reference4)
is not invariant under Lorentz transformations and the vectors
introduced by Coester (reference1)) are sums of vectors, each of
which satisfies a different transformation law. Since all these theories

are merely formal transcriptions of manifestly covariant field
theories it should be possible to develop hyperquantization with
covariant equations. This is accomplished in the present paper.

The theory is closely related to the method of generating functional

introduced by Schwinger5) and subsequently used by many
authors6)7)8)9)10). In fact there is a one-to-one correspondence
between such functionals and the vectors in Q. We prefer the formalism
of hyperquantization primarily because it is possible to avoid the
use of classical external currents which are assumed as anticom-
muting c-numbers. In the hyperquantization theory it is not necessary

to introduce such questionable mathematical objects. It is
therefore preferable to the method of functionals.

In the present paper we shall develop the theory for a scalar and
a spinor field with self-interactions, these are meant to serve as

examples. In a subsequent paper we shall extend it to quantum
electrodynamics. The paper is divided into three parts. In part I
we give a brief review of some of the basic mathematical tools
involved. In part II we treat the example of the scalar field and in
part III we discuss the spinor field.

It must be stressed that nothing that is presented in this paper
contains any new physical ideas. This is equally true for all the other
works quoted above. In spite of this we believe that such reformulations

of existing theories can be quite useful. Such a formulation
may serve as a framework for new theories. Thus for instance we

may take the point of view that the equations for the vectors in the
space Q are the basic equations of the theory and forget the origin
from which they arise. This means that we have replaced the field
operators of the ordinary theory which satisfy the standard
commutation rules and a set of field equations by new field operators
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which satisfy much simpler commutation rules and no field equations.

The physical content of the theory is then entirely derivable
from the vectors in the space Ü which are subjected to certain
subsidiary conditions. (See Equations (66), (112) and (113) below.)
We shall call these the field conditions. These vectors in Q are then
the new mathematical objects which replace the solutions of the
Heisenberg equations. It will become apparent that to each solution

of these equations belongs a certain vector in Q.
One of the most important advantages of the hyperquantization

formalism is the fact that with it we are able to derive general
relations independent of the perturbation theory. In fact the existence
of explicit solutions in closed form, although only of a formal
character, enables us to read off such general relations with great ease.
There are many such relations known today ; the symmetry properties

of the /S-matrix, Ward's identity, and the low-energy limits
of S-matrix elements are examples. The possibility of extending
these results is the main interest of this approach.

Part I-Multilinear Products of Vectorspaces11).

(1) Linear vectorspaces and their Kronecker products.

We shall operate in an n-dimensional linear vectorspace B Bn
over the field of complex numbers. A linearly independent set of
n vectors elt e2, e„ forms a base in B. Any other vector a e B
may be represented as a linear combination

a a1 ex + a2 e2 + ¦¦¦ + anen.

The uniquely defined set of n complex numbers {a1, a2,...,a"}
are the contravariant components of the vector a in the base

e_,... c„.
The Kronecker product [denoted by a x 6] is a mapping of

ordered pairs of vectors a e B and 6 e B into a linear vectorspace
B x B of dimension n2, which satisfies the following conditions :

(2)

ax(b+c)=axb + axc
(a + b) xc=axc + b xc
(Xa) x (b) X(a xb)
(a) x (ptb) pi(a xb)

(A and /x any complex numbers).

The null-vector in B x B is represented by 0 x 0. The Kronecker
products e, x ek (i, k 1,2, n) of a base elt e2, en in B
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define a base in ß x B. Referred to this base the Kronecker
product a x b of two vectors

a {a1, a2,..., an)

and 6 {b1, b2, bn)

is axb {a1b1,a1b2,...,a1bn,a2b1, ...a2bn, anb\ ...anbn}. (3)

The Kronecker product can be generalized to an ordered set of
/ vector <_!, a_, a^ in B. The vectors a, x a2 x • • • x af form a
linear vectorspace of dimension nf which we shall denote by jR x jR

x • • ¦ x B or x B.
1

(2) The symmetrical product.

The symmetrical product or S-product of two vector a e B and
b e Bis defined by

a a b | (a x b + b x a) (A)

The terminology refers to the symmetry property

a a b b a. (5)

The set of vectors of the form a b are a linear subspace in the
space B x B of dimension \ n (n + 1). We denote this space by
B d B =_ B.

More general we can define the S-product of a set of / vector
alt a2, af in B by setting

a1na2n---naf==-f-E a. x a, x ¦ ¦ ¦ x a, (6)
i- p - '

The sum is extended over all /! permutations

(12...fP
ixi2...if)

of the / indices.
The S-products (6) of / vectors in Bn are a linear subspace of

x B of dimension I We denote this space by d B. The

I j different products

«V,-,...., eri e_2 d ¦ • • d erf, (rx < r2 < • • • < r>) (7)

are a base vector system in dB. A general vector cof e a B may
1 ¦'

be written as a linear combination of the base vectors (7)

\vZ^-r<«F...r, (8)
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The Arir»-"V are called the contravariant components of the
vector (of in the base (7). They are symmetrical functions of the
/ indices rx r2... rf. Under coordinate transformation they transform

like symmetrical contravariant tensors of rank /. The
summation in (8) is not restricted by the inequalities of (7). Therefore
each component occurs exactly /! times.

(3) The antisymmetrical product.

The antisymmetrical product or _4-product (also called alternate
or Grassman product) of two vectors a e B and b e B is defined by

a o 6 | (a x b — b x a) (9)

It has the properties
aob -boa\

and a o a 0 J

The set of all products of the form (9) is a linear subspace of B x B
of dimension J n (n— 1).

The _4-product of a set of / vectors ax, a2, cy in B is defined by

a1oa2o---oa/ 2Je(P) a. x ah x ¦ ¦ ¦ x a. (11)
p

The summation is extended over all permutations and e(P) is the
signature of the permutation P, i.e.

f + 1 for P even „.e(P)=(-lforPodd. (12)

The _4-products of / vectors form a linear subspace of x B of

dimensioni?]. We shall denote this space by

Bo B 0---0 B O-R.
/

The -4-product of / vectors is zero if and only if the vectors are
linearly dependent. The equation a o a 0 is a special case of this.
The vectors

mnr1...rf=er,0er,° ••¦ °erf> »i < f, < • • • < T>. (13)

are linearly independent and form a complete set ; they are therefore

a base in oB.
f

Every vector cot e oB can be represented as a linear combination

(Of»,~jrZrlnrì'-rf«>r1r!...r, (W)

with the uniquely determined antisymmetrical components ptr^---rf
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which have the transformation properties of a contravariant anti-
symmetrical tensor of rank /.

When f n there exists exactly one _4-product. It is the
determinant of the n vectors in B.

(A) Creation and annihilation operators.

The definitions for dì. and oB given above applies for all positive

integers / > 0. We shall need an extension of this definition
to the case / 0. In that case we define both spaces as a one-dimensional

vectorspace represented by one single vector coQ identical with
the set of complex numbers. This vector will play an important role
in the following. We denote it by the ,,vacuum"-vector. It has

nothing to do with the physical vacuum state but shares many of
the properties of the state vector for the vacuum.

We can now consider the set of vectors cof e nB with / 0, 1, 2,
f

Such sets form a new vectorspace which will be denoted by Qs. It
is the union of all the spaces dB for all values of /. We write a

general vector of Qs in the form

w {cof} (/ 0,1,...). (15)

The space Qs is a linear vectorspace if we define the addition and

multiplication with complex numbers X according to the rules

CO + Co' | COf + co/ j I

when co {a*/} and co' {co/} \ (16)
and X co (X cof}. ]

In a similar way we define a linear vectorspace Qa which is the
space of sets of vectors cof e oB

co {cx)f} (f 0, 1, n)

with the algebraic operations defined also according to (16). Since

/ in this case is restricted to values of / < n the space Qa is of finite
dimension equal to

n x

2".
/-o ' '

It follows that the vectors in this space are closed with respect to
the alternating product, i. e. they form an algebra, the so called
Grassman algebra. The space Qs on the other hand is of infinite
dimensions.
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In the following we shall write eu,- r for a vector in Q which
has the only non-vanishing component cot cori... r

«V..,, {0,0, ...,cof, 0, ...}. (17)

Such a vector is called homogeneous of rank /. The homogeneous
base vectors of rank f 0,1, form a base vector system12) in Q.
A general vector co e Ü may be represented as a linear combination

oo

°>=ZJr Z^-rt<»r,...rt (18)
/-0 '¦ r,...Tf

with arbitrary complex numbers Xr>~-rf (f 0, 1,
We shall now define the creation and annihilation operations for

the two cases separately.

(a) The symmetrical case.

The creation operators Q are a set of n linear operators in Qs,
defined by the relations

& wr,...r/-XX,,...,./=«v...r/-Ee. d «>.,....,- (19)

The annihilation operators £r are defined by

X 0)ri...r/->CrÛ>r1...f/= ZÔr^(°r,...r^1rlt+x...rf- (20)
f,-X

For co0 we define Çrco0 0. For any other vector the operators are
defined by the linearity condition. Thus for instance a vector

t-o >' n-.-Tf
«>......, (-I)'r, rt

I ¦ Ti-.-Tf
in Qs is transformed into

Crco^2JirZ^-rf^rl..,f (22)

These linear operators satisfy the commutator relations

[Cr, Q [Cl, Cl] 0 I

[Cr,C]] ôrs \
K ]

only the last of these is not immediately obvious. It can be verified
as follows

Cr Cg mr, ...Tf ^r wsr,...r "rs œr, ¦ ¦. rf ' 2j r rn Wsr, ¦¦¦ r/(_] r/t + 1 ...r
/i-l

/ /

f. fr «r,... r, CJÌ7-"" ^" r„_, r„+x... r, 27<W
fl-X ß-X

rl...rß_lrfl+1...rf
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Hence t[Cr, C'A a>fl...rf= °rs<On...rf-

The operators are linear, hence for any vector co e Qs Equation (21)
and (24) give

[Cr, Cl] (o ôrs w or [Cr,Cl] àrs.

Because of their property (19) the creation operators can be used
for the representation of the general vector in Qs. Repeated use of
(19) gives

cor_rf Cll...Clfco0. (24)

Thus the general base vector can be obtained from the "vacuum"
vector by repeated application of creation operators.

We observe here that the operators C and £+ are completely
independent. In particular they are not the Hermitian conjugate of
one another, since we have as yet no scalar product in the space Q
and therefore no definition of Hermitian conjugation. We shall
defer the definition of the scalar product to the next section after
defining corresponding operators for the antisymmetrical case.

(b) The antisymmetrical case.

The creation operators rfr are a set of n linear operators in Qa
defined by

nV- Mr,...Tf->yl MrI...rf er° mrt...rf- (25)

The annihilation operators nr have the defining property
/

Vr- Wn...r/->^ft)ri...r/ ^7 (-l)'^1 (5rr//«,._...„ +1...r/- (26)
ß-X

When operating on arbitrary vectors they are determined by the
linearity condition. These operators satisfy the commutator
relations

{ *lr, Vs } 0, 1

{Vl,vl} 0, (27)

{--, n\}= ôrs.

These may be verified in complete analogy to the symmetrical case
giving due attention to the different sign factors. The nr operating
on the "vacuum" vector are defined again by

r/r co0 0. (28)

Any of the base vectors can be represented by repeated creation
operators operating on the "vacuum" vector. For instance

°A1...rf=vl---vlfa>o- (29)
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(5) The scalar product in Û.

A scalar product in the space B Bn will induce a product in the
spaces dB and oi_. For instance the scalar product of two vectors

ax x 6j and a2 x b2 is defined by

(ax x bx) ¦ (a2 x b2) (ax- a2) (bx- b2) (30)

where axa2 and bxb2 are the scalar products in B. The generalization

to linear combinations of Kronecker products as they occur in
aB and oB is then accomplished by the use of the distributive property

of the scalar product.
Since our vector space is constructed over the field of complex

numbers the scalar product in B is defined as a function of ordered
pairs of vectors with values in the complex number field. It shall
further have the property of linearity with respect to the second
factor

a(b + c) =ab + a c \

a-Xb X(a-b) j l '
(A any complex number).

We also require a symmetry property. The following two possibilities

present themselves

(a) orthogonal metric a-b =ba (32a)

(b) unitary metric a-b (b-a)* (32b)

The second of these is the scalar product which is commonly cm-
ployed for the definition of a metric in a complex vector space. It
leads to a positive definite expression for a a. In case (a) this
quantity is generally complex.

The value for the scalar product can be fixed by assigning
arbitrary values for the scalar products of the base vectors. For instance

er-es=Ôrs, (r,s l,...n). (33)

We shall now discuss the scalar product which is induced in the two
vectorspaces Qs and Qa by the product in B.

(a) Symmetrical case.

The scalar product between any two base vectors in Qs is
obtained from (33), the definition of the corr..r and the generalization

of (30) for arbitrary number of factors

[ Eà. r,....òrtr., for / /' I

(" ',"'"¦-A JA "" "\or/J «
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The sum on the right hand side is extended over all permutations
of the / indices rx r2... rf. An immediate consequence of (34) is the
relation

/
K.....,» mr,'...r') ZÒr,r' K,...f/. <»,.'. ¦ • r\,-_ rV H" " X ^/i-l

which will be used later.
We can now prove that the operators C and C are the adjoint of

each other in the sense that for any arbitrary two vectors cox and
co2 in Qs

(cov Ca>2) (Cf cox, co2). (36)

Because the operators C and ft are linear it is sufficient to verify
this property for two base vectors in Qs and for such pairs only for
which (36) is not zero.

/ m \
K,...,,> fr »,,'...r-/+1) -k.,.r/.2J^/r/...f;.1rWl...//+1

v ß 1 '
/+1

Z. "rr'/,(û,f,...r/.' *-?,'... f'^-if'^+i ¦¦¦ r'/+l.
and ^™1

(tf-V-r,» ^'...^J Kr..f/. <~fi'...f/+1)
/+i
/. Ò (CO CO r' r',,)-•ä_/ "ux r,...rf r, ..-»-! r/i+ l r + 1<

/i l
In the last step we have used relation (35). The two expressions are
thus equal and (36) is established.

We note that (36) is valid for either of the two cases (a) or (b).
This is so because the representation of the operators C and ft is
real in the base vector system which we have chosen. The two kinds
of adjoint operations are the transposition and Hermitian conjugation

which are identical for a real matrix.

(b) Antisymmetrical case.

In this case the scalar product between any two base vectors has
the value

\Er(P)Ôrr.....Orfr; fOr /' /

The summation is extended over all permutations P of the indices
and e(P) is the signature of the permutation. From (37) follows the
relation

/

((Mri...r/,ft)r/...r/)=27(™-l)^1^Ir/,'(Wrs---,-/>«r/..-ry1r'/1+1...r/-) (38)
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which can be used with advantage for proving the property

(a)x, r]r co2) (nl cox, co2) (39)

in complete analogy for the derivation of (36).

(6) Extension to continuous indices.

For the applications we need a generalization of this formalism
to the case of continuous variables. We shall include the possibility
of mixed discrete and continuous variables. The summation will
be indicated by a generalized integral which is written without
differential with the summation variables indicated under the integral
sign when necessary.

In this case we start with an infinite-dimensional vector space
B i.,,-. There exist an infinite set of linearly independent vectors
a (x) which are labelled by one or several parameters and possibly
one or several discrete indices. This variable x plays the role of the
index r in the preceding sections.

The symmetrical and antisymmetrical products are defined in
analogy to (6) and (11)

o(i1)üa(i2)D...na(i/) X Ta(xi) xa(x() x ¦ •¦ xa(xA (40)
'¦ ™

a(xx)oa(x2)o ¦ ¦ -oa(xf) =4rZe^ aK) x - ' ' xa(x0 ¦ (41)
i- p

The base vectors in Qs and Qa are obtained from a base vector
system e(xx), e(x2), in B by

co(xx...Xf) e (xx) a • • • d e (x/) for the space Qs (42)

co(xx...xf) e(xx)o¦ ¦ ¦ oe(xf) for the space Qa. (43)

In either case we can write for a general vector

°° l f(» £-=- / X(xx, ...x/ co(xx, ...x/ (44)
1-0 '¦ J' x, Xf

where the components X(xx...x/), (f 0, 1,...) are either symmetrical
or antisymmetrical functions of the xx x2 xf. The base vectors

a>(xx x/) are the respective products of the base vectors in B.

co(xx x2... x e(xx) ae(x2) ?• • • ae(xf) for Qs I

co(xxx2...Xf) e(xx) o e(x2) o---o e(Xf) for Qa.
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In the symmetrical case the operators C*(%) and f(a.) are defined in
complete analogy to (19) and (20)

C*(x): co(xx...Xf) —> Ct(x) co(xx...Xf) co(xxx...x/)
e(x) d (o(xx...Xf) (46)

C(x) : co(xx...Xf) —> C(x) co(xx...Xf)
1

ZJà(xvx) co(xx...xix_xxfl.x...Xf). (47)
/1 1

These operators satisfy the commutation rules

[C(x),C(x')] \C\x),C\x')]=0\
[C(x),C\x')] ò(x,x'). \

K '

The (5-function which occurs in these formulas must be visualized
as a generalized ó-function referring to the continuous parameters
and discrete indices which are denoted by the variables x.

If we define a metric in Qs in analogy to (34) we have

it it ,,\ \Zò(xvx'i)--0(xf>x'i,) for / /'
(co(x1...Xf), co(xx...Xf.)) \p f (49)

| 0 for fA-f
and C+(x) is the adjoint of C(%) '¦

(cox, C(x) co2) (C*(x) cox, co2). (50)

In the antisymmetrical case the operators if(x) and n(x) are
defined by

rf(x): a>(xx...Xf) -+ rji(x)co(xx...Xf) co(xxx...xf)
e(x)o co(xx...Xf) (51)

i] (x) : co (x, ...x/) —>¦ n (x) co (xx.. .x/)

Z(-iy-lio(x,...xll_xxh,tl...Xf) (52)
/i i

and they satisfy
{n(x), rj(x')} {r/(x), r/(x')} 0

{rj(x), ^(x')} ò(x, x')

In the metric with the scalar product

\E-(P)ô(x1,x'i)...ô(Xf,x'i)lorf=f'
(co(xx...Xf), œ(x,...xf,) { F (r>A)

| 0 for ft/'
the operators n(x) and -rf(x) are again adjoint to each other

(o)x, n(x) co2) (rf[(x)cox, co2). (55)

Relations (55) and (50) are valid for either an orthogonal or unitary
scalar product.

(53)
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Part II-Hyperquantization of a Scalar Field.

(1) The field equations and the commutation rules.

We consider a neutral scalar field, represented by a scalar field
variable 0(x) in the Heisenberg picture13). It satisfies a field
equation of the form

n&(x) J(x) (56)

where <),, dß — M2, M is the (unrenormalized) mass and J(x) is
the interaction term which for most of the following considerations
need not be specified. In general J(x) is a functional of the field
variables. If we need to indicate this functional dependence we shall
write J J{0(x)}. The simplest example of an interaction is a
term of the form

J{0(x)} X<P2(x) (57)

where lis a coupling constant.
The Heisenberg variables satisfy commutation rules which are

simple only on space-like surfaces. They may be written in the
form

[0(x),0(x')]o(x°-x'°) =0
[dn0(x),0(x')]ô(x°-x'o)=-iô(x-x'). j

(58)

In this form the relations are valid for all values of x and x'.

(2) The correlation functions.

The difficulty of constructing explicit solutions of (56) is well-
known. In recent work it has been emphasized that it is sufficient
for the applications of the theory to know expectation values of
certain ordered products of field operators (subsequently called
correlation functions). In most cases it will be sufficient to know
only the expectation values for a "true" vacuum state which we
visualize as the state of lowest energy (assuming that such a state
exists). Of particular importance is this expectation value for the
chronological or T-product, defined as

T{0(xx)...0(Xf)}=0(x()...0(x(f)
such that x? > a;? > • • • > ™9.

The particular set of correlation functions thereby obtained are
called the r-functions

r(xx...Xf)=<T{0(xx)...0(Xf)}y. (60)
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All of the following considerations will be valid for general matrix
elements or expectation values. There is no need at this stage of
specifying the states for which the expectation value is calculated.

Another type of correlation function is obtained with the concept
of the ordered or S-product of field operators. The S-product can
only be defined for a free field (J 0). In that case one can prove
that the two types of products are related by the ordering theorem
of Wick14). One can with Salam and Mathews14) use the relation
between the S- and T-products as the defining equation for the
(S-products. These relations involve the „contraction-symbol"
between the two kinds of products which in this case is simply
iA(xx—x2). We denote these functions by a and shall refer to
them as --functions16).

Thus we have a set of equations, beginning as follows

a(xx) r(xx)

a(xxx2) r(xx x2) + i A(xx — x2)

a(xx x2 x3) r(xx x2 xz) + i A(xx — x2) r(x3)

+ %A(xx — x3) r(x2) + i A(x2 — x3) r(x/). (61)

Here A(x) is the inhomogeneous zl-function denoted by Ae(x) in
reference13). We shall omit the index, since no other functions will
be used in this paper.

One could introduce another type of --functions which are related
to the t-functions in a corresponding way except that the A -functions

are replaced by A '-functions8). These (.'-functions seem to be
of advantage when renormalization questions are considered. We
shall not need them here but merely mention that the formalism
can be applied equally well to either case.

It can be shown17) that the S-matrix element for the scattering
process involving n free particles is directly expressible in terms of
the --functions in the form

S(xx...xn) Di • • • D« a(xx...xn). (62)

Thus when these functions are known, the S-matrix is essentially
known too.

(3) The differential equations for the z-functions.

The r- and cr-functions satisfy certain differential equations as

a result of the Heisenberg field equations and the commutation rules.
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They were given by Mathews and Salam15). For the scalar case
under consideration these equations are

n{T{0(x)0(xx)...0(Xf)}) (T{J(x)0(xx)...0(Xf)})

+ lZo(x-x)(T{0(xx)...0(xß_1)0(xIJ+i)...0(Xf)})

(/ 0,1,...) (63)

Each solution of the system (56) furnishes a solution of (63). It
seems plausible that the solutions of (63) also determine the solution
of (56), but a complete proof of this is not known to us18). The
remarkable feature of the system (63) is that whereas the solutions
of (56) are not known, the system (63) can be solved in closed form.
This is accomplished with the formalism of hyperquantization19).

In order to transcribe equation (63) into this formalism we
introduce the vector QT defined by

00 i rQr= Eat / r(xx...Xf)co(x1...Xf) (64)
/=o '¦ J

X,-..Xf
where the base vectors are given by equation (42) or by the
equivalent expression

co(xx...x/) Cf(xx)...Cf(Xf) co0. (65)

The system (63) is then easily recognized as the (x-,... x/) component
of the field-condition

[nC(x)~iC\x)-J{C(x))]QT 0. (66)

The equivalent equation in Schwinger's method of functionals was
given by K. Symanzik6).

Explicit solutions of (66) are now constructed as follows. We
consider first the free-field case with the corresponding vector cor
satisfying

[UC(x)-iV(x)]cor=0. (67)
It has the solution

co-, e™ ftj0, (68)

E - 4- /V(-0 -K*-X fV) • (69)
2

XX

This may be verified using the following relations

UA(x-~x')=-ò(x-x') (70)

esnC(x)e-E=UC(x)-iC\x) (71)

and A)C(x)co0 0. (72)
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Equation (71) follows directly from the general operator identity

e^0 <r- 0 + [E, 0] + X [E, [E, 0]] + ¦ • • (73)

and the commutation rules (48).
Returning now to equation (66) we can express its solution in

terms of the functional K related to J(x) by the functional derivative

^)=^§> (74)

or the equivalent form
J(x)=[K,C\x)]. (75)

For the special example (57) K would be given simply by

K [K(x) (76)

with j£)-4f$- (77)

or K(x) =a\xC3(x). (78)

In any case it is now easy to verify that the solution of the field-
condition (66) can be written in the form

Qr ßA °H I (79)
with A — iK + constant. j

This is based on the identity :

eA(nC(x)~iCf(x))e~A= UC(x)~iC\x)~J(x) (80)

which follows from (73) and (75).
The complete solution of (66) appears now in the closed form

ür=eAeEco0. (81)

It should be pointed out that there are many other solutions of
equation (66), depending on the boundary conditions adopted. This
ambiguity is reflected in the ambiguity of the solutions of (70).
In fact we could obtain the whole class of solutions for (66) by
choosing an arbitrary inhomogeneous A -function in (69). The particular

choice we have made corresponds to the solution which is
needed for the calculation of the S-matrix element (62).

A further ambiguity results from the normalization of the vectors

QT. It is clear that Qr remains a solution when it is multiplied
with an aribtrary constant. This constant may be chosen in such
a way that

\(co0,Ür)\=l.
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This condition fixes the constant in equation (79) and normalizes
the vacuum to vacuum transition probability to unity, which is
physically reasonable. The vector QT is then determined up to an
arbitrary phase factor. We can choose the latter so that

K,ßT) l. (82)

(4) The equation for the a-functions.

We shall now derive the corresponding equations for the c-func-
tions. This is very simple in the hyperquantization formalism. We
define the vector Qa by

00 i /* r~}a= Z-fT ¦ ¦ ¦ <y(x1...Xf)(o(x1...Xf). (83)
/-o '¦ i A

Q« __f -n I-
~1 Xf

There is a one-to-one correspondence between the vectors Qa and
ür and on account of the linearity of the system (61) this is a linear
correspondence. Thus we see : The reordering process corresponds to

a linear transformation of the space Q.

The linear operator which effects this transformation is

Qa=e-SQT,

with E - i/f\x) A(x- x') C\x')
xx'

(84)

For the proof we express the r- and c-functions as scalar products

r(xx...Xf) [co(xx...Xf), QT) (co0, C(x,)...C(xx)Q
a(xx.. .Xf) (m0, C(Xf).. .C(xx) Q«) (co0, C(xf).. A(xx) e~L'Qr)

The latter can be transformed on account of

-zn^ (85)

and
e E

co0 co0 (86)

e£C(x) e~E C(x) +i [a(x- x') C\x')
x'

(87)

hence

a(xx...x,) (ft)0, esC(Xf)e-s...eEC(xx)e-zQx). (88)

Multiplying out the binomial expressions (87) in (88) and using
(85) we obtain just the system (61).

From (84) and (81) follows

Qa=e-seAesco0. (89)
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This vector satisfies the new field-condition

{UC(x)-J{C'(x)})Qa=0 (90)

with C'(x) e~sC(x) es C(x) — ifA(x-x') C\x') (91)
x'

which corresponds to (66). When equation (90) is written out in
components, we obtain the set of equations for the functions which
corresponds to (63).

For free fields (A 0) we find with (89)

coa= co0. (92)

Thus in the absence of interaction the cr-functions reduce to a scalar
quantity. We note a certain analogy of the vector Qa to the
interaction picture13) in ordinary quantum mechanics. The operator E
plays the role of the free Hamiltonian and A that of the interaction
operator. We can define a transformed A' by

eA' e-EeAeE (93)

which is obtained from A by replacing everywhere C by C (Equation
(91)). In the analogy just mentioned it corresponds to the
interaction operator in the interaction picture.

We note, however, that in order that this analogy exists it is
essential that the A -function satisfies Equation (70). The a'-iunctions,

defined with the A '-function do not exhibit such a simple
analogy to the interaction picture.

Part III-Hyperquantization of a Spinor Field.

(1) Field equations and commutation rules.

The spinor field in the Heisenberg picture is assumed to satisfy
the Heisenberg field equation13)

(d + m)W(x) I(x). (94)

Here I(x) is a spinor function or functional of W, representing the
interaction term. When it is necessary to indicate its dependence on
the field variables we shall write IFF(x)~\. The simplest possible
case is an interaction of the form

I XW(WW) (95)

where W W^ A is the adjoint spinor and A is the metrix which
transforms the y,, according to 13)

AyßA-i -yl.
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In the following we shall not make use of the explicit form (95)
of the interaction. It is only mentioned here as an example of a
typical self interaction.

By taking the adjoint operation on (94) we obtain also the
equation

W(x) (Q — m) — I(x) (96)

where the inverted differential operator differentiates the function
which stands before it 13). The commutation rules for the field may
be written for our purpose in the form

y°{W(x), W(x')}ô(x°- x'°) =-id(x- x'). (97)

(2) The correlation functions.

We define the r-iunctions depending on the two sets of variables

xx... xr, yx...ys by

r(xx...xr, yx...ys)=(T{W(xx)..AP(xr)W(yx)...W(ys)}). (98)

They are antisymmetrical functions in both sets of variables. The
set (a;) which refers to the spinor W is always written before the set
(y) which refers to the spinor W. The two sets are not interchangeable.

We can also define the <r-function by using the Wick identity in
analogy to (61). For the first few of these functions we have for
instance

a(x, y) r(x, y) — i S(x — y)

a(xxx2,yxy2) r(xxx2, yxy2) + iS(xx — yx) r(x2, y2) — iS(xx—y2) r(x2,yx)

- iS(x2 — yx) r(xx,y2) + iS(x2 — y2) r(xx, yx). (99)

The /S-functions which appear in these relations are the functions
Sc. Since no other functions appear we shall omit the index c. For
the definition see reference 13). The S-matrix element referring to
r + s free particles can be expressed in terms of the cr-functions by
the relation

S(xx...xr,yx...ys) (dx + m)...(dr + m) a(xx...xr,yx...ys) x

x(Qx-m)...(Qs-m) (100)

which is the analogue of equation (62)20). In equation (100) the
differential operators on the left operate on the variables x while
those on the right operate on the variables y.
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The r-functions satisfy a system of differential equations which
were given by Mathews and Salam15) for a scalar field interacting
with a spinor field. Specialized to our case they appear as

(d + m) r(xxx...a-,yx...y.) (T{I(x) W(xx)... W(xr), W(yx)...W(ys)})
s

— i2J(—l)a+r-1ò(x — ys) r(xx...xr,yx...ya_xya+x...ys) (101)
a-X

and

r(xx...xr,yyx...ys)(Q-m)=-(T{W(xx)...W(xr),I(y)W(yx)...W(ys)})
r

—i27 XI)'"1 à(y—xt)r(xx...xe^x xe+x...xr, yx...ys). (102)
8 1

We transcribe these equations into the hyperquantization formalism

by defining in complete analogy to the symmetrical case a
vector Qr for each set of r-functions

Q* Zfat I Jr^Xi---Xr'yi---y^m^Xi---Xr! yi- --y*) • (103^
x y

The base vectorsystem introduced here depends on the pair of
sets of variables xx xr and yx ys. It is antisymmetrical with
respect to permutations of the x and y separately. The vectors of
the system are constructed as multiple Grassman products of two
sets of vectors in the dual spaces B and B*. The two sets of variables
are therefore analogue to the contra- and co-variant indices of a
tensor.

In conformity with this interpretation we define the scalar
product of two base vectors according to

((o(xx...Xr,y1...ys),(o(x'x...x'r,y'x...y's,))
0 for r' As or s' A f
(-l)"E<P)à(xx-y'i)...

p

-¦-ô(xr—y'ir) à(yx — x'j)...ò(ys — x'j) for r' s and r s'. (104)

The summation is extended over all pairs of permutations of the
form

1 2...T \ /1 2...sP
%x l2 %r \ jx J2 jt

and e(P) is the product of the signature of these permutations.
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We can now define creation and annihilation operators with
respect to this base vector system as follows

rf(z) co(xx...xr, yx...ys) (— l)r m(xx...xr,zyx...ys

rf(z)co(xx...xr,yx...ys) co(zxx...xr,yx...ys)

n(z) co(xx...xr,yx...ys)
(105)ZÔ(Z~ x.)(—!)e 1aj(xx...x0_xxe+x...xr,yx...ys)

e-x

r)(z)co(xx...xr,yx...ys)
8

=Zò<A—y°)(—1Y^a~l(°(xx---xr>yi---yo-xyo+x---yA-

The operators n(z) and rf(z) on the one hand and ~r)(z) and ~ip*(z)

on the other hand are adjoint to one another with respect to the
scalar product (104). It is sufficient to verify this for scalar products
which do not vanish. For instance

(co(x1...xr, yx...ys), if(z) co(x'x...x's,y'x...y'r_x))

(—l)s(co(xx...xr,yx...ys), co(xx...x's,zy'x...y'r_x)).

According to (104) this becomes

(-ir+^£(-l)^ô(z-x^2J^(P)à(x1-y^...ô(xe_x-y'i )x
e-x P

x d(xe+x- y'ie+i).. .ô(xr- y'ir) ò(yx- x'h).. .d{y.- x'jg)

(ri(z)co(xx...xr,yx...ys), co(x'x...x'$,y'x...y'r_x))

Hence for any two base vectors cox and co2

(cox, ¦rf(z)co2) (rj(z) cox, co2). (106)

In a similar way one verifies that for any two base vectors

(cox, r/<(z) w2) (rj(z) cox, co2). (107)

The operators satisfy the following set of commutation rules

{rf(zx), n\z2)} {rj(zx), r/(z2)} {v(zx), n(z2)}

{r,\zx), v,\z2)} {v(zx),n(z2)} {n\zx), n\z2)} 0 (108)
and

{>.(*_)> yf(z2)} {#i).lW} ô(h (109)
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As an example we verify the last one

n(zx) rj\z2) co(xx...xr,yx...ys) rj(zx) co(z2 xx...xr, yx.. .ys)

r

Z ò(zx~xe) (-iy^ co(z2xx...xQ_x xg+x...xr,yx...y.)
e-x

+ ô(zl—z2) m(xx...xr, yx...ys)
and

vKzz) n(zx) m(xx¦ ¦ -xr, 2/1 ...ys)
r

Vf(h) Zd(zx~xe) (-l)8-1 co(xx...xe_x xe+1 ...xr,yx..,ys)
0-1

r

27 à(zx — xr) (— iy-J co(z2xx.. .xe_x xe+x...xr, yx... ys).
e-x

Since the base vector is arbitrary, we have established the first
of the equations (109). In a similar way one can prove all the other
commutator relations.

We can construct the complete set of base vectors by operating
with creation operators on the „vacuum" vector defined by

r](z) co0 rj(z) ft>0 0. (110)
We find

co(xx...xr,yx...ys) r/\xx) ...rj\xT) rf(ijx)... r/(ys) co0. (Ill)

The orthogonality relation may now be verified directly by using
the commutation rules and equation (110).

It is now easy to see that the equation (101) is the (xx... xr,
yx... ys) component of the field condition

[(d + m) rj(x) + irf(x) -I {n(x)]\ QT 0. (112)

Similarly the equation (102) is obtained from

[rf(x) (Q-m) +irf/(x) +I{rl(x)}]QT 0. (113)

In these equations I(n(x)} is the interaction term with the field
variable W(x) replaced by n(x) and W(x) replaced by ^r)(x). The two
equations (112) and (113) are completely equivalent to the two
systems (101) and (102).
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(3) Transformation properties and relativistic invariance.

We shall now pay special attention to the transformation
properties of the operators n, if, ~r) and r/. The natural assumption is
that they are spinors, that is that they transform under Lorentz
transformations L exactly the same way as the operators W, W
respectively.

L: x -> x' Lx, V -> W
where

W'(x') S W(x) 1

and (114)
W'(x') W(x) S-1, j

The coefficients of the 4x4 spinor matrix are complex but S is
not a unitary matrix (except for space-rotations). It follows that
the correlation functions transform according to a formula such as

r'(x'x... x'r, y'x... y'/j Ur r(xx...xr,yx... ys) Vs (115)

where u and v are Kronecker products

Ur SxSx--- xS

K S™1 x S™1 x • • • x S- l
(116)

The assumption that the ™'s transform like spinors or that

n'(x') Sr/(x) m
r/'(x') =rl(x)S~1 |

V ;

and a similar set for the operators if rp, has the advantage that the
commutation rules for the n's are invariant*)

{n'(xx), ij'\x2)} ô(xx-x2), etc. (118)

Furthermore the representation (111) for the base vectors co shows
that these vectors transform according to co -> co'

w'(x'x...x'r, y'x... y's) Usco(x1...xr, yx...ys)Vr. (119)

*) It may be not superfluous to remind the reader that the symbol x in
all these formulas stands not only for the space-time variables but also for the
spinor components. The <5-functions in (118) and the summations in (119) must
be interpreted correspondingly.
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Hence the expression

/ / r(xx... Xr, yx... ys) co(xx...xr,yx... y,)
x y rj f r'(x'x...x'r,y'x... y's) co'(x'x...x'r,y'x... ys)

x' y'

is an invariant under Lorentz transformations. It follows that the
vectors Qr defined by (103) are also invariant. The field conditions
(112) and (113) which are the basic equations in the theory are now
covariant equations, and the relativistic invariance of the formalism
is evident.

It will now become apparent that the transformation property of
the Qx is only compatible with a symmetrical scalar product of the
form (32 a). The crucial condition is that the operators rj and if are
adjoint to one another and that they both transform identically
under Lorentz transformations. Hence the two expressions

(cov n(z)co2) (rf(z)cox, co2)

must transform the same way. This is only the case if

(rjn(z')cox, co2) (co2, t]n(z') cox)

S(nf(z) cox, w2).

With the unitary scalar product (32 b) the right-hand side would
instead transform with the complex conjugate matrix S*.

(A) Solutions of the field conditions.

The vector cox representing the free field satisfies the free-field
conditions

[(d + m) n(x) + i nf(x)] cor 0 1

[n(x) (Ç—m)+inf(x)]coT 0. ]
v '

The solution may be expressed in the form

with
cor esco0 (121)

E i jrl\y)s(y-y')rl\y'). (122)
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The „vacuum" vector co0 is defined by

r](x)co0 rj(x) co0 0 for all x. (123)
Since

esn(x)e~z n(x) — i fS(x — y) rf(y) (124)

and »

(d + m) S(x) - ò(x) (125)

we verify that n(x)co0 0 implies

0 e^(d + m) rj(x) e~s ez coQ

[(d + m) rj(x) + i rf(x)x ojt.

In a similar way one can establish the second of equations (120).
Solutions of the field conditions with the interaction terms are

obtained by a second transformation

Qr eAcoT (126)
with

A i fL{r)(y)} + constant (127)

y

where the functional L{rj(y)} is obtained from the interaction term
by

I{rl(x)}=[[L{ri(y)},n\x)]. (128)

v

Using the relation (73), we obtain

eA[(d + m) n(x) +irf(x)]e~~A (d + m) r](x) +irf(x)—I{r](x)}

which, together with (126) implies the equation (112). The equation
(113) is then also satisfied with the expression (126) for Qr.

We obtain again as in the scalar case a whole family of solutions
by choosing for S all the different /S-functions which satisfy the
equation (125). The particular solution which is obtained by choosing

for S the £c-function is the one needed for the expression (100)
of the S-matrix element. We have also indicated the ambiguity
arising from the normalization constant by adding an arbitrary
constant in (127). This constant can be chosen in such a way that

IK,û-)| i.
The vector Qx is then determined up to an arbitrary phase factor.
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We can also obtain an equation for the Qa vector and a
corresponding set of equations for the --functions. Since this transformation

is closely analogue to the scalar case and adds nothing significantly

new to the results we shall not carry this out explicitly.
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