
A time-keeping problem connected with the
gravitational red-shift

Autor(en): McCrea, W.H.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 29 (1956)

Heft [4]: Supplementum 4. Fünfzig Jahre Relativitätstheorie =
Cinquantenaire de la Théorie de la Relativité = Jubilee of Relativity
Theory

Persistenter Link: https://doi.org/10.5169/seals-112731

PDF erstellt am: 30.06.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-112731


A Time-keeping Problem Connected

with the Gravitational Red-shift

by W. H. McCrea (London)

Abstract. It is shown in accordance with general relativity theory that a clock
carried on a particle which describes a circular orbit in a central gravitational field
appears to go slow as compared with a clock carried on a particle at a greater orbital
distance. The factor appearing in the comparison can be interpreted by a combination

ofthe effects concernedin Einstein's gravitational red-shift and in Einstein's
clock-paradox, being an instructive illustration of these effects.

1. In calculations of the gravitational red-shift it is usually assumed
that the light-source and the observer are at rest in the frame of reference
employed. This assumption can be justified in the context. Nevertheless,
bodies cannot remain at rest in this sense in a purely gravitational field.
Therefore it is of interest to study a case where the bodies concerned are
explicitly taken to be in possible states of motion in the field. Such a

study helps to elucidate the problem of time-keeping which is involved
in the interpretation of the red-shift.

The example we use appears to be the simplest available. We consider
two particles (with observers) describing circular orbits in the
gravitational field of a massive body, conveniently called the 'star'. We take
the case where the orbital periods are commensurable in the sense that
any particular configuration of the whole system is repeated periodically.
Our object is to calculate the times between successive repetitions in the
reckonings of the two observers and to interpret the results. The treatment

is to be in accordance with the standard theory of general relativity.

2. The gravitational field of a 'star' of mass M is given in a standard
notation by the Schwabzschild metric

ds2 =(l-2^pjc2 dt2 — (l — 2 -)"1 dr2 — r2 do2 - r2 sin2 Ucp2 (1)

where m yM/c2 and y is the gravitational constant. We consider motion
only in a particular plane cp constant, as we may do without loss of
generality.
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One of the equations for a geodesic in the space-time is

d i/l 9 TOX—1 /l 9 WX m Xf Ad&\2 _
mc* dt\2 _ a

à il r / ds j \ r I r2 \ds j \ ds / ' r2 \ds/

lt r a, where a is a constant, this reduces to

"(-rf-'ffl-o- M

With r a, dr —- 0, rfç? 0 we have from 1

MlM0 «Xf-1- m

If (2), (3) are satisfied, it is easily verified that all the conditions for a

geodesic are fulfilled. Thus (2), (3) are necessary and sufficient conditions
for a test-particle to describe a circular orbit r a in the given field.

From (2) we obtain c dt/dii (a3/m)112 so that if § increases by 2 ti
then t increases by the amount T where

We call T the coordinate period of the orbit.
From (2), (3) we obtain also ds/d&= (a3/m)l!2 (1 — 3 m/a)1'2 and (see

below) we assume a > 3 m. Hence if # increases by 2 -% then s increases

by the amount c P where

__, / a3 \i/2 / m \l/2 / m U/2 „

We call P the proper-period of the orbit ; according to the postulates of
relativity theory, this is the period assigned by an observer attached to
the particle.

3. Consider now two particles (with observers) describing circular
orbits of the sort obtained above. Quantities associated with them will be

distinguished by suffixes 1, 2 respectively. Suppose the orbits to be such
that

T, pTx (6)

where p is an integer and p > 1, so that (4) gives a2 p213 ax. Suppose
also that for _=0we have &x 0, d2 0.
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Then for t=T2 we have tix 2 p n iJ2 2 n which gives for the
whole system the same geometrical configuration as that for t 0 In
other words, a change of origin -of the ^-coordinate by the amount T2
makes no change in the geometrical specification of the system.

Thus the picture of the whole system formed by either observer is

repeated at intervals T2 of t. From (5), (6) the proper-time intervals
between such repetitions are for the two observers, respectively,

r'.-(i-»fr*" M'-X"^ m

Since a2 > ax, we have P2> p Px.
We have, therefore, a system which, including the observers, returns to a

state precisely the same as a previous one and is such that different observers

assign different times for the cycle.

A. The further analysis is sufficiently illustrated by assuming
m/a2 < mjax -c 1. This is the case of a particle 2 remote from the star
and a particle 1 much closer to the star but far enough for m/ax to be a
small quantity. (It is well-known that for any actual body the ratio m/r is
small compared with unity at any exterior point.)

In this case (7) yields approximately
P 1+1-X. (8)pPr T 2 a

This means, in particular, that if observer 2 sees a clock carried by
observer 1 to register the passage of proper-time p Px, then observer 2 using
a similar clock carried by himself will assign a time-interval P2 to this
occurrence, where P2 > p Px in accordance with (8).

Neglecting terms in m/a2, observer 2 will regard himself as being in a
Minkowski space-time. To a first approximation, he will regard observer
1 as having a constant speed ax dêx/dt c (m/ax)112 V, say, relative to
himself. Consequently, he will expect a clock carried by observer 1 to
appear to go slow in accordance with the time-dilatation factor

(1 _ V2/c2y112 1 -V--\-m/ax.

Further, the usual derivation of the gravitational red-shift means
precisely that, if an observer sees a clock in a region where the gravitational
potential is less by an amount ip than that at his own position, then the
clock will appear to him to go slow by a factor 1 4- ip/c2, assuming
ip/c2 < 1. In the present case, observer 2 regards observer 1 as being
always at a distance from the star where, to a first approximation, the
potential is less than at himself by the amount y> y M/ax. So, from the
definition of m, we have 1 -f ip/c2 1 + m\ax.
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Thus observer 2 can interpret the term 3/2 m/ax in (8) as comprising
1/2 m/ax from the usual time-dilatation and m/ax from the same effect as
the gravitational red-shift. Thus we have an example in which the
gravitational red-shift is exhibited by a system, whose total behaviour in the
gravitational field is taken into account.

5. Discussion, (a) It is sometimes asked, Does a clock 'really' go slow

if it is placed in a gravitational field? There is, of course, no meaning to
the question if it be restricted to what can be observed at the position
of the clock itself. But the gravitational red-shift does imply, for example
that the time-interval between two events on the Sun as measured by a

clock at the Sun's surface is less than the time-interval between the same
events measured by a similar clock on the Earth. This is in agreement
with the interpretation of our example.

(b) In the example, the behaviour of a clock carried by one observer as

actually seen by the other observer at any particular epoch will be complicated

by the first-order Dopplee effect. But this does not affect the results
as they have been stated. Naturally, it would be possible to work in
terms of what is observed at each instant and then to integrate over the
cycle. In the example there is no fundamental significance in taking the
coordinate-periods to be commensurable ; this assumption merely simplifies

the exposition, in effect, by yielding the integrated result directly.

(c) The result (8) means also that the observer 1 will see a clock carried

by 2 to go fast (on the average) by the factor calculated. The part m/ax
of the term 3/2 m/ax now comes from a gravitational 'blue-shift'. The part
1/2 m/ax still comes from the time-dilatation exactly as in the standard
result of Einstein's clock-paradox, of which the present example affords
an instructive confirmation. It should be noted that the approximation
employed does not place observer 1 in a Minkowski space-time, so there
is no question of obtaining the effect of the time-dilatation directly from
the motion of 2 relative to 1. It is the erroneous attempt to do this that
would produce the paradox. The difference between the two observers,
and in particular the 'discrepancy' 1/2 m/ax in their time-keeping contributed

by the time-dilatation, is absolute. It should, in fact, be further
noted that a relation of the type (8) between time-reckonings of two
observers does not arise in special relativity since that theory cannot treat
such cyclic processes involving, as they must, observers in accelerated
relative motion.

(d) It may not have been remarked before that, in accordance with (5),
the distance 3 m= a0, say, is a critical distance for the Schwabzschild
space-time. It is the distance for which a circular orbit demands an orbital
speed equal to the speed of light.
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