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Hauptreferat - Exposé principal - Main Lecture

Mathematical Structure of the Non- Symmetric Field Theory

by B. Kaueman (Princeton)

In the gravitational theory the field variables (gik and r?k) are taken
to be symmetric in their subscripts. This symmetry property is natural
if we think of gik as a metric tensor, and consider it to be the primitive
concept in the theory.

However, it is known that one can approach the theory from a different
point-of-view, in which the 'displacement field' _"/A is the primary
concept. One sees then that the Riemann and Ricci tensors can be constructed

without making use of a metric tensor, and that at no point in this
procedure is symmetry in the indices required. In this sense, the
gravitational theory is a specialization of a more general theory — that of the
non-symmetric field.

I would like to give an account of the logical steps through which one

goes when trying to set up this generalization. The present account will
be based on recent work1) in which I participated with Prof. Einstein,
and in which the theory of the non-symmetric field is presented in a new
form.

A. The Formalism of the Theory

1. The primary concept is the parallel displacement of a (contravariant)
—5-

vector : When a vector A is displaced parallel to itself by an infinitesimal
distance dx1 the change in its components is to be given by

dA" ^-F^dx1 Ak

We see, from the way the coefficients r enter here, that it would be

an unwarranted specialization to take r*k as symmetric in its lower indices.

r?k will, then, be considered as a non-symmetrical quantity.

A Annals of Mathematics, 62 (1955), 128.
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When we displace the vector A parallel to itself around a closed infini-
tesimally small cycle, we find the total displacement

AAs R\mnAkr
(where fmn is the infinitesimal surface element). The coefficient R\mn is
the Riemann curvature tensor, and it has formally the same appearance
as in the symmetric field theory, except that it is now constructed from
non-symmetric F-k.

The curvature tensor can be contracted in two different ways. One of
these contractions gives a tensor analogous to the Ricci tensor of
gravitational theory :

**¦ kms ^km J ks,m ¦* km,s 1 kt J sm i J km st *

The other contraction (which vanishes identically in the gravitational
theory) is:

TÌS __ T/ J^S TIS
-**' smn ' mn -* sm,n -* sn,m -

From its definition, it is clear that Vmn is an antisymmetrical tensor.

2. In the definition of parallel displacement a certain duality enters.
One can displace vectors according to the definition given above; but,
with the same coefficients F?k, one can also define a displacement 'dual'
to the previous one:

ÔAS -rsik dxk Ai.

We can say that we have here two displacement fields: r/k and

r'k rki. The second displacement field is obtained from the first by
the operation of 'transposition'x).

A 'dual' curvature tensor can be constructed from the 'dual' displacement

field ; this dual tensor and its contractions differ from the corresponding

tensors in the original displacement field:

R kmn\F) A R kmn(P) > RkmV =t= Rkm(P) •

A duality is thus introduced into the mathematical apparatus, and
with it an arbitrariness in the whole scheme. We avoid this arbitrariness
by postulating that all equations of the theory shall be invariant under the

operation of transposition. In other words, one would get to the same field-
equations whether one starts with the displacement-field r or its transpose

r.
A Sometimes referred to as 'Hermitian conjugation'.
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It is natural to define for tensors and other field quantities the property
of 'transposition symmetry'. M'//ik/F) will be called transposition-
symmetric in the indices k if

M/l.k..{r)=M//k_A.{r).

If the tensor Qik (F) is transposition-symme^nc, then the system of

equations: Qik (r) 0 entails the system: Qik (jHj 0, i.e., this system
of equations is transposition-wiOTr.em.. Conversely, we will expect the
left-hand sides of our field-equations to be transposition-symmetric
tensors. The property of transposition-invariance is thus seen to be in some
sense a weaker form of the property of symmetry.

To give a physical interpretation of the duality which arises in the non-
symmetric field, we can say that it corresponds to the double sign of the
electric charge: + or —. The postulate of transposition-invariance would
then be interpreted to mean : all equations of the theory shall be invariant
under change of the sign of the electric charge.

3. In order to determine the behavior of the field-variables, we postulate,

as usual, that the equations of the theory shall be derived from a variational

principle. In other words, we construct from our field-variables a

'variational function' §; a variation on the field-variables induces a

variation in §, and we demand that

}j$dr 0,

when the (independent) variations of the field-variables vanish on the
boundaries of integration. This demand will have an invariant meaning
if § transform like a scalar density under coordinate-transformations.
Now, a scalar density can be constructed from the contracted Riemann
tensor if we multiply it by a contravariant tensor density (of rank 2). In
this way we are led to the introduction of new field variables g* by the
side of the jT*t; we then have the scalar densities g'* Rik, xfk Vik, and
others from which to form §.

All this is entirely analogous to the procedure used in the gravitational
theory, except that in that theory Rik is the only available 2-index
covariant tensor formed from the r*k. In the present theory Rik (r) is

a nonsymmetric tensor, and it would be an unjustified specialization to
take ç/k as symmetric, since in that case the antisymmetric part of Rik
would drop out of g** Rik (and q/k Vik would vanish altogether). Therefore,

(tk is taken to be a non-symmetric tensor-density. Q1* and Flk are
16 + 64 field variables which are to be determined by the differential
equations derived from the variational principle.
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4. The last remaining question is that of the particular choice of the
function §. Here the postulate of transposition-invariance plays a decisive

rôle. In order to obtain transposition-invariant equations from the
variational principle, we choose § so that it itself is invariant under
transposition. It is in this step that the new formulation of the theory appears.
In previous versions of the theory, the final field-equations were brought
into a transposition-invariant form; however, the variational function
from which these equations were derived was not itself invariant under
transposition, and this necessitated various artifices in the procedure of
the derivation. These artifices are now avoided by the introduction of
more natural field-variables U?k, instead of the r/k ; and we understand
the transposition of indices to refer to the U's rather than to the i""s.

We can define the u's from the F's so :

77s rs ___ as r'uik ~ 1 ik uk J it ¦

And now we can replace the _" by the U in the Ricci tensor, and we find :

"ik " ik,s "it "sk F "3" "is Utk •

When the U-k in this expression are replaced by their transposes, we
find:

Rik(ü) Rki(ü)

That is to say: Rik (F) is symmetric with respect to the transposition of
the variables U.

What we have done here is to change our understanding of the duality
discussed in § 2. From now on we will understand a 'dual quantity' to
mean : a quantity obtained by the transposition of the variables U (and
not r). Similarly, in the postulate of transposition-invariance, we will
understand that the U*k are the variables which are being transposed.
(The afk are assumed to be transposition-symmetric : rçilk g*1). With this
in mind we can rephrase (most of) the preceding discussion, so that it
refers to the variables (g, U) rather than to the variables (g, r).

One might then ask : why not introduce the variables U right from the
start, rather than define them through the Fi Indeed, this is what we
will proceed to do, - and it makes the procedure more transparent and
natural. The one advantage which the variables r have over the U's is

a more direct geometrical meaning, in terms of the parallel displacement
of vectors1).

1) V. Bargmann has pointed out that the variables U?k are related to the
displacement-field of a vector-density.
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We can, however, define the U's formally through their transformations

law under coordinate-transformations1):

_
dx'* _.r» òxk bx// d2x* 1 dx'* av

Ui*k>— m òzi* òz** y«+ òx* dx<*òx>>*' 2 •'* òx* òx'* òx^*

i ax<* av
2 °k* òx* òx'*dx'* ¦ \ >

We then show, in a straightforward manner, that the quantity

Rik^V!kiS-utsufk + \uiulk (2)

transforms like a tensor. Furthermore, Rik(U) is transposition-symmetric,
and therefore

§ - X Rik (3)

is a transposition-invariant scalar density, and can be used as a variational

function.

5. These few steps sketched above contain the complete formalism of
the theory. The rest (field-equations, conservation-laws and identities)
follows from the variational principle by straightforward, classical,
methods.

First one has for the variation of £)

<5§ (Qik dUt\\, + mk òU?k + Rik ÒQik (4)
where

SR. - tf\s A f (Uk--fàk UZ) + çfk (UI-tô: UZ). (5)

Next, one requires <5j"§ dr 0, under the condition that the independent

variations ôU-k and ôg1* vanish on the boundary. This gives the
'Field Equations' :

«., 0 Ì

9.;*=o f w

Assuming that the field-equations are satisfied, we find from (4) that

(çtkÔU:k)>t 0. (7)

A From the transformation-law one might think that we are here introducing a
different connection between U and r than the one defined above. However, these
relations are seen to be identical, when one takes the A-transformation into account.
See below; cf. also the paper cited above.
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Different specializations of ôU-k (no longer required to vanish on the
boundary!) give us the 'Conservation Law':

£;..-(ß"ff«v.)..=° (8)
as well as

St (Qik U°k ài- <Ak VU - g*s ViXt (9)

and the 'Divergence Equation'1) :

Cß,n=0. (10)

((8) and (9) are due to infinitesimal coordinate transformations; (10) - to
an infinitesimal /.-transformation).

One sees that the conservation law (8) has a particularly simple form
in the new variables.

Finally we get the 'Bianchi Identities' (which are given here modulo
the field-equations 3lik 0)

and another differential identity

(9i!S.).* 0.

(This identity is a trivial consequence of (5), since 9tó8 — gS3jS as one
can readily verify).

The existence of identities is due to the invariance properties of £).
On the one hand j § dr is invariant under coordinate transformations,
so that its variation vanishes identically under these transformations, and
gives rise to four identities among the field equations. As a result, four
of the field variables remain undetermined, so that four arbitrary coordinate

choices can be made ; fields which differ from one another only by a
coordinate-transformation are thus essentially the same.

On the other hand, it is easy to verify that § remains invariant under
the so-called '^-transformations' defined by

X:U!k^ U/k + (ôisX,k-ôksX,i)

g"- g"- (ii)
This invariance leads to one more identity among the field equations.

Similar to the case of the 4 Bianchi identities, it suggests that U-fields

1) This equation is also a consequence of the system __* 0.
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which differ from one another only by a ^-transformation are to be
considered as the same field.

What we have done is to extend the group of transformations of general

relativity. Under the extended group, the variables U?k no longer
decompose into symmetric and anti-symmetric parts which transform
separately.

In concluding this summary of the formalism of the theory, it is important

to remark that the system of field-equations (6) is entirely equivalent

to the system

9ik,s + 9ur?t + <fkrl^o (11a)

A-y(^ss-^s.) o (lib)

-ik ® Rik,I A Rki,i + Rii,k~ 0 (lie)

in Einstein's previous version of the theory ; and one can pass from (6)
to (11) by a suitable substitution of variables.

B. A Few Remarks concerning Physical Interpretation

6. From the relation (9) which gives the components of the density %'a

one can calculate J" %l dx, and we find (assuming that the field behaves
as a Schwabzschild solution for large distances) that

%l dr r-^m

It is then natural to look upon %* as an 'energy-momentum tensor-
density' (really a pseudo-tensor).

The Divergence Equation (10) corresponds to the vanishing of the
magnetic current-density in Maxwell's theory- provided one identifies
g*4 1, 2, 3) with the components of the magnetic field.

To satisfy the continuity equation for electric charge, one identifies the
electric current-density with the vector density1)

3s -tjnilcU(9ik.i + 9ki,iA-9u.k)-
•^s v^-

We have then identically:

3s, - o.

A rjtkls is the Levi-Civita tensor density, antisymmetric in all indices.
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In order to make further connections with electromagnetic theory, one
has to use approximation methods. We assume that gik is a weak field of

first order, and that gik differs from the Minkowski values by quantities
of the first order. When the field equations are written out to first order,
we find that they decompose into two sets: (1) 'gravitational equations'
which are identical with the symmetric-field equations (to that order of
approximation); (2) 'Maxwell equations'1)

Vs 9is,s 0 and rf (gikJ + gklyi + gH,k),ss 0

The second set of these equations is weaker than the corresponding one
in Maxwell's theory. Of course, this first approximation, in anon-linear
theory, tells us nothing about the interaction of the symmetric and
antisymmetric fields. For that one has to make complicated calculations to
higher orders of approximation.

C. Results in the Theory

7. When we attempt to solve the equations in this theory, we are faced
with difficulties which are even greater than those of the gravitational
theory. The usual approach is to treat the system of equations as
consisting of two parts. The first part (9<?sl* 0 in our presentation) is quite
simple in principle. It is a system of linear, non-homogeneous algebraic
equations for the U'k (or correspondingly the r/k) as unknown variables,
to be solved in terms of a/k and a/k>s. In principle, one has only to invert
the matrix of coefficients of the unknown Z7's (or P's), and to state the
exceptional cases when this inversion cannot be carried out (due to the
vanishing of the determinant of the coefficients). In practice, however,
the inversion is quite a laborious task. Several papers have appeared [1],
expressing the inverted matrix in different forms.

The complexity of the expressions for U in terms of Qlk, gl*_8 makes it
impossible in general to substitute for U in the other part of the system
of equations (Rik 0). Such substitutions have only been carried out in
very specialized cases.

Nevertheless, some general information about the system Rik 0 can
be obtained by analyzing the way in which the derivatives gikii and giktiX
enter into the equations. One can then treat the Cauchy problem relative
to this system, and it has been shown [2] that, just as in the gravitational
field theory, so also in the non-symmetrical theory, the Cauchy problem
(the question of 'relativitic determinism') has a unique solution.

*) rh rÌ2 % - — - Vt ¦
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A considerable amount of work has been done on special solutions in
the theory. Rigorous solutions in various forms have been given for the
static, spherically-symmetric case [3]. All of these solutions show
singularities. Similarly, for the axially-symmetric static case we have shown
that the assumption of regularity at the origin is incompatible with the
field-equations. For time dependent fields, a rigorous special solution is

known, which is everywhere regular (the 'plane electromagnetic wave') [4].
This solution however is not Euclidean at infinity.

Singular solutions are inadmissible in a complete field theory which does

not make an artificial separation between matter and the field produced
by it. Acceptable solutions, according to this viewpoint, must be everywhere

regular1). In addition, the solutions are assumed to be asymptotically

Euclidean, in a suitable coordinate-system.

8. The requirement that the field variables shall be everywhere regular
has several important consequences, both locally and globally.

a) The space-time signature. In the gravitational theory one requires
that

det(gik)A=0 (12)

everywhere, so that the contravariant quantities g%k are nowhere singular.

Taking into account the boundary conditions, which require the field
to be imbedded in a Euclidean space, we see that this determinant is

everywhere negative. The matrix gik can be transformed locally into a

diagonal form with the signature (—,—,—, +), and this gives us the
basis for distinguishing time-like and space-like directions at each point
of the continuum.

In the non-symmetric theory, the g, k matrix cannot be transformed
into a diagonal form by any real coordinate transformation. The simplest
form to which gik can be transformed locally is

"I 012

9nc-\-^2-l_. „_.| (13)
</..

where gX2, g3i are real quantities which can be expressed as functions of

invariants of the field. One can take the diagonal terms in (13) to be the

A The manifold on which the field-variables are defined is assumed to be topo-
logically equivalent to the Euclidean 4-space. The property of regularity then means :

there exists a system of coordinates (xl), covering the whole manifold, such that
when expressed in this coordinate-system, gi]c (x') are regular functions.
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'signature' of the non-symmetric field. Now, a necessary condition for
carrying out the transformation to the 'canonical' form (13) is: det (gik) 4=0.

However, in the theory of the non-symmetric field, one wants to avoid
conditions which apply to parts of the total tensor. Instead, one reads the
condition (12) as applying to the total gik tensor. In addition, we require
that the field variables r?k are finite and uniquely determined at each

point in terms of the gik and their first derivatives; from this we can
deduce that det (gik) 0. Hence one has a well-defined space-time signature

at each point [5].

b) Restriction on the antisymmetric field. From the (local) 'canonical'
form of the gik matrix, we must clearly have j g3i | < 1, in order to
prevent the determinant of gì k from vanishing. This means that the invariants

of the antisymmetric field cannot be arbitrarily given [5].

c) Vanishing of mass for static fields. In the gravitational theory we
have the Einstein-Pauli theorem for static fields, which states that if the
field is everywhere regular, satisfies the field-equations, and behaves at
large distances like a Schwabzschild solution, then its mass must vanish.
In the proof, Gauss' theorem is applied to a divergence which is known
to vanish in the static field. Since the field is assumed regular, the volume-
integral over the divergence can be converted into a surface-integral;
the boundary conditions are inserted, and it is found that the integral is

proportional to the 'mass' of the Schwabzschild solution. On the other
hand, this integral vanishes, since its integrand is everywhere zero.

The proof can be carried out almost as readily in the non-symmetric
field theory. Equation (8) in which %% is defined shows that S£44 0 in a
static field. On the other hand, equation (9) gives us %£ as the divergence
of some function of the field-variables. From here on the proof is formally
the same as in the gravitational theory [6].

d) Are static fields locally Euclidean? Lichneeowicz [7] has shown
that this is the case for the gravitational field theory. He makes use of
theorems about elliptic operators: F.V g1' VHj + a1 VH (g%1 is a
definite-negative form); if F.V is known to be non-negative in a given
domain, then V cannot attain a minimal value within the domain, without
reducing to a constant. Now, the gravitational field-equations, in the time-
independent case, can be put into a form where the theorems apply. To do
this, one has to express the P/h explicitly in terms of the gik. In addition,
one assumes that the solution behaves asymptotically like a Schwabzschild

particle - in particular1): gix ~ 1— m/r 1 so that a regular <744

must attain its lowest value at some point in space. In the non-symmetric

A Here a tacit assumption is brought in : the Schwarzschild constant m (teh
'mass') must be positive.
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field-theory, however, the expression of r/k through the gi k is so complicated

that it may not be possible to establish whether or not F.gu is

everywhere non-negative. It would be very desirable to provide a proof
of this theorem which does not depend on the explicit substitution of r
by g ; such a proof could then be extended to the non-symmetric theory
[8].

D. Alternative Theories

Several variations of Einstein's theory have been suggested. I would
like to describe two of these very briefly.

a) Scheödingee's 'purely affine' theory [9] is based on the same
principles as Einstein's. However, for his variational function, Scheödingee
chooses ips y—det (Rik) (a scalar density!). Thus he does not bring
in the additional tensor glk into the variational procedure. The only
quantities to be varied are the r/k. However, Scheödingee defines
X Qik ò$Q/òRik (X being a constant which is inherently 4= 0). By so doing,
he arrives at a system of differential equations for g and F, which is
found to be not transposition-invariant. For that reason, a change of
variables has to be made (from J" to *T), which brings the equations into
a transposition-invariant form. The final equations are identical with
Einstein's equations (11) (the g, /'representation), except for the appearance

of the constant X, which replaces (lie) by

Rik — r\ 9ik Rik.l + Rkl.i + Rli,k= % (9ik,l + 9kl,i + 9li,k) •
^- -S -N^- '•V N^- ^S

In Scheödingee's theory, X plays the role of a cosmological constant,
and is therefore considered as being very small.

It is of interest to note that the change of variables (from F to *T)
can be avoided in Scheödingee's theory just as in Einstein's theory, by
using from the beginning the variables U, in terms of which Rik is
transposition-invariant.

b) In Kuesunoglu's theory [10], equation (11a) is accepted as a definition

of the r/k; equation (lib) is also adopted. These equations are shown
to lead to 4 relations among the g and JT, which are identical in form with
the generalized Bianchi identities, except that gik appears instead of Rik.
This suggests a proportionality between the similar relations, which, when
carried out, yields the equation system in Kuesunoglu's theory, (lie) is

now replaced by

Rik=~V2 (9ik~bik), Rik>l A- Rkl,i + Rn,k=—P2 (9ik,i + 9ki,i + 9n,k)-



238 B. Kaufman

bikis a symmetric tensor formed from the gik, but different in general
from gik. When the antisymmetric field is absent, bik and gik coincide;
hence, the constant p2 is not a cosmological constant. The equation-
system is also derivable from a variational principle, with

§__ - fl" Rik ~ 2 p2 { [- det bikf'2- [- det gikf'2 }

Diskussion — Discussion

Mme A. Tonnelat : II est possible aussi d'élargir la théorie en supprimant

la condition
Ôq Çfiï 0

Pour cela, il suffit de partir d'une densité formée avec un tenseur de

Ricci RßV (L) écrit avec une connexion L/v dont le vecteur de torsion est
nul. Après changement de connexion affine Lev -»¦ Aev, on aboutit finalement

à l'équation
ß V A

9+-;q °

écrite avec une connexion A telle que

°q 9^ ~ 9— nQ

mais ôg gtS et AQ Aga ne sont dans ce cas pas nuls séparément.
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