Absorptionsspektrum des NO-Moleküls Feinstruktur-Analyse der - und -Banden und homogene Störung C²-²

Autor(en): Lagerqvist, A. / Miescher, E.

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 31 (1958)

Heft III

PDF erstellt am: **12.07.2024**

Persistenter Link: https://doi.org/10.5169/seals-112910

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Absorptionsspektrum des NO-Moleküls Feinstruktur-Analyse der δ - und β -Banden und homogene Störung C² Π --B² Π

von A. Lagerqvist (Stockholm) und E. Miescher (Basel)

(4. II. 1958)

Abstract. The absorption spectrum of nitric oxide (NO) is studied on plates obtained with the Ottawa 3-meter and the Chicago 6-meter vacuum spectrographs. Rotational analyses are given for 5 bands [(0,0), (1,0), (2,0), (3,0) and (4,0)] of the δ -system ($C^2\Pi - X^2\Pi$) and for 15 bands [(5,0)-(19,0)] of the β -system ($B^2\Pi - X^2\Pi$) in the wavelength region 1980–1590 Å. The $B^2\Pi$ and $C^2\Pi$ excited states show a strong and extended mutual perturbation of the homogeneous type as a consequence of the crossing of the two corresponding potential energy curves. The perturbation parameter H is calculated and has a pronounced maximum if plotted against the excitation energy (s. Fig. 16). In order to explain quantitatively the observed vibrational and rotational perturbations a "deperturbation" in first and second approximation is carried out on the basis of perturbation theory and the H-curve. This unusually fine example of a perturbation in bandspectra is compared with hitherto known cases for the AgH and PbH molecules. The observed anomalous vibrational and rotational isotope shifts in the perturbed bands are thoroughly discussed.

I. Einleitung

§ 1. Im Absorptionsspektrum von Stickoxyd (NO), das LEIFSON¹) (1926) erstmals photographiert hat, sind die aus der Anregung mit aktivem Stickstoff bekanntgewordenen β - und δ -Banden von SPONER und HOPFIELD²) (1926) bzw. von KNAUSS³) (1928) identifiziert worden. TA-NAKA⁴) hat 1949 mit grösserer Dispersion die β -Banden Progression bis zu v' = 12 und die δ -Banden bis v' = 2 in Absorption beobachtet. SUT-CLIFFE und WALSH⁵) haben weitere Banden v' = 13, 14, 15 und 16 im β -System, v' = 4 im δ -System zugeordnet. Diese Deutungen stützten sich jedoch mehr oder weniger auf Plausibilitätsgründe, da die fraglichen Banden nicht in Linien aufgelöst waren und deshalb eine sichere Zuordnung auf Grund der Feinstruktur nicht möglich war. In den beiden Progressionen zeigten sich starke Störungen in der Lage und in den Intensitäten, einzelne Glieder fehlten oder wurden als diffus erscheinend beschrieben. MARMO⁶) hat das Absorptionsspektrum von NO photoelektrisch untersucht, allerdings mit sehr geringer spektraler Auflösung, so dass er in der Deutung der Banden keinen Fortschritt erzielen konnte.

Die Feinstruktur der im langwelligen Emissionsspektrum von NO erscheinenden β -Banden ist von JENKINS, BARTON und MULLIKEN⁷) 1927 in einer klassischen Arbeit geklärt worden. Die β -Banden bilden einen ${}^{2}\Pi - {}^{2}\Pi$ -Übergang. Der angeregte Zustand wird mit $B{}^{2}\Pi$ bezeichnet, der untere ist der $X{}^{2}\Pi$ -Grundzustand des NO-Moleküls. Die Rotationsanalysen von JENKINS, BARTON und MULLIKEN umfassen die Vibrationsniveaus v = 0, 1, 2 und 3 des $B{}^{2}\Pi$ -Terms. Die Feinstruktur der δ -Banden ist von SCHMID⁸) 1930 untersucht worden, allerdings nur an einer einzigen Bande (0,3 bei 2140 A) im Emissionsspektrum, die weder voll aufgelöst noch frei von Überlagerungen durch andere Banden war. SCHMID schloss auf einen ${}^{2}\Sigma - {}^{2}\Pi$ -Übergang und seitdem wird der obere Zustand des δ -Systems als $C{}^{2}\Sigma$ -Term in allen Tabellen aufgeführt.

Die Banden des δ -Systems sind die intensivsten im Absorptionsspektrum von NO oberhalb 1500 A (vgl. MARMO⁶); sie kommen deshalb als erste für den Nachweis von NO im U.V.-Spektrum in Betracht. Die Absorptionsstärke der β -Banden ist im allgemeinen weit geringer.

Die dieser Arbeit zugrunde liegenden Aufnahmen wurden 1954 während eines Gastaufenthaltes des einen von uns (E. M.) am National Research Council of Canada in Ottawa auf Anregung von Dr. G. HERZBERG gewonnen*). In der Zwischenzeit hat Miss M. UEDA¹⁰) eine Untersuchung der NO-Absorption an einem 3 m Vakuumgitter und 2,2 A/mm reziproker Dispersion publiziert. Ihre Ergebnisse können jedoch mangels Feinstrukturanalysen und hinreichender Gasreinheit nicht zur Klärung des Spektrums dienen.

II. Experimentelles

§ 2. Der benützte Vakuumspektrograph enthält ein Bausch- und Lomb-Gitter mit 30000 Linien pro inch und 3 m Radius. Die Aufnahmen wurden unter Verwendung der von BRIX und HERZBERG¹¹) beschriebenen Vorzerlegungseinrichtung in der 4. Ordnung mit der reziproken Dispersion von 0,65 A/mm gemacht. Als Lichtquelle diente eine Lyman-Entladung, photographiert wurde auf Ilford-Q2-Platten. Die Linien eines

^{*)} Vorläufige Mitteilung siehe 9).

in der 2. Ordnung aufgenommenen Eisenbogenspektrums bildeten die Referenzlinien. Deren Wellenlängen wurden den M.I.T.-Tabellen entnommen, nach EDLÈNS Tabellen auf Vakuum reduziert und durch 2 dividiert.

Das NO-Gas befand sich in einem allseitig mit flüssigem Stickstoff oder Sauerstoff kühlbaren Rohr von 26,5 cm Länge, wie es von HERZBERG und HUGO¹²) beschrieben worden ist. Die tiefe Temperatur des Gases bewirkt eine Verkürzung der Banden und damit eine Verminderung der Überlagerungen im Spektrum; gleichzeitig wird damit völlige spektrale Reinheit des Gases erreicht. Bei Kühlung mit flüssigem Sauerstoff konnte der Druck des NO-Gases bis 4 mm Hg gesteigert werden. Für die intensiven Banden waren kleinere Drucke (0,8 und 0,1 mm Hg) günstiger. Eine bei Raumtemperatur allerdings mit weitem Spalt gemachte Aufnahme erwies sich in Einzelfällen zur Messung von Rotationslinien bei hohem J als nützlich.

Der so aufgenommene Spektralbereich umfasst die Wellenlängen 2100 bis 1350 A, wobei im langwelligen Teil dieses Bereiches bis etwa 1580 A hinunter die Breite des Spektrographenspaltes 0,01 mm war. Im kurzwelligen Teil musste der Spalt auf das doppelte bis fünffache vergrössert werden, um eine ausreichende photographische Schwärzung zu erzielen, was zusammen mit der rasch abnehmenden Frequenzdispersion einen ins Gewicht fallenden Verlust an Auflösung bewirkte.

Um die Analysen einzelner Banden im Gebiet höherer *J*-Werte fortsetzen zu können, stellte uns auf unsere Bitte hin Herr Dr. P. G. WILKIN-SON (University of Chicago) eine in dritter Ordnung des 6-m-Vakuumgitters in Chicago gewonnene NO-Absorptionsaufnahme in überaus freundlicher Weise zur Verfügung. Das NO-Gas hatte bei dieser Aufnahme Raumtemperatur. Die in Tabelle 2 gegebenen Linien mit hohen *J*-Werten sind auf dieser Platte gemessen worden.

III. Resultate

§ 3. Die in dieser Arbeit mitgeteilten Resultate beschränken sich auf den Bereich oberhalb 1595 A, in dem alle eindeutig als zum β - bzw. δ -System gehörenden Banden liegen. Es fallen in ihn auch γ - $(A^2\Sigma^+ - X^2\Pi)$ und ε - $(D^2\Sigma^+ - X^2\Pi)$ Banden, über die gesondert berichtet worden ist (BARROW und MIESCHER¹³), ferner Banden des β' - $(B'^2\Delta - X^2\Pi)$ - und des $(E^2\Sigma^+ - X^2\Pi)$ -Systems, über deren obere Zustände man aus Feinstrukturanalysen im Emissionsspektrum (MIESCHER¹⁴, FEAST¹⁵) Bescheid weiss. Unterhalb 1595 A häufen sich die Banden mehr und mehr, ohne dass eine Konvergenz oder eine Anordnung in Rydbergserien erkennbar würde. Ausser den restlichen β' -Banden sind nur einige wenige bisher untersucht worden¹³).

Н.Р.А.

Figur 1 gibt eine Übersicht über das NO-Spektrum und Tabelle 1 eine Liste der vermessenen Banden, die alle vom niedrigsten Schwingungsniveau v'' = 0 des $X^2\Pi$ -Zustandes ausgehen und die charakteristische Dublettaufspaltung (125 cm⁻¹) des NO-Grundzustandes zeigen. Die Reihe der rotabschattierten β -Banden ist bis $\beta(12,0)$ leicht zu verfolgen, allerdings ist $\beta(7,0)$ von $\delta(0,0)$ und $\beta(8,0)$ von $\varepsilon(0,0)$ verdeckt; $\beta(9,0)$ ist auf-

λ_{A}		$\beta(v,o)$	$\delta(v,o)$				
1982	R	(5,0)					
1945	R	(6,0					
1909	V		(0,0)	von $\beta(7,0)$ überlagert			
1877	R	(8,0)		von $\varepsilon(0,0)$ überlagert			
1845	R	(9,0)		ja 4, 253			
1828	V		(1,0)				
1815	R	(10,0)		л.			
1787	R	(11,0)					
1762	R	(12,0)		±			
1752			(2,0)	kantenlos			
		(13,0)		keine Kante beobachtet, von $\varepsilon(2,0)$ überlagert			
1708	R	(14,0)					
1689	R		(3,0)				
1676	R	(15,0)					
1658	R	(16,0)		9			
1637	R	(17,0)		von $eta'(1,0)$ überlagert			
1620	RV		(4,0)				
1616	R	(18,0)					
1598	R	(19,0)					
R = rot absch. $V = violett absch.$							

Tabelle 1	
Hauptkante	en

Fig. 1 (S. 225–228)

Absorptionsspektrum von NO. 3-m-Gitter, 4. Ordn. (Ottawa), Lymanlampe, Fe-Linien in 2. Ordn. NO-Gas: Schichtdicke 26,5 cm, Temperatur - 180 °C. Druck: 1920-1840 Å 0,1 und 2 mm Hg. 1840-1585 Å 0,8 und 4 mm Hg. 1585-1385 Å 0,15 und 1,5 mm Hg.

Die im kurzwelligen Teil in [] gesetzte Bezeichnung ist spekulativ, da für diese Banden Rotationsanalysen nicht vorliegen.

i N¹O⁵ ii NO¹⁸

fallend intensiv, dasselbe gilt noch stärker für $\beta(11,0)$ und $\beta(12,0)$, wobei die letztere Bande auch in der Lage stark verschoben ist. $\beta(13,0)$ fehlt auf den Tieftemperatur-Aufnahmen gänzlich, $\beta(14,0)$ und $\beta(16,0)$ zeigen eindeutig die Struktur der β -Banden, zwischen ihnen erkennt man zwei sehr intensive Banden von fast gleicher, β -ähnlicher Struktur, und es ist zunächst unmöglich zu entscheiden, welche davon $\beta(15,0)$ ist. $\beta(17,0)$ ist überlagert von $\beta'(1,0)$ und $E^2\Sigma - X^2\Pi(0,0)$. $\beta(18,0)$ und $\beta(19,0)$ schliesslich liegen in einem Gebiet, in dem sich die Banden schon zu häufen beginnen.

Die Reihe der δ -Banden beginnt mit den violett abschattierten $\delta(0,0)$ und $\delta(1,0)$ -Gliedern, ihre Fortsetzung zeigt in $\delta(2,0)$ und $\delta(4,0)$ eine offensichtlich gestörte und in $\delta(3,0)$, der zwischen $\beta(14,0)$ und $\beta(16,0)$ gelegenen überzähligen Bande, fast β -ähnliche Struktur.

In Figur 1 erkennt man deutlich einige Banden der isotopen Moleküle N¹⁵O und NO¹⁸. Die Intensität der Isotopenbanden ist unerwartet gross, vermutlich infolge einer merklichen Anreicherung der schweren Isotope im Destillationsprozess beim Füllen des Absorptionsrohres.

Rotationsanalysen.

§ 4. Tabelle 2 enthält die Wellenzahlen der vermessenen Rotationslinien. Die Einordnung in die Bandenzweige und die Numerierung waren dadurch erleichtert, dass die Termdifferenzen ΔF_1 (von $X^2\Pi_{1/2}$) und ΔF_2 (von $X^2\Pi_{1^{1/2}}$) des Grundzustandes bekannt sind¹⁶) oder aus genauen Konstanten¹⁷) exakt berechnet werden können.

 β -Banden. Die Mehrzahl der Banden des β -Systems zeigt ein fast ungestörtes Aussehen. Es sind stark die 4 Zweige R_{11} , P_{11} , R_{22} und P_{22} , in den Q-Zweigen werden nur die ersten Linien beobachtet, wie es für einen ${}^{2}\Pi(a) - {}^{2}\Pi(a)$ -Übergang charakteristisch ist. Schwache Satellitenzweige $(\Delta \Sigma \pm 0)$ sind an einzelnen Banden messbar. Die stark gestörten Banden wie $\beta(12,0)$ und die als $\beta(15,0)$ bezeichnete Bande dagegen zeigen Satellitenzweige von nahezu der Intensität der Hauptzweige, $\beta(15,0)$ sogar eine grosse Λ -Aufspaltung.

 δ -Banden. Die $\delta(0,0)$ -Bande zeigt mit Ausnahme des Gebietes der niedrigsten J-Werte und die $\delta(1,0)$ -Bande ausser für hohe J-Werte die Struktur eines normalen ${}^{2}\Pi(b) - {}^{2}\Pi(a)$ -Überganges mit 8 starken Zweigen, von denen vor allem R_{21} -Linien als kurzwellige Bandenausläufer unüberlagert gut erkennbar sind. Die Linien der δ -Banden weisen eine mit J rasch wachsende, grosse Λ -Aufspaltung auf. In $\delta(2,0)$ sind auch Q-Zweige beobachtet, alle Zweige nehmen einen gestörten Verlauf, was insbesondere an den R_{21} -Linien auffällt, die mit wachsendem J zunächst zusammen, dann aber auseinanderstreben und deshalb in Aufnahmen kleiner Dispersion eine diffuse Bande vortäuschen können (TANAKA⁴). Die

	^R 21	4 7744 777 777 777 777 777 777 777 777	
	Q22	323, 2 205, 1 209, 6 284, 2 284, 2 284, 2	
	P22	16 2000 20	3 (8,0)
	R22	80000000000000000000000000000000000000	
	6,0) 911	406,4	thelle 2
	β ₁₁	40000000000000000000000000000000000000	Ē
	<mark>11e 2</mark> R ₁₁	1 60 60 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	<u>Tabe</u> J-}	0H0W4W0C@00H0	
7			
	Q ₂₂	200 200 8 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	P22		
	R22	200000420000 200000000000 20000040000000 20000400000000	
and the second se	5,0) Q11	452,6 470,7 42,9 9	7 0)
	<u>в</u> 11	4 4 74 74 74 74 74 74 74 74 74 74 74 74	2
and the second se	11e 2 B ₁₁	66 77 77 77 77 77 77 75 75 75 75 75 75 75	C all
	Tabe J_⊉	010w4w0000010w4	Tahe T

	922	185,2 72,4 72,4
	P22	1667 667 667 667 667 667 667 667 667 667
	^н 22	Ч 66080000000000 7410001180064 00000000116440
(0,8)	9 ₁₁	22 24 24 20 20 20 20 20 20 20 20 20 20 20 20 20
R S	P ₁₁	0 0 0 0 0 0 0 0 0 0 0 0 0 0
ile 2	R11	20 20 20 20 20 20 20 20 20 20 20 20 20 2
Tabe	J-2	010W4W0C80010W4W0
	9 ₂₁	866 666 706 706 706 706 706 706 706 706 7
	P ₂₁	50 50 50 50 50 50 50 50 50 50 50 50 50 5
	^R 21	202 202 202 202 202 202 202 202 202 202
	9 ₂₂	20 87444 877,004 700 700 48 90 70 70 70 70 70 70 70 70 70 70 70 70 70
	P22	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	R22	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
(0,7)	9 ₁₁	м 444 440 400 40 4 4 4 6 6 7 6 6 7 6 6 7 6 7 6 7 6 7 6 7
B		и 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
elle 2	R11	22 444 644 644 644 64 64 64 64 66 66 66 66
Tab	J-2	01004000000100400

		111	
^R 21	56009,2 55902,1 837,55 64,7 64,7 54,75 64,7 54,755 54,755 54,755 54,755 54,7555 54,75555555555	R21	888 874 874 888 887 9 9 88 7 9 9 7 9 8 8 8 8 8 8 8
Q ₂₂	88 40000004 2000000000000000000000000000	9 ₂₂	4 89 89 80 80 80 80 80 80 80 80 80 80 80 80 80
P22	8,778 8,779 8,779 8,774 8,774 8,774 8,774 8,774 8,774 7,744 8,774 7,744 8,774 7,7447 7,7447 7,7447 7,7447 7,74477777777	P22	4 70,4 % 19 70,4 % 10 70,4 % 10 70,6 % 1
R22	8888871700702726 6888897170070707480 417778057198081	R22	4 66670,8774,441,988,870,4188,704 8,7,4,7,4,4,4,9,2,4,80,0,4,0,8,704 8,7,4,7,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
1,0) 911	960 974 976 976 976 976 976 976 976 976 976 976	(4,0) (11	20 20 20 20 20 20 20 20 20 20
P11	6 764 4 201 08 764 7 201 0 767 7 200 0 767 7 201 0 7	β ₁₁	2021264 4880209280008004 68011666666666666 0801166664666666666666666666666666666666
belle 2 <u>±</u> R _l 1	20 90 90 90 90 90 90 90 90 90 90 90 90 90	belle 2 } Rll	80 744 744 746 746 746 746 746 746 746 746
J -	0100400080010040008	E I	040242000000000000000000000000000000000
		<u> </u>	20022000
[đđ	82.44.80 92.678 86.0556 90
R ₂₁	20 20 20 20 20 20 20 20 20 20 20 20 20 2	ee P22	0000000 100000 100000 1000000
Q 22	00 4100 87,000 87,47 74,00 87,47 74,000 74,0000 74,0000000000	đđ	0,86,40,06,4 2,0,0,4,0,6,0,4 2,0,0,4,0,8,1,6,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
	m # N P O # m O V	N	rv 4 m

8	~	789044 22
	922	104,9 001,6 96,8 83,7 74,3 74,3
	P22	60 808 840101484000 84010048000
	^R 22	1 00000 1 80000 1 800000 1 800000 1 800000 1 800000 1 800000 1 800000 1 800000 1 8000000 1 8000000 1 80000000 1 80000000 1 80000000 1 800000000 1 80000000000
(0,6	911	81 877 7,000 4,0000 4,0000 4,0000 4,0000 4,00000000
B (P11	
elle 2	R11	74186 862 882 7782 7782 7782 7960 7960 7960 7960 7960 7960 7960 7960
Tab	J-2	0100400000001004

2 9	2C4 10000
cc P2	2000 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 dđ	55 56 56 56 56 56 56 56 56 56 56 56 56 5
CG ^R 2	024 084 044200 000 000 000 000 000 000 000 000
<u>13,0)</u> cc ^P 11 dd	57626,4 5899,0 5899,0 688,2 689,0 689,0 449,3 449,3 449,3 449,4 449,4 449,4 449,4 449,4 449,4 448,9 446,4 448,9 446,4 448,9 535,9 635,9 685,9 685,9 12,96 14,96 16,96 16
$\frac{11e 2}{cc^{R_{11}}} \frac{\beta}{dd}$	55 56 56 56 57 57 57 57 57 57 57 57 57 57 57 57 57
<u>Tabe</u> J- <u>‡</u>	197473789898188888888888

231

Tab	elle 2	ß	10,0)	11							
J- 1 2	cc R _{ll}	dd	cc Pl	l ad	Ql	.1	R ₂₂	P22	2 Q	22	
012345678901123	55093, 92, 89, 85, 80, 73, 55, 45, 33, 05,	5515413393371	55085 80 73 65 55 54 33 19 54 989 71 53	413393371074	090 88 85 81 74 67 58 48	56403022	018,6 17,2 14,6 05,1 54998,6 81,2 70,55 58,5	005, 54998, 80, 69, 57, 243, 28, 12, 894,	013 1 10 0 05 7 54999 3 91 4 83 1 72 5 63 4 83 4 83 4 83 5 63 4 83 5 63 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	3,40 5,12 5,77 5,81	
14 15 16 17	54975 59 43 28	3 1 1 4	868 45	,5			cd R	21 dc	cd	P _{21 dc}	
18 19 20 22 23 24 25 27 28 29 30 31	916,6 08,5 05,5 06,7 23,2 49,1 63,8 79,7 55011,9 28,9	916,1 00,8 00,8 05,5 14,8 38,6 52,3 98,6 67,3 98,1 014,6	22 07 782,02 588,225,5 552,551,6 686,751 805, 805, 805,	7 782,7 653,66 457,53 45,05 457,53 5653,3 72,7 585,53 732, 8 732,7 8			54973,5 78,0 88,0 55001,7 17,2 34,2 52,5 71,4	968,8 71,5 80,3 92,5 07,3 23,6 58,6 77,3	54833, 31, 34, 41, 50, 60, 72, 84,	L 828, 2 24, 3 26, 3 32, 2 40, 3 49, 4 60, 6 71, 83,	3 3 3 1 4 7 2 7 5
<u> </u>		0 (2	<u> </u>								
<u>Ta</u> J	12 R ₁₁	P11	<u>Q₁₁</u>	R ₂₁	Po	1	R22	P 22	Q22	R ₁₂	P ₁₂
0 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 1 3 4 5 6 7 8 9 1 0 1 1 2 1 3 4 1 5 6 7 8 9 2 2 3 4 2 5 6 7 2 2 3 4 2 5 6 7 2 2 3 4 2 5 6 7 2 2 3 4 2 5 6 7 2 2 3 4 2 5 6 7 2 2 7 2 2 3 4 2 5 6 7 2 2 7 2 2 7 4 2 5 6 7 2 2 7 2 2 7 4 2 5 6 7 2 2 7 2 2 7 4 2 5 6 7 2 2 7 2 2 7 4 2 5 6 7 2 2 7 2 2 7 4 2 5 6 7 2 2 7 2 2 7 4 2 5 6 7 2 2 7 2 2 7 4 2 5 6 7 2 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	56743,1 44,22 44,25 41,9 38,91 35,22,5 07,58 582,22 04,76 697,58 582,22 04,76 583,60,67 24,57 583,60,67 24,57 583,60,67 24,57 583,60,67 24,53 583,52 24,53 583,52 24,53 582,22 583,60,67 24,53 583,52 24,53 583,52 24,55 582,22 583,52 24,55 582,22 583,52 24,55 582,22 583,52 24,55 582,22 583,52 24,55 582,22 583,52 24,55 583,52 24,55 582,22 583,52 24,55 52,52 24,55 52,52 24,55 52,52 24,55 52,52 24,55 52,52 24,55 52,52 24,55 52,52 24,55 52,52 24,55 52,52	734,5 29,8 24,2 17,6 101,7 692,6 70,0 57,0 57,0 57,0 57,0 57,0 57,0 57,0	739,4 38,0 35,8 32,7 28,5 23,7	777,9 76,7 74,7 71,6 67,3 61,6 54,9 46,3	756 50 44 329 21 11 00 688 74 59	1 38208242165	656,66 577,552,98 577,552,527,552,527,552,528,522,522	641,00 20 641,00 23,77 597,8 75,79 75,78 75,78 75,78 75,79 75,78 75,79 72,79 74,79 74,	649,7 47,9 45,5 42,2 38,0 26,9 19,6 10,9 01,2 589,7 77,1 62,9	624,2 23,3 20,9 17,5 13,1 07,3 00,3 591,9 82,4 71,0 58,1 20,1 43,9 28,1 10,1 490,9 70,2 47,8	596,7 88,65 69,53 45,3 16,55 69,1 45,5 16,5 81,0 41,1 393,8

Г

Tat	elle 2	ß	(15.0)			^а с в		1		
J-1	cc ^R 1	1 <u>aa</u>	cc ^P l	l ad	Q ₁₁	cd ^R 21 dc	cđ	P ₂₁ dc	cđ ^Q 21 đơ)
012345678901234567	59648, 49, 50, 49, 48, 46, 44, 41, 37, 634,2 29,9 25,0 20,0 14,8 09,2 03,7	0 4 0 4 0 4 8 633,8 29,0 23,8 18,6 12,9 07,0 01,0	59639, 34, 29, 23, 16, 08, 599, 90, 81, 71, 560,8 49,5 38,2 26,0 14,4 02,0 490,1	4 8 30 22 9 8 20 5 4 8 7 5 12 0 0 3 25 12 0 0 3 4 8 7 5 0 3 2 5 0 3 2 5 0 3 2 5 0 5 4 8 2 0 5 4 8 2 0 5 0 5 4 8 2 0 5 4 8 2 0 5 4 8 2 0 5 5 0 1 5 1 1 5 1 5	644,7 42,9 40,8 39,6 39,6 34,8 29,9	59685,7 87,0 88,1 88,1 88,1 685,7 685,7 685,7 81,6 831,6 831,6 81,6 83,7 76,2 77,2 73,2 77,2 66,2 7 7,3,2 67,0 63,9 6	596 5,1 3,1 0,7 7,7 4,2 605, 7,9 596, 4,5 86, 1,2 76,	4 604,J 0 594,7 3 84,2 6 74,5	59680,7 79,0 76,2 73,2 69,4 65,1 660,6 660,	1
	cc ^R 2	22 dd	cc ^P 2	² dd	cc	Q ₂₂ dd	R ₁₂	P12	Q ₁₂	
123456789011234 1112134	59567, 67, 67, 67, 67, 67, 63, 58,1 54,7 50,5 46,5	9 9 9 9 9 9 9 9 9 9 9 9 9 2 7 6 5 6 0,2 2 5 7,6 5 7,5 3 ,9 9 9 9 2 7 6 5 7,6 5 7,6 5 7,6 5 7,6 5 7,6 5 7,6 5 7,6 5 7,6 5 7,6 5 7,6 5 7,6 5 7,6 5 7,7 6 7,7 6 7,7 7,6 7,7 7,7 7,7 7,7 7,7	59552, 46, 40, 33, 26, 17, 08, 499,1 89,4 79,1 68,3 57,2	2966055948877544 88877554 5548877554	595 531,	60,8 58,8 56,0 52,2 48,3 43,2 37,0 9 531,0	529,4 29,0 27,4 25,1 22,3 18,5 14,4 09,5	514,4 08,5 02,2 494,6 86,1 76,9 67,0	620,6 17,5 13,5 08,5	
Tab J-1	elle 2	P	B(16,0)	Baa	P.	θ	Bas	<u><u>β</u></u>	(17,0) Pro	
0123456789011234	11 60316,1 14,6 11,8 07,5 295,09 77,1 86,9 77,1 66,5 54,3 41,0 26,5	308,2 02,9 296,0 87,9 78,4 67,1 41,5 26,5 192,9 74,2 54,0 32,8	313,2 11,3 08,2 02,9 296,7 89,1 80,0 69,9 58,3 45,4	250,8 49,6 42,5 36,6 29,5 21,6 11,1 00,2 187,6	- 237 5 237 5 30 125 12 5 12 5 12 5 12 5 12 5 12 5 12 5	245,9 5 42,3 5,4 37,5 7,0 31,2 7,3 23,2 7,0 14,1 7,3 03,6 7,1 7,5	363,0 58,4 51,6 43,7 34,8 24,7	61077,4 77,4 75,2 72,0 67,1 60,9 53,0 21,0 07,0	61069,8 63,9 57,0 48,7 27,0 14,0 60999,7 83,6 66,2	

_					
	9 ₂₂	64916 2 6 852 4401 4412		cd P12 dc	22 22 22 22 22 22 22 22 22 22
	^R 22 ^P 22	533, 2 20, 8 27, 2 27, 2 27, 2 27, 2 27, 2 27, 2 27, 2 26, 2 26, 2 21, 2 26, 2 21, 2 26, 2 21, 2 26, 2 21, 2 26, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20		$^{\rm R_{12}}$ dc	22 28 28 28 28 28 28 28 28 28
	$P_{11} \frac{(19,0)}{Q_{11}}$	2 2 2 2 2 2 2 2 2 2 2 2 2 2		cc P22 dd co	22 23 24 24 25 25 25 25 25 25 25 25 25 25
	Tabelle 2 J-½	01004700 5 8 6 515 0 0 0 0 0 0 0 0 0 0 0 0 0		cc ^R 22 dd	52274,2 884,6777,72 202,70 20110,00,00 2010,00 202,000,000
	R ₂₂ P ₂₂ Q ₂₂	800,6 91,5 91,5 91,5 91,5 91,5 80,0 80,0 80,0 80,0 80,0 81,5 11,5 20,8 81,5 20,9 80,00		21 de ed ^P 21 de	7,99 7,99 7,99 7,99 7,99 7,99 7,99 7,97 7,77
	^R 21 ^P 21	906,8 8,900 9,168 8,10 8,10 8,10 8,10 8,45 7,54 8,45 7,54 8,45 7,54 8,45 7,54 8,45 7,54 8,45 7,54 8,56 8,56 8,56 8,56 8,56 8,56 8,56 8,56		dd cd R	000000 000000000000000000000000000000
	$\frac{11e\ 2}{R_{11}} \frac{\beta\ (18,0)}{P_{11}}$	1865,4 1865,4 664,4 664,8 664,8 581,8 581,8 582,5 582,5 572,2 572,2 572,5	 <u>1e 2 (0,0)</u>	cc ^R 11 dd cc ^P 1:	52380,3 860,3 80,1 80,1 80,1 80,1 80,1 80,1 80,1 80,1 80,1 80,1 80,1 80,1 80,1 80,1 80,1 80,1 81,0 81,0 81,0 81,0 81,0 81,0 81,0 81,0 82,0 83,0 83,0 84,0 84,0 85,0 869,0 869,0 869,0 869,0 869,0 87,0 83,7 83,7 83,7 83,7 83,7 83,7 83,7 83,7 83,7 83,7 83,7 83,7 83,7 83,7
	<u>Tabe</u> J- <u>‡</u>	010~4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Tabe]	J- <u>2</u>	0102420200001024200000

			cd P12 do	960 970 970 970 970 970 970 970 97
đc	0.2 - 21 - 21 - 21 - 21 - 21 - 21 - 21 -		ed ^R 12 de	56957 1 588,5 588,5 59,2 59,2 59,2 59,2 59,2 59,2 59,2 57,7
cd P12	и 4 44 <i>ши и и и и и и и и и и и и и и и и и и</i>		222 dd	71,5 70,00 688,9 67,8 64,1 64,1 63,1
L2 de	Са Са Са Са Са Са Са Са Са Са Са Са Са С		ິວ	569 966 645
cd B.	588866666119925566 8170666018418768 9776660706498876		22 dd	10440 10440 04000140080000000 10000000000
2 dà	800 2010 844 844 860 100 100 100 100 100 100 100 100 100 1		с Ч	2 44 WW0011110000808 2 0001508400400000 20000420005540
cc P2	2887 2887 2807 2807 2000 2000 2000 2000	13	22 dd	004 004 000000000000000000000000000000
2 dd	000 000 000 00 00 00 00 00 00 00 00 00		e S	22 23 24 24 24 24 24 24 24 24 24 24
c ^R 2	2 000 24 000 26 000 2000 2	8	21 dc	и 40000 000000 000004 44 2000000400 000010 40200000400 014 0018040000040040
1 de	628060000000000000000000000000000000000		cq P	и 20 20 20 20 20 20 20 20 20 20
cđ P2	7 88 84 85 85 85 85 85 85 85 85 85 85 85 85 85		el de	800000 800000 00000148000048800044 0000014000000
l de	20 00 00 00 00 00 00 00 00 00		Cq Pa	р – – – – – – – – – – – – – – – – – – –
cđ ^R 2	20199922000 2019982272880014222000 24201982272880014222000		۹ ₁₁	00 0880 14470001 14470001
l _{dd}	ичкой 8889999998 00 и и 00 и и 00 и и 00 0 и и		l ad	00404000 00404000 001000000000000000000
<u>δ (1,0)</u> cc P1	2 842000040 2 842000040 22220 400000000	(2,0)	C P	60000000000000000000000000000000000000
r dd	001400 000 000 000 000 000 000 000 000 0		l dd -	40000000 800000000000000000000 400000000
elle 2 cc ^R 1	4 00 00 00 00 00 00 00 00 00 0	elle 2	cc R ₁	22 22 22 22 22 22 22 22 22 22
Tab J-2	010140008001014000800	Tab	J-1	01004000000100400000010

		cd P12 dc	61591,7 86,9 82,4 77,7 72,9 67,8 66,7
P12	0 20074421 907000 8107410	cd ^R 12 dc	61607,7 09,9 12,3 614,2 16,0 14,8
R12	002 887 90 90 90 90 90 90 90 90 90 90 90 90 90	P22 dd	000 000 000 000 000 000 000 000
Q ₂₂	1 8 4 6 6 7 1 8 6 6 7 1 8 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 7 6 6 7 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 6 7	co	19979967 99977 9999999 9999999 919 9999999 919 91
22 dd	900 900 900 900 900 900 900 900	cc ^R 22 đả	61621,2 632,026,4 77,5 77,5 77,5 751,3 551,3 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,1 551,2 555,2 555
B22 dd cc	9125 227,66 227,67	cd ^P 21 dc	61722,4 20,9 20,0 20,0 10,4 11,4 11,4 11,9 13,6 11,9 13,6 11,9
21 dc ^P 21	500040 500040 500040 500040 500440 500440 500440 500440 500440 500440 500440 500440 500440 500440 500440 500000 500000 500000 500000 500000 5000000 5000000 50000000 500000000	cd ^R 21 dc	61735,2 46,5 58,6 58,6 64,2 63,1 69,4 77,5 76,1 77,5 76,1
	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	() 1 dd	600 600 600 0000 0000 00 00 00 00 00 00
<u>ک (</u> ج،د ا	でしてあっ のの400-14040	δ (4,(cc P ₁	690 885, 690 885, 690 11
elle 2 R _{l1} P ₁	92 92 94 94 94 95 95 95 95 95 95 95 95 95 95	elle 2 cc ^R ll dd	61725, 2 30, 2 30, 2 30, 2 30, 2 41, 0 39, 7 39, 7 30,
Tabi J-₽	04074000004004000	Tab J-2	040104000093

A. Lagerqvist und E. Miescher

H.P.A.

 $\delta(3,0)$ -Bande ist infolge der Störung, wie schon erwähnt, β -ähnlich rot abschattiert, während sich die Struktur von $\delta(4,0)$ wieder derjenigen der ersten δ -Banden nähert.

Als Ergebnis der Rotationsanalysen der δ -Banden steht fest, dass deren oberer Zustand C nicht wie bisher angenommen ein ${}^{2}\Sigma$ -Term sondern ein ${}^{2}\Pi$ -Term ist. Dieser $C^{2}\Pi$ -Term der δ -Banden und der $B^{2}\Pi$ -Term der β -Banden, deren Schwingungsniveaus paarweise koinzidieren, stören sich gegenseitig. Es liegt der Fall einer *homogenen* Störung im Sinne der Mullikenschen Terminologie¹⁸) vor. Die beiden ${}^{2}\Pi$ -Zustände des angeregten NO-Moleküls unterscheiden sich voneinander sehr stark. Im $B^{2}\Pi$ -Zustand ist die Bindung im Molekül durch zwei $v\pi$ -Elektronen gelockert,

 $B(J) = \frac{\Delta F_1' + \Delta F_2'}{8 (J + \frac{1}{2})}$ für die δ -Banden (dicke Linien) und β -Banden (dünne Linien). Die gestrichelten Teile der Kurven sind nicht gemessen. Die Zahlen bedeuten die Vibrationsquantenzahlen.

der Kernabstand ist gross ($r_e = 1,417$ A), die Vibrationsfrequenz klein ($\omega_e = 1036$ cm⁻¹), im $C^2\Pi$ -Zustand dagegen fehlen lockernde Elektronen, der Kernabstand ist klein ($r_e = 1,062$ A), die Vibrationsfrequenz gross ($\omega_e = 2395$ cm⁻¹), beide nahe den Werten für das Ion NO⁺. Die Potentialkurven der beiden Zustände gelangen im Bereich der Schwingungsanregung zum Schnitt, so dass die Analyse der δ - und β -Banden ins Einzelne gehenden Einblick in den Termverlauf im Kreuzungsgebiet liefert. Einen Überblick über die Verhältnisse im Störungsgebiet gewinnt man unmittelbar aus den gemessenen Wellenzahlen der Linien durch die Bildung der Termdifferenzen

$$R(J) - P(J) = F'(J+1) - F'(J-1) = A_2 F'(J) = 4 B'(J+1/2)$$

oder

$$B' = \frac{\varDelta_2 F'(J)}{4 (J + \frac{1}{2})}.$$

Im vorliegenden Falle von Dublett-Termen kann über die Dublettaufspaltung gemittelt werden durch die Bildung von

$$B' = \frac{\varDelta_2 F_1' + \varDelta_2 F_2'}{8 (J + \frac{1}{2})}$$

wobei F_1 und F_2 die Terme der beiden Dublettkomponenten bedeuten.

Figur 2 stellt die Ergebnisse für alle Banden des δ - und β -Systems dar. Ungestörte Banden zeichnen sich durch einen von J unabhängigen B-Wert aus, also eine B(J)-Kurve parallel zur J-Achse. B ist dann B_v , die Rotationskonstante des Schwingungsniveaus, die mit wachsendem v etwas kleiner wird. Für die Reihe der Schwingungsterme ergibt sich eine Vol. 31, 1958

Folge von parallelen Geraden, wie es Figur 2 für die ersten ungestörten β -Niveaus zeigt. Vom Einfluss der Zentrifugalkraft, also der Mitberücksichtigung der *D*-Werte in der Rotationsenergie kann abgesehen werden. Für gestörte Banden ergeben sich keine *B*-Geraden, vielmehr charakteristische B(J)-Kurven. Die Rotationsterme solcher Niveaus können nicht in der üblichen Weise formelmässig dargestellt werden, höchstens in Teilbereichen der *J*-Skala, wie etwa in $\delta(v = 0)$ für J > 7, in $\delta(v = 1)$ für J < 11 oder in $\beta(v = 10)$ für J < 11.

Der Verlauf der B(J)-Kurven zeigt, dass sich $\delta(v = 0)$ und $\beta(v = 7)$ für kleine J gegenseitig stören, $\delta(v = 1)$ und $\beta(v = 10)$ für mittlere J, $\delta(v = 2)$ wird am Anfang von $\beta(v=12)$, am Ende von $\beta(v=13)$ gestört. $\delta(v=3)$ und $\beta(v=15)$ stehen über den ganzen gemessenen J-Bereich in starker Wechselwirkung, während schliesslich im Paar $\delta(v = 4)$ und $\beta(v=18)$ die Störung am Ende anwächst.

Die Kurven der Figur 2 sind differenzierte Rotationsenergie-Kurven F(J). Sie bringen die Abweichungen der F[J(J + 1)]-Kurve von der Linearität in J(J + 1) besonders deutlich zum Ausdruck. Zum Zwecke einer Übersicht sind in Figur 3 die δ - und β -Termkurven unter Weglassung der Störung graphisch dargestellt. Figuren 4–8 geben in grösserem Maßstab den Verlauf der beobachteten Termkurven im Bereich der sich gegenseitig störenden Termpaare und zwar für die beiden Dublett-komponenten der ${}^{2}\Pi$ -Terme getrennt. Die ungestörten Termgeraden sind als dünne Geraden eingezeichnet. Man erkennt, dass die Stärke der gegenseitigen Störung, wie dies ja schon der blosse Anblick der fraglichen Banden zeigte, in den fünf Störungsbildern sehr verschieden ist. Die Störung ist maximal für das Paar $\delta(v=3)$ und $\beta(v=15)$. In der Termhöhe dieser koinzidierenden Niveaus muss offenbar der Schnittpunkt der beiden ${}^{2}\Pi$ -Potentialkurven liegen. Die quantitative Auswertung dieser Störungsbilder folgt in § 5.

Figur 9 zeigt den Verlauf der beobachteten Λ -Aufspaltung in den $C^2\Pi$ -Termen.

Dass alle δ -Banden und auch alle β -Banden, soweit sie im Bereich der δ -Banden liegen, gestört sind, kommt auch in Figur 10a zum Ausdruck, in der $\Delta G_{obs}(v)$, die Abstände der beobachteten Schwingungsniveaus als Funktion von v aufgetragen sind. Man erkennt in ihr starke Vibrationsstörungen, wie sie zum Teil schon in den in § 1 zitierten älteren Arbeiten festgestellt worden sind.

Die homogene Störung $B^2\Pi - C^2\Pi$

§ 5. Um die paarweise gegenseitige Störung zwischen den B- und C-Termen genauer zu behandeln, bezeichnen wir die hypothetischen

Die Störung $\delta(1,0) + \beta(10,0)$.

500

cm-1

58000

500

«ungestörten» Rotationsterme mit W_{β} bzw. W_{δ} und die zugehörigen Rotationskonstanten mit B^*_{β} bzw. B^*_{δ} , wobei hiefür gelten soll:

 $W_{\beta}(J) = F_{\beta}(J) + T^{*}_{\beta} = B^{*}_{\beta} J(J+1) + T^{*}_{\beta}$ B-Term: (1) $W_{\delta}(J) = F_{\delta}(J) + T^*_{\delta} = B^*_{\delta} J(J+1) + T^*_{\delta}$

C-Term:

Die A-Aufspaltung der $C^2\Pi$ (v = 0, 1 und 3)-Terme.

Schwingungsstufen ΔG im δ - und β -System. a) Beobachtet (Vibrationsstörung) b) nach der ersten Entstörung c) nach der zweiten Entstörung

Vol. 31, 1958

Aus der Störung zwischen den Termen gleichen J resultieren die beobachteten gestörten Terme $W_{\beta'}$ bzw. $W_{\delta'}$, für die nach der Störungstheorie gilt

$$\left. \begin{array}{c} W_{\beta}'\left(J\right) \\ W_{\delta}'\left(J\right) \end{array} \right\} = \frac{W_{\beta} + W_{\delta}}{2} \pm \left| \sqrt{\frac{(W_{\delta} - W_{\beta})^2}{4}} + H^2 \right|. \tag{2}$$

 $W_{\beta}'(J)$ und $W_{\delta}'(J)$ sind durch die Kurven der Figuren 4–8 dargestellt, wobei dasjenige der beiden Kurvenpaare mit δ bezeichnet wird, das bei J = 0 die grössere Steigung hat*). Es gilt also in Formel (2) für W_{δ}' das Minuszeichen, wenn der Schnittpunkt der ungestörten Kurven W_{β} und W_{δ} bei positivem J(J+1) liegt (C < 0), das Pluszeichen, wenn er bei negativem J(J+1) liegt (C > 0). Vgl. Figur 11.

Gestörte (W') und ungestörte (W)-Rotationstermkurven.

H ist der Störungsparameter. Falls *H* von *J* nicht abhängt, so sind nach Formel (2) die W'[J(J + 1)]-Kurven Hyperbeln. Die Differenz zwischen den gestörten Termen

$$\Delta W' = W'_{\delta} - W'_{\beta} = \sqrt{(W_{\delta} - W_{\beta})^2 + 4 H^2}$$
(3)

wird minimal an der Kreuzungsstelle der ungestörten Terme ($W_{\beta} = W_{\delta}$) und beträgt dort

$$\Delta W'_{\rm Min} | = 2 H. \tag{4}$$

Bildet man mit Formel (1)

$$\sqrt{\Delta W'^2 - 4 H^2} = (B^*_{\delta} - B^*_{\beta}) J (J+1) + C, \qquad (5)$$

*) Die Benennung der Banden $\delta(3,0)$ und $\beta(15,0)$ ist deshalb gegen früher⁹) ¹³) vertauscht worden.

so wird dieser Ausdruck linear in J(J + 1) und man erhält für J = 0 die Termdifferenz C. Die Grösse C kann im Falle, dass die Störung klein ist, auch direkt durch gradlinige Extrapolation der W'-Kurven aus dem praktisch ungestörten Gebiet heraus ermittelt werden.

Wenn $\Delta W'_{\text{Min}}$ nicht in das beobachtete *J*-Gebiet fällt, so kann nach Formel (3) und (1)

$$\frac{\Delta W^{\prime 2} - \Delta W_{0}^{\prime 2}}{J (J+1)} = (B_{\delta}^{*} - B_{\beta}^{*})^{2} J (J+1) + 2 C (B_{\delta}^{*} - B_{\beta}^{*}) , \qquad (6)$$

worin $\Delta W_0' = \Delta W'(J = 0)$ ist, als Funktion von J(J + 1) aufgetragen werden. Dabei wird $\Delta W_0'$ so bestimmt, dass eine Gerade entsteht, deren Steigung dann $(B^*_{\delta} - B^*_{\beta})^2$ gibt, und aus der man für J = 0 die Grösse $2C(B^*_{\delta} - B^*_{\beta})$ und somit C erhält. Den Störungsparameter berechnet man alsdann aus

$$H = \frac{\sqrt{\Delta W_0'^2 - C^2}}{2}$$
(7)

Im Falle der hier vorliegenden Dublett-Terme mit der Aufspaltung A gelten diese Formeln sinngemäss entweder für die Mittelwerte der beiden Dublettkomponenten, wenn $H \gg A$, oder für die Komponenten einzeln, wenn $H \ll A$. Im Fall $H \approx A$ können keine einfachen Formeln angegeben werden.

Fig. 12 (S. 245)

Die Störung zwischen den Banden $\delta(1,0)$ und $\beta(10,0)$.

a)	-180	°C,	0,8	mm	Hg,	26,5	cm,	(3-m-Gitter, 4. Ordn. Ottav	va)
b)	-180	°C,	4	mm	Hg,	26,5	cm,	(3-m-Gitter, 4. Ordn. Ottav	va)
c)	27	°C,	2	mm	Hg,	45	cm,	(6-m-Gitter, 3. Ordn. Chica	.go,
								P. G. WILKINSON).	

Die Pfeile weisen auf die Stellen, an denen die Zweige der δ -Bande in den Zweigen der β -Bande ihre Fortsetzung finden. Der Sprung im Spektrum entspricht $\approx 2 \text{ H} = 110 \text{ cm}^{-1}.$

Die Zahlen bedeuten $J - \frac{1}{2}$.

Die Tabelle 3 enthält die rechnerische Auswertung der paarweisen gegenseitigen Störungen. Das erste Paar $\delta(0,0) + \beta(7,0)$ ergibt einen *H*-Wert von zirka 8 cm⁻¹ und die Störung umfasst nur wenige Rotationsniveaus. Die Genauigkeit der Messungen ist nicht hinreichend gut, um im

1	2	3	4	5	6	7	8	9	10	11	12	13
δ	β	H	С	$J_0(J_0+1)$	ε	$(B_{\delta})_{\mathrm{obs}}$	$(B_{\beta})_{\rm obs}$	$(\Delta B)_{\rm obs}$	$B^*_{\delta} + B^*_{\beta}$	$B^{*}_{\delta} - B^{*}_{\beta}$	B^{*}_{δ}	B^{*}_{β}
0	7	8	+ 4		+ 6	1,981	1,034				1,981	1,034
1	10	55	-409	+ 441	- 7	1,929	1,024	0,019	(2,952)	(0,944)	1,948	1,005
2	12	158	+80	- 97	+123		_		2,787	0,825	1,806	0,981
3	15	219	- 48	+ 64	- 196	(1,36)	(1,28)		2,650	0,748	1,699	0,951
4	18	49	-134	+138	- 16	1,77	1,00	0,09	(2,75)		1,86	0,91

Tabelle 3

Störungsgebiet den Verlauf der Termkurven der einzelnen Dublettkomponenten mit Sicherheit festzulegen. Es wäre von Interesse, diese Störung mit wesentlich grösserer Dispersion zu untersuchen und die ganze

Auswertung der gegenseitigen Störung $\delta(1,0) + \beta(10,0)$ nach Formel (5) und Abstand $\Delta W'$ der beobachteten Terme.

Auswertung der gegenseitigen Störung $\delta(2,0) + \beta(12,0)$ nach Formel (6).

Auswertung der gegenseitigen Störung $\delta(3,0) + \beta(15,0)$ nach Formel (5). (Die Vorzeichen am Ordinaten-Maßstab sind umzukehren.)

Störungsmatrix zu bestimmen. Die B^* -Werte der Tabelle 3 ergaben sich aus dem ungestörten Verlauf für J > 7, und der C-Wert durch Extrapolation aus diesem Gebiet. Das zweite Paar $\delta(1,0) + \beta(10,0)$ bildet ein besonders schönes Störungsbeispiel, wie es wohl bisher nie beobachtet worden ist. Die Figuren 5 und 12 illustrieren im einzelnen diese Störung. Man erkennt in der Gegend von J = 19 den vollständigen Übergang der Zweige von $\beta(10,0)$ (niedrige J) in rücklaufende Teile (hohe J), die die Fortsetzung von $\delta(1,0)$ bilden. Er ist mit einer starken Intensitätszunahme verknüpft und hat Kantenbildungen (zum Beispiel R_{11} -Zweig bei $\lambda = 1821,5$ A) zur Folge. Umgekehrt verlieren die Zweige der δ -Bande an der Störstelle an Intensität. Rücklaufende Teile hohen J, die $\beta(10,0)$ fortsetzen würden, können nicht beobachtet werden. Figur 13 zeigt die Auswertung nach Formel (5). Die für $J > 11^1/_2$ fehlenden W_{δ}' - bzw. W_{β}' -Werte wurden durch gradlinige Extrapolation der als Funktion von

Störungsparameter H als Funktion der Termhöhe.

J(J+1) aufgetragenen $W_{\beta}' + W_{\delta}'$ und Subtraktion der gemessenen W_{β}' , bzw. W_{δ}' berechnet. Figur 14 zeigt die Auswertung nach Formel (6) am dritten Paar $\delta(2,0) + \beta(12,0)$ und Figur 15 die Bestimmung der Störungsdaten wiederum nach Formel (5) für das am stärksten gestörte Paar $\delta(3,0) + \beta(15,0)$. Beim letzten Paar $\delta(4,0) + \beta(18,0)$ ist die Genauigkeit der Messdaten etwas geringer, jedoch resultiert eindeutig der hier wieder beträchtlich kleinere Störungsparameter H = 49 cm⁻¹.

Trägt man die Störungsparameter H, wie man sie aus den 5 Paaren erhält, als Funktion der Termhöhe auf, so ergibt sich Figur 16. Die H-Kurve zeigt ein ausgesprochenes Maximum. Auf der Termhöhe, die diesem Maximum entspricht, liegt der Schnittpunkt der beiden Potentialkurven $B^2\Pi$ und $C^2\Pi$, die sich gegenseitig stören.

Entstörung (1. Näherung)

§6. Kolonne 6 der Tabelle 3 enthält als

$$\varepsilon = \frac{1}{2} \left[W'_{\delta}(0) - W'_{\beta}(0) - C \right] = \frac{C}{2} \left[\sqrt{1 + \frac{4H^{2}}{C^{2}}} - 1 \right]$$
(8)

Korrekturen (Störungsbeiträge) für die rotationslosen Terme, also Vibrationsstörungen, wie sie aus der paarweisen gegenseitigen Störung folgen. Addiert man dieselben zu den beobachteten β -Termen bzw. subtrahiert man sie von den δ -Termen und bildet man alsdann $\Delta G^*(v)$ aus dieser Reihe der «entstörten» Niveaus, so erhält man die in Figur 10b eingezeichneten Punkte. Diese neuen $\Delta G^*(v)$ -Werte nähern sich wesentlich aber doch keineswegs vollständig einer glatten Kurve.

Rotationskonstanten B_v der $B^2\Pi$ - und $C^2\Pi$ -Terme. Die Kreuze geben die B_v^* nach der 1. Entstörung, die Kreise die B_v nach der 2. Entstörung.

Tabelle 3 gibt in den Kolonnen 7 und 8 unter $(B_{\delta})_{obs}$ und $(B_{\beta})_{obs}$ B-Werte, wie sie direkt aus den Beobachtungen gewonnen werden, soweit die Rotationsterme eine nahezu ungestörte Folge bilden (vgl. Fig. 2). In Kolonne 10 sind Zahlen für $B_{\delta}^* + B_{\beta}^*$ gegeben, die man recht genau aus den Werten $F_{\delta} + F_{\beta} = (B_{\delta}^* + B_{\beta}^*) J(J+1)$ bestimmen kann. Für alle 5 Paare sind die Kurven $W_{\delta}'(J) + W_{\beta}'(J)$ als Funktion von J(J+1) in weitem J-Bereich Geraden, da sich bei der Summation ja die wechselseitige Störung heraushebt. In Kolonne 11 sind Werte für $B_{\delta}^* - B_{\beta}^*$ angegeben, die man aus den Neigungen der Geraden, welche Formel (5)

Н.Р.А.

(Fig. 13 und 15) bzw. Formel (6) (Fig. 14) darstellen, berechnen kann. Die Kolonnen 12 und 13 enthalten die «vorläufig entstörten» *B*-Werte B_{δ}^* und B_{β}^* . Für das erste Paar $\delta(0,0) + \beta(7,0)$, in dem die Störung klein ist, sind sie mit den Werten $(B_{\delta})_{obs}$ bzw. $(B_{\beta})_{obs}$ der Kolonnen 7 und 8 identisch. Für die stark gestörten Paare $\delta(2,0) + \beta(12,0)$ und $\delta(3,0) + \beta(15,0)$ sind sie aus den Summen und Differenzen der Kolonnen 10 und 11 berechnet. Für die Paare $\delta(1,0) + \beta(10,0)$ und $\delta(4,0) + \beta(18,0)$ erfolgte die Berechnung aus $(B_{\delta})_{obs}$ bzw. $(B_{\beta})_{obs}$ unter Addition bzw. Subtraktion der Korrektion

$$\left(\Delta B\right)_{obs} = \frac{B_{\delta} - B_{\beta}}{2} \left(1 - \frac{1}{\sqrt{1 + 4H^2/C^2}}\right) = \frac{B_{\delta} - B_{\beta}}{2} \frac{\varepsilon}{\varepsilon + C/2} . \tag{9}$$

Diese Korrektion berücksichtigt die Differenz in der Steigung der W[J(J+1)] und W'[J(J+1)]-Kurven bei J = 0. Im Falle des Paares $\delta(1,0) + \beta(10,0)$ erhält man übereinstimmende B^* -Werte auch aus den Summen und Differenzen (Kolonnen 10 und 11). In Figur 17 sind die B^*_{δ} und B^*_{β} als Kreuze eingetragen. Sie fügen sich nicht in eine regelmässige B(v)-Kurve ein, für alle β -Terme fallen sie zu hoch, für alle δ -Terme zu tief.

Tabelle 4 enthält in Kolonne 2 die Termwerte der Schwingungsniveaus von $B^2\Pi$ und $C^2\Pi$. Es sind die Mittelwerte der beiden Dublettkomponenten, als Nullpunkt ist das Niveau v = 0 des $X^2 \Pi_{1/2}$ -Grundzustandes genommen. Für die in diesem § besprochenen Niveaus paarweiser Wechselwirkung ist die Korrektur ε nach Formel (8) bzw. Tabelle 3 bereits erfolgt. Im Falle β (v = 17), wofür nur Linien der F_1 -Dublettkomponente beobachtet sind, ist bei der Mittelung die F2-Komponente durch Interpolation ergänzt worden. Das Niveau $\beta(v=13)$, für das nur Linien $J \geq 11^{1/2}$ im Bereich der Wechselwirkung mit $\delta(v=2)$ beobachtet sind, wurde wie folgt behandelt: Für $17^{1}_{2} \leq J \leq 20^{1}_{2}$ liegen Linien für beide, sich gegenseitig störenden Niveaus vor. Daraus berechnet sich $B^*_{\delta 2} + B^*_{\beta 13}$ zu 2,757 cm⁻¹. Mit diesem Wert erhält man durch lineare Extrapolation Zahlen für die Summe $W_{\delta}' + W_{\beta}'$ im Bereich grösserer J und hieraus mit den bekannten W_{β}' die gesuchten Differenzen $\Delta W' = W_{\delta}' - W_{\beta}'$ bis nahe an den J-Wert maximaler Störung $\delta(2,0) + \beta(13,0)$ bei $J(J+1) \approx 800$. Es resultiert ein $\Delta W'_{\text{Min}}$, das im Einklang mit der H-Kurve (Fig. 16) steht. Es ergibt sich für

$$\sqrt{\Delta W^{\prime 2} - \Delta W^{\prime 2}_{\mathrm{Min.}}}$$

eine gute Gerade und man findet daraus $B_{\delta 2}^* - B_{\beta 13}^* = 0,832 \text{ cm}^{-1}$ und mit obigem Wert für die Summe schliesslich $B_{\delta 13}^* = 0,963 \text{ cm}^{-1}$. An diesem Wert ist noch eine Zentrifugalkorrektion von 2 $D J(J + 1) = +0,004 \text{ cm}^{-1}$ angebracht $D = 4 B^3/\omega^2 = 4 \cdot 10^{-6} \text{ cm}^{-1}$], um der Tatsache

Rechnung zu tragen, dass alle Beobachtungsdaten im Bereiche $J(J+1) \approx 500$, also hoher Rotation liegen. Tabelle 4, Kolonne 6 enthält deshalb für $B^*_{\beta_{13}}$ den Wert 0,967 cm⁻¹; der Termwert in Kolonne 2 ist durch Extrapolation berechnet.

1	2	3	4	5	6	7	8
$B^2\Pi v$	T_v^*	εβ	T_v	$\Delta G(v)$	B_{β}^{*}	ΔB_{β}	B_{β}
0	45500	+ 5	45505	1023			1,118
1	46522	+ 6	46528	1009			1,105
2	47531	+ 6	47537	996			1,093
3	48526	+ 7	48533	974			1,081
4	49499	+ 8	49507	973			1,068
5	50471	+ 9	50480	955			1,056
6	51425	. + 10	51435	943	1,041	- 0,001	1,040
7	52366	+ 12	52378	933	1,034	- 0,002	1,032
8	53295	+ 16	53311	915	1,022	- 0,003	1,019
9	54203	+ 23	54226	906	1,019	-0,012	1,007
10	55107	+ 25	55132	886	1,005	- 0,007	0,998
11	55984	+ 34	56018	881	1,009	- 0,023	0,986
12	56878	+ 21	56899	861	0,981	-0,010	0,971
13	57772	- 12	57760	837	0,967	- 0,013	0,954
14	58564	+ 33	58597	854	1,035	- 0,085	0,950
15	59467	- 16	59451	830	0,951	-0,010	0,941
16	60341	- 60	60281	788	0,997	- 0,055	0,942
17	61103	- 34	61069	778		- 0,026	
18	61874	- 27	61847	753	0,91	- 0,008	0,90
19	62623	- 23	62600		0,91	- 0,007	0,90
$C^{2}\Pi v$		$arepsilon_{\delta}$			B^{*}_{δ}	$\varDelta B_{\delta}$	B_{δ}
0	52372	- 8	52380	2362	1,981	+ 0,001	1,982
1	54697	- 45	54742	2366	1,948	+0,018	1,966
2	56958	- 150	57108	2270	1,806	+0,129	1,935
3 .	59420	+ 42	59378	2299	1,699	+0,176	1,875
4	61741	+ 64	61677		1,86	+ 0,022	1,88

Tabelle 4 (cm⁻¹)

Entstörung (2. Näherung)

§7. Im vorhergehenden § ist die homogene Störung zwischen den $B^2\Pi$ - und $C^2\Pi$ -Termen im Sinne einer ersten Näherung so behandelt worden, wie wenn eine Wechselwirkung paarweise nur zwischen Termen koinzidierender Schwingungsniveaus stattfände. In zweiter Näherung soll nun auch die Wechselwirkung zwischen entfernteren Niveaus berücksichtigt werden. Auswirkungen dieser Art zeigten sich bereits in dem

Umstande, dass die Differenzen $B_{\delta}^* - B_{\beta}^*$ für die in § 5 und 6 behandelten Paare zu kleine Werte ergaben, und dass die Vibrationsstörungen nicht quantitativ durch die erste Näherung erklärt werden konnten. Die nicht mit δ -Banden koinzidierenden β -Banden scheinen zwar, wie Figur 2 zeigt, ungestört zu sein, da sie konstante B-Werte, das heisst horizontale B-Geraden ergeben. Die Grösse der B-Werte, die man so erhält, sind – in Kolonne 6 der Tabelle 4 als B_{β}^* bezeichnet – in der Figur 17 als Kreuze eingetragen. Sie sind merklich zu gross, vor allem $B_{\beta}^*(v = 14)$ und $B_{\beta}^*(v = 16)$, die zu den im Gebiet maximaler Störung liegenden Termen gehören. Soll eine vollständige «Entstörung» durchgeführt werden, das heisst sollen Werte ermittelt werden, die als Konstanten der ungestörten $B^2\Pi$ - und $C^2\Pi$ -Terme gelten können, so ist in einer zweiten Näherung auch den entfernteren Wechselwirkungen Rechnung zu tragen.

Schreibt man die Formeln (8) und (9) nun in der Form

$$\varepsilon_{ik} = \frac{C_{ik}}{2} \left\{ \sqrt{1 + \frac{4 H_{ik}^2}{C_{ik}^2}} - 1 \right\} \left(= \frac{H_{ik}^2}{C_{ik}}, \text{ wenn } _{2 H_{ik} \ll C_{ik}} \right)$$
(10)

$$\Delta B_{ik} = \frac{B_{\delta i} - B_{\beta k}}{2} \left\{ 1 - \frac{1}{\sqrt{1 + 4H_{ik}^2/C_{ik}^2}} \right\} \left(= \left(B_{\delta_i} - B_{\beta_k} \right) \frac{H_{ik}^2}{C_{ik}^2} \right)$$
(11)

worin

$$\boldsymbol{C}_{ik} = W_{\boldsymbol{\delta}_i}(0) - W_{\boldsymbol{\beta}_k}(0)$$
 ,

so geben

$$\varepsilon_{\delta_i} = \sum_{k}' \varepsilon_{ik} \qquad \varepsilon_{\beta_k} = \sum_{i}' \varepsilon_{ik}$$
(12)

die Grösse der Vibrationsstörungen der $\delta(v=i)$ - bzw. $\beta(v=k)$ -Terme durch die entfernteren Terme. Ferner sind

$$\Delta B_{\delta_i} = -\sum_{k}' \Delta B_{ik} \qquad \Delta B_{\beta_k} = +\sum_{i}' \Delta B_{ik}$$
(13)

die an den zugehörigen Rotationskonstanten B^* anzubringenden entsprechenden Korrekturen. Die Apostrophe an den Summenzeichen sollen andeuten, dass bei der Summation die in § 6 bereits berücksichtigten koinzidierenden Terme wegzulassen sind. Durch Addition der ε_{β_k} -Korrekturen zu den T_v^* (v = k) und durch Subtraktion der ε_{δ_i} von den T_v^* (v = i) der Tabelle 4, Kolonne 2 erhält man die in zweiter Näherung entstörten T_v -Werte der Kolonne 4. Figur 10c zeigt, dass die entstörten $\Delta G(v)$ (Kolonne 5) eine fast völlig glatte $\Delta G(v)$ -Kurve liefern. Durch Addition der ΔB -Korrekturen (Formeln 13) zu den B^* der Kolonne 6 entstehen die entstörten B-Werte der Kolonne 8, die in Figur 17 nun auch nahezu glatt verlaufende B(v)-Kurven für beide ${}^2\Pi$ -Terme ergeben.

Bei der Berechnung der ε_{ik} nach Formel (10) und der ΔB_{ik} nach Formel (11) ist für H_{ik} der H-Wert (Fig. 16) bei der Energie $T = T_{ik} - F_s$ benutzt worden, wobei T_{ik} die Energie des meist weit extrapolierten Schnittpunktes der $W_{\delta i}$ und W_{β_k} -Kurven bei $J = J_s$ ist, und $F_s = B_s$ $J_s(J_s+1) = h/8\pi^2 c \ 1/\mu r^2_s J_s(J_s+1)$ eine berechnete Rotationsenergie in diesem Schnittpunkt ist. Der Kernabstand im Schnittpunkt ergab sich mit Hilfe plausibler Potentialkurven zu $r_s = 1,178$ A, womit man für B_s den Wert 1,63 cm⁻¹ berechnet. Diese Wahl von H_{ik} ist zwar nicht streng begründbar, sie ist jedoch dem hier verwendeten Entstörungsverfahren angemessen, das ohnehin für die hohen β - und δ -Schwingungsniveaus extrapolierte Werte benützen muss.

Den Figuren 10c und 17 entnimmt man als Konstanten des entstörten

C²
$$\Pi$$
-Term: $\omega_e = 2395 \text{ cm}^{-1}$ $\omega x = 15 \text{ cm}^{-1}$
 $B_e = 2,002 \text{ cm}^{-1}$ $\alpha = 0,030 \text{ cm}^{-1}$

Die Genauigkeit dieser Zahlen ist natürlich entsprechend ihrer Herleitung beschränkt.

Die Λ -Aufspaltung des $C^2\Pi$ -Terms (Fig. 9) zeigt im Bereich der Störung die Vermischung mit dem $B^2\Pi$ -Term in Form einer Abnahme bis auf die Hälfte des Wertes, der sich nach der für den ungestörten Bereich gut erfüllten Formel $\Delta v_{cd} = q K(K + 1)$ ergäbe, wobei die andere Hälfte im störenden $B^2\Pi$ -Term erscheint. Die Grösse von q ist 0,016 cm⁻¹. Nach der im «pure precession»-Fall gültigen Formel

$$q = \frac{2 B^2 l (l+1)}{\nu (\Pi \Sigma)}$$

erhält man für l = 1 als Abstand des die Aufspaltung verursachenden ² Σ -Terms $\nu(\Pi\Sigma) = 1000$ cm⁻¹, also auffallend genau die Differenz zwischen den $D^{2}\Sigma^{+}$ - und $C^{2}\Pi$ -Termen.

Für den $C^2\Pi$ -Term gilt exakt HUNDS Fall b, es ist also A = Y = 0. Zufolge der Wechselwirkung mit $B^2\Pi$, für den Y = 30 ist, treten aber im Bereich der Störung erhebliche Abweichungen von den gewöhnlichen Termformeln auf. Wiederum beobachtet man als Folge der Vermischung eine 1:1-Aufteilung der Dublettaufspaltung nahe dem Ort maximaler Störung, im Bandenpaar $\beta(3,0) + \delta(15,0)$ für J(J+1) = 90.

IV. Diskussion

§ 8. Die in den §§ 5 bis 7 durchgeführte Analyse und Entstörung der δ - und β -Banden des NO-Moleküls ist wohl das erste, quantitativ behandelte Beispiel einer homogenen Störung zwischen zwei Molekültermen. Es zeigt anschaulich das vollständige System der Energiezustände im Gebiet der Überschneidung zweier Potentialkurven gleicher Rasse. Vor allem lieferte die vorliegende Untersuchung die in Figur 16 wiedergegebene Kurve H = H(T) für die Grösse des Störungsparameters als Funktion der Anregungsenergie des Moleküls, wofür bisher kein Beispiel vorlag. Der grösste gemessene Wert von H ist 220 cm⁻¹, also wesentlich kleiner als die Schwingungsstufen ΔG der beiden sich störenden Terme, so dass in der Frage des Verlaufs der Potentialkurven am Schnittpunkt die Näherung des Überschneidens hier den Verhältnissen besser angepasst ist als die Näherung des Ausweichens (vgl. HERZBERG¹⁹) p. 297). Tatsächlich sind ja auch oberhalb des Schnittpunktes noch das $C^2\Pi$ (v = 4) und mehrere $B^2\Pi$ (v = 16 bis 19)-Niveaus sichergestellt, und sind noch höhere β -Niveaus wahrscheinlich vorhanden¹³). Höhere δ -Banden scheinen durch eine neue Störung beeinflusst zu werden und können vorläufig nicht mit Sicherheit identifiziert werden.

Das in der Literatur beschriebene, bestuntersuchte Beispiel einer homogenen Störung ist die Wechselwirkung zweier angeregter ${}^{1}\Sigma$ -Terme im AgH-Molekül (GERÖ und SCHMID²⁰). Hier ist allerdings die Störung grösser, so dass nur vom *einen* Bandensystem ${}^{1}\Sigma^{a} - X^{1}\Sigma$ nahezu ungestörte Teile beobachtet werden können, das andere «störende» System ${}^{1}\Sigma^{b} - X^{1}\Sigma$ sich jedoch nur in der Störung der ersten bemerkbar macht. Die paarweise Wechselwirkung koinzidierender Zustände ist deshalb in diesem Beispiel lange nicht so ausgeprägt wie im Falle des NO-Moleküls. Immerhin können, wenigstens formal, aus den von GERÖ und SCHMID publizierten Figuren 1 bis 4 für die ersten 4 Schwingungsniveaus des ${}^{1}\Sigma^{a}$ -Terms wie folgt *H*-Werte berechnet werden, wenn als Störungspartner das Niveau v = 0 des ${}^{1}\Sigma^{b}$ -Terms allein angenommen wird: Aus den Gleichungen (1) und (2) des § 5 leitet man leicht ab

$$\eta = \frac{d^2 W_a'}{d \left[J(J+1) \right]^2} = -\frac{(B_a - B_b)^2}{4 H}$$
(14)

für die Steigung η der Wendetangente der (B'-B'')-Kurven. Diese Kurven stellen ja $dW_a'/d[J(J+1)]$ dar und haben den Wendepunkt bei $W_a = W_b$. Man erhält so mit den Werten $B_a = 6,1$ cm⁻¹ und $B_b = 3,3$ cm⁻¹

${}^1\Sigma^a v'$	$\eta~{ m cm^{-1}}$	$H \mathrm{cm}^{-1}$
0	-0,0061	320
1	- 0,0023	860
2	-0,00125	1600
3	-0,00084	2300

Sicherlich hat im Falle des AgH dieses so berechnete H nicht die strenge Bedeutung des Wechselwirkungsparameters der Gleichungen (2). Es ist aber schon der kleinste Wert H = 320 cm⁻¹ für v' = 0 im Verhältnis zu den Abständen der Schwingungsniveaus fast so gross wie der Maximalwert im NO-Molekül. Nach Gleichung (14) kann auch für die von GERÖ²¹) untersuchte homogene Störung zwischen zwei ${}^{2}\Sigma$ -Termen des PbH-Moleküls aus GERÖS Figur 3 ein *H*-Wert bestimmt werden. Er ergibt sich zu 150 cm⁻¹. Da hier die *B*-Werte der beiden sich störenden Terme nur wenig voneinander verschieden sind und zudem das Molekül in den beiden Zuständen nur locker gebunden ist, bedeutet dieser relativ kleine Wert auch hier eine grosse Störung.

Figur 18 gibt ein Bild der Potentialkurven der angeregten NO-Zustände und der Lage einiger Schwingungsniveaus. Am Ort der homogenen Störung sind die Kurven als Ausdruck reduzierter Bedeutung gestrichelt gezeichnet. Die Dissoziationsgrenze des $X^2\Pi$ -Grundzustandes

Potentialkurven des NO-Moleküls.

ist bei $\mathbf{D}_0(0) = 6,50$ eV gezeichnet. Wie schon früher hiezu bemerkt⁹), würde das Niveau v = 19 des $B^2\Pi$ -Zustandes, das bei 62600 cm⁻¹ liegt, die für den $B^2\Pi$ -Term allein in Frage kommende Dissoziationsgrenze $N(^2D) + O(^3P)$ überschreiten, falls man den bis vor kurzem öfters diskutierten kleinen Wert $\mathbf{D}_0(0) = 5,3$ eV zugrunde legte. Die Ergebnisse dieser Arbeit schliessen also diesen Wert aus. Der von der Dissoziationsgrenze unangeregter Atome $N(^4S) + O(^3P)$ ausgehende repulsive $^2\Sigma^+$ -Term erklärt [GLOCKLER²²), TANAKA²³)] das Fehlen von β -Banden für v > 7 im Emissionsspektrum. Das Fehlen der δ -Banden für v > 0 in Emission folgt dann aus der in dieser Arbeit diskutierten $\delta - \beta$ Wechselwirkung. Durch die Tatsache, dass γ -Banden bis v' = 5 gefunden werden konnten⁹)¹³), er-

		• /= = = `	Π		0 (24 2)	
$\begin{array}{c c} \underline{\text{Tabelle 5}} & \underline{\beta} & (11,0) \\ & N^{15}0 & \ & N \end{array}$	1018	<u>3(12,0)</u> N ¹⁵ 0		N ¹⁵ 0	<u>3 (14,0)</u> NO ¹⁸	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P ₁₁	^H 11 ^P 1:	1 5834	11 ^P 1	11 ¹ 11 ¹ 1 58249.9	1
1 01,5 793,8 24,8 2 00,2 88,7 23,6	717,4	95,6 95,6 582	3	13,8 336 12,6 30	6,0 49,9 242 9,9 48,7 37	,4,3
3 797,5 82,2 20,7 4 93,4 74,4 16,8	05,9	94,2 76 91,9 69	7	10,0 22 56,0 16	4,4 46,2 30 6,9 42,4 23 7,0 37,3 14	,9,4
5 88,1 05,2 11,0 6 81,2 54,7 04,9 7 73 42,8 697,1	78,7	82,3 52 72 4 43	9	24,4 29	7,5 30,9 04 23,4 193	.5
8 63,8 9 53,1		13 13	7 0	7,9 7 59	3,0 14,5 80 9,2	,7
			U			
Tabelle 5	<u>β (15,0</u>	<u>))</u>	.18		Tabelle 5 \$ (1,0)
$ \begin{array}{c c} J^{-\frac{1}{2}} & R_{11} & P_{11} & Q_{11} \\ \end{array} $	R ₂₂ P ₂	22 ^R 11	P ₁₁	Q ₁₁	$J = \frac{1}{2} = \frac{R_{12}}{R_{12}} = \frac{R_{12}}{$	2
0 59459,6 . 455,6 1 61,2 450,8 54,7	376,5	59371,2 72,7	362,9	367,5	1 54505,5	
2 61,8 46,7 53,2 3 61,8 41,8 50,3	77,6 356	73,8 73,8 73,8	58,7 53,7		2 08,2 490 3 11,5 86 4 15 0 82	,0,2
4 01,2 90,0 5 60,2 29,7 6 58,5 22,7	76,5 44	1,8 72,7 7.8 71.2	42,2		5 78	8
7 56,2 15,0 8 53,5 06,8	30	69,1	28,2 20,3		7 73	,7
9 398,1 10 88,9			12,1			1
Tabelle 5 \sim \$ (2.0)					
$\begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2} \\ J - \frac{1}{2} & R_{22} \\ R_{22} & R_{22} \\ R_{21} & R_{22} \\ R_{22} & R_{22} \\ R_{21} & R_{22} \\ R_{22} & R_{22} \\ R_{21} & R_{22} \\ R_{22} & R_{23} \\ R_{23} & R_{23}$	- R ₁₁	P. dd cc		R R 22	dd cc ^P 22 dd	
0	56888,	0 5687	0 0	56788.1	<u>uu 00 00</u>	
2 50,4 56830,5 3 53,9 27,2	92 94	6 7 5 7	5,3	91,8 95,4	56768,6	
4 57,0 23,9 5 860,7 860,1 20,6	96 98	8 6	7,3	803,2°E	2 65,7 302,7 62,9 06,4 760 2 759	. 5
$\begin{bmatrix} 6 & 64,2 & 65,4 & 817,7 & 817 \\ 7 & 14,4 & 13 \\ 8 \end{bmatrix}$;9 01,9	901,6 5 03.9 849.5	3,9 849.1	10,5	09,8 57	, í
9	06,7	05,8 45,0 40,8	44,5 39,7			
	<i>c</i>]	
Tabelle 5 N ¹⁵ 0	<u>ک (3,0)</u>	П	NO ¹⁸			
$\begin{array}{c c} J - \frac{1}{2} & R_{11} & P_{11} & Q_{11} \\ \hline 0 & 50024 & 0 & 021 & 0 \\ \hline \end{array}$	R ₂₂ P ₂	2 ^Q 22	R ₁₁	P ₁₁	Q ₁₁	
1 25,8 016,3 20,0	940,6	934,2	36.0	927,1	30,4	
3 25,8 06,5 4 24,4 00,3	42,0 20 41,3 15	7 30,4	36,0 34,4	17,2		
5 22,2 993,4 6 19,0 85,6	40,0 08 38,0 01	,6	31,9 28,7	04,1 896,3		
7 14,7 76,9 8 09,6 67,3 9 03,7 56,7	893 84	,7	24,2 18,9	77,9	1	
10 58996,1 45,1		<u> </u>	±c,+			
Tabelle 5	8 (4,0)		<u>, v, r,</u> ,	10	1	
$J_{-\frac{1}{2}} = R_{11} = P_{11} = Q_{11}$	R ₂₂ P	22 Q ₂₂	R R R	R ₁₁		
0 61532,3 528,6 1 34.2 523.7 27.1	440.4	432.2	429,2	420.9		
2 35,4 19,5 26,3 3 35,4 14,7	43,1 42 45,8 2	4,0 32,2 0,9 30,9	30,9	16,6 11,5		
4 35,4 09,5 5 33,7 03,3 6 31 0 406 5	47,7 1	.6,6 30,9 .2,6 29,2	29,2	05,7 398,9		
7 27,1 88,3 8 21,3 79,3	48,9 0	2,7 24,0	17,4	82,0 71.7	-	
9 68,9	8	8,7		60,3 47,3		

übrigt sich die etwas gekünstelt erscheinende Glocklersche Annahme über den Verlauf des repulsiven ${}^{2}\Sigma^{+}$ -Terms. An keiner Absorptionsbande des NO-Moleküls wird eine Verbreiterung der Linien oder ein Abbrechen der Bandenzweige beobachtet; die Prädissoziation in das ${}^{2}\Sigma^{+}$ -Kontinuum muss demzufolge schwach sein.

V. Isotopen-Banden

§ 9. Wie schon in § 3 erwähnt, lassen sich auf den Platten auch Banden der Isotopen-Moleküle N¹⁵O und NO¹⁸ beobachten und zwar gerade die starken Banden im Gebiete maximaler Störung. Die Isotopie-Verschiebungen sind im Bereich der Störung völlig anomal, weshalb es von Interesse ist, darauf näher einzugehen. Die vermessenen Rotationslinien sind in der Tabelle 5 enthalten. Man berechnet daraus für den Grundzustand $X^2\Pi$ die B-Werte der Tabelle 6, die mit früheren Bestimmungen¹⁷)²⁴), soweit solche vorliegen, und mit theoretischen Werten ausgezeichnet übereinstimmen.

Tabelle 6

B-Werte des Grundzustandes $X^2\Pi$ (v'' = 0) cm⁻¹

	B _{ef}	f	17)	²⁴)	B ₀ ″	theoret.
N ¹⁴ O ¹⁶ N ¹⁵ O ¹⁶ N ¹⁴ O ¹⁸	$ \left\{ \begin{array}{c} {}^{2}\varPi_{1/2} \\ {}^{2}\varPi_{3/2} \\ {}^{2}\varPi_{1/2} \\ {}^{2}\varPi_{1/2} \\ {}^{2}\varPi_{3/2} \end{array} \right. $	1,614 1,657 1,588 1,627	1,6137 1,6575 —	1,6146 1,6577 	1,6957 1,636 1,608	1,6358 1,60 77

Hinsichtlich der angeregten Zustände liegen vollständige Ergebnisse für die Niveaus $\delta(v = 3)$ und $\beta(v = 15)$ des Moleküls N¹⁵O vor. Für den Störungsparameter H^i dieses Termpaars erhält man aus den Isotopenbanden nach der in § 5 beschriebenen Methode auf ± 1 cm⁻¹ genau denselben Wert wie beim Hauptisotop. Der Abstand der in erster Näherung entstörten Niveaus $C^i = T^i_{\delta} - T^i_{\beta} = +10$ cm⁻¹ lässt sich wegen der Kürze der Isotopenbanden nur auf etwa ± 5 cm⁻¹ genau bestimmen, ist aber eindeutig grösser als für N¹⁴O (C = -48 cm⁻¹) und erreicht einen positiven Wert*). Die positive Differenz $C^i - C = \Delta^i w^*_{\beta} - \Delta^i w^*_{\delta} = +58$ cm⁻¹

^{*)} Im Sinne der in § 5 vereinbarten Bezeichnungsweise müsste deshalb eigentlich die Benennung der Banden $\delta(3,0)$ und $\beta(15,0)$ der Isotopenmoleküle vertauscht werden. Hievon wird jedoch abgesehen, damit einander entsprechende Terme in allen Molekülen gleich benannt bleiben.

H.P.A.

zeigt erwartungsgemäss, dass die Vibrationsisotopie-Verschiebung $\Delta^{i} w_{\beta}^{*} = w_{\beta}^{*} - w_{\beta}^{*i} \operatorname{des} \beta(v = 15)$ -Terms grösser ist als $\Delta^{i} w_{\delta}^{*} \operatorname{des} \delta(v = 3)$ -Terms. Figur 19 gibt die Isotopie-Verschiebungen $\Delta^{i}W' = W' - W'^{i}$ für die beiden Niveaus. Sie sind aus den Bandenlinien berechnet unter Berücksichtigung der Isotopie-Verschiebungen im Grundzustand. Figur 19a zeigt den Isotopieeffekt für die Dublettkomponenten der Terme einzeln, Figur 19b für deren Mittelwerte. Diese Isotopie-Verschiebungen werden einander exakt gleich beim Abszissenwert $J_0(J_0 + 1) = 53$, also $J_0 = 7^1/_2$,

Beobachtete Isotopieaufspaltungen der Terme

welches nach Tabelle 3 auch der *J*-Wert maximaler Störung, das heisst der Schnittpunkt der entstörten Terme $W_{\delta}(J_0) = W_{\beta}(J_0)$ ist. In Figur 19c ist die Summe $\Delta^i W_{\delta}' + \Delta^i W_{\beta}'$ gegen J(J+1) aufgetragen. Die entstehende Gerade hat die Steigung $(B^*_{\delta} + B^*_{\beta}) - (B^{*i}_{\delta} + B^{*i}_{\beta}) = 0,089 \text{ cm}^{-1}$. Nach Tabelle 3 ist $B^*_{\delta} + B^*_{\beta} = 2,650 \text{ cm}^{-1}$, so dass man erhält: $B^{*i}_{\delta} + B^{*i}_{\beta} = 2,561 \text{ cm}^{-1}$. Dies stimmt völlig mit dem für den unstarren Rotator in üblicher Weise berechneten Wert überein ($\varrho^2 = 0,9646$, $\alpha_{\delta} = 0,030 \text{ cm}^{-1}$, v = 3; $\alpha_{\beta} = 0,012 \text{ cm}^{-1}$, v = 15).

Nach Figur 19b ist die Steigung der Kurven des *Rotations*-Isotopie-Effektes

$$S_{\delta} = \frac{d \Delta^{i} W_{\delta}'}{d J (J+1)} = 0,089 \text{ cm}^{-1}, \quad S_{\beta} = \frac{d \Delta^{i} W_{\beta}'}{d J (J+1)} = 0,000 \text{ cm}^{-1}$$

für δ - und β -Term ganz verschieden gross. Aus den Formeln (1) und (2) des § 5 erhält man leicht für 2 H $\gg W_{\delta} - W_{\beta}$:

$$\Delta^{i} W_{\beta}^{\prime} = \text{const.} + \frac{1}{2} \left\{ (1 - \varrho^{2}) (B_{\delta}^{*} + B_{\beta}^{*}) J(J+1) \pm \frac{1}{4 H} \left[2 (C - \varrho^{2} C^{i}) \right. \\ \left. \times (B_{\delta}^{*} - B_{\beta}^{*}) J(J+1) + (1 - \varrho^{4}) (B_{\delta}^{*} - B_{\beta}^{*})^{2} J^{2} (J+1)^{2} \right] \right\},$$
(15)

worin const. die Vibrations-Isotopie-Verschiebung enthält. Aus (15) folgt:

$$S_{\substack{\beta \\ \delta}} = (1 - \varrho^2) \frac{B_{\delta}^* + B_{\beta}^*}{2} \pm \frac{C - \varrho^2 C^i}{4H} (B_{\delta}^* - B_{\beta}^*) \pm (1 - \varrho^4) \frac{(B_{\delta}^* - B_{\beta}^*)^2}{4H} \times J(J+1) .$$
(16)

Mit den Zahlenwerten $1 - \varrho^2 = 0,0354$, $H = 219 \text{ cm}^{-1}$, $B_{\delta}^* + B_{\beta}^* = 2,650 \text{ cm}^{-1}$, $B_{\delta}^* - B_{\beta}^* = 0,748 \text{ cm}^{-1}$ wird im *J*-Bereich, für den Beobachtungen vorliegen, der dritte Term in (16) klein gegen den ersten, S_{β} und S_{δ} werden also nahezu konstant. Setzt man J(J + 1) = 40, wie es etwa der Mitte des beobachteten *J*-Bereiches entspricht, so erhält man aus (16) zahlenmässig:

$$S_{\beta} = 0,049 + (C - \varrho^2 C^i) \ 0,00085 = 0,000 \ \mathrm{cm^{-1}}$$
 (a) (17)

$$S_{\delta} = 0.045 - (C - \varrho^2 C^i) \ 0.00085 = 0.089 \ \text{cm}^{-1}$$
 (b)

Aus (17)a folgt $C - \varrho^2 C^i = -57 \text{ cm}^{-1}$, aus (17)b für dieselbe Grösse -52 cm^{-1} . Setzt man den Mittelwert $C - \varrho^2 C^i = -54,5 \text{ cm}^{-1}$, so folgt mit $C = -48 \text{ cm}^{-1}$: $C^i = +7 \text{ cm}^{-1}$ in Übereinstimmung mit dem direkt bestimmten Wert. Figur 20 soll schematisch den Rotations-Isotopie-Effekt veranschaulichen und soll zeigen, wie seine Verteilung auf δ - und β -Term durch die Grössen C und C^i entscheidend bestimmt wird. Die Figur ist nicht maßstäblich für $\delta(v = 3) + \beta(v = 15)$ gezeichnet, um sie klarer zu gestalten. C und C^i sind beim fraglichen Termpaar klein gegen 2 H.

Einige der aus den übrigen Isotopen-Banden der Tabelle 5 berechneten Isotopie-Verschiebungen im δ - und β -Termsystem sind in Figur 19d graphisch dargestellt. Da in allen diesen Fällen das Beobachtungsmaterial unvollständig ist, sollen sie nicht quantitativ behandelt werden. Für $\delta(v = 1)$ ist $\Delta^{ii}W_{\delta 1}$ (Isotop NO¹⁸) beobachtet für J(J + 1) < 50, in welchem Gebiet $H \ll |W_{\delta} - W_{\beta}|$ ist, die Störung sich also noch nicht bemerkbar macht. Dementsprechend stimmt der gemessene Effekt mit dem in einfacher Weise theoretisch berechneten Wert überein. Dasselbe gilt für $\beta(v = 11 \text{ und } 14)$. $\delta(v = 2) + \beta(v = 12)$ zeigen qualitativ den Verlauf entsprechend dem in Figur 20 gekennzeichneten J-Bereich oberhalb der Kreuzungsstelle. Für $\delta(v = 4)$ fällt der gemessene Bereich unterhalb die-

*

sen Punkt und somit wächst die Isotopie-Verschiebung mit J gegen den grösseren Effekt im β -System hin.

δ-Term	ne C $^{2}\Pi$ N ¹	NO)18		
v	$\Delta^i w_{\delta}'$ obs.	${\bigtriangleup^i w_\delta}^{(c)}_{\mathrm{calc.}}$	$\varDelta^i w_{\delta}^*$	$\Delta^{ii} w_{\delta}'$ obs.	$\Delta^{ii} w_{\delta}^{(c)}$ calc.
1 2 3 4	64* 150 202 207	62 102 140 183	176	94 212 302 320	90 152 205 269
β-Tern	the $B^2\Pi$		*		
υ	$\varDelta^i w_{\beta}'$	$\varDelta^i w_{\beta}^{(c)}$	$\varDelta^i w^{m{\star}}_{m{eta}}$	$\varDelta^{ii} w_{eta}'$	$\Delta^{ii} w_{\beta}^{(c)}$
11 12 14 15 16	179 165 215 207 239*	179 189 214 230 237	233	263 246* 317 302 —	263 279 315 338 350

Tabelle 7	
Vibrations-Isotopie-Effekt	(cm^{-1})

Tabelle 7 ist eine Zusammenstellung der *Vibrations*-Isotopie-Verschiebungen der δ - und β -Terme. Es sind Mittelwerte für die Dublettkomponenten, die unter sich um einige cm⁻¹ differieren können. Einzelne durch * gekennzeichnete Messwerte stammen aus Isotopenbanden, in denen nur der Beginn der Zweige erkannt werden kann, eine Rotationsanalyse jedoch nicht möglich ist. Die Tabelle enthält auch berechnete Verschiebungen $\Delta^{i} w^{(c)}$ nach der Formel

$$\Delta^{i} w^{(c)} = (1-\varrho) \left[G^{*}(v) - x \omega (v+1/2) \right].$$
⁽¹⁸⁾

Beobachtete und berechnete Werte stimmen gut überein für $\delta(v = 1)$, $\beta(v = 11, 14 \text{ und } 16)$, nicht aber für die stark gestörten Paare $\delta(v = 2) + \beta(v = 12)$ und $\delta(v = 3) + \beta(v = 15)$, wo die beobachtete Verschiebung für die δ -Niveaus zu gross und für die β -Niveaus zu klein ist. Nach Gleichung (2) des § 5 sollte, unabhängig davon, ob $H = H^i$ und für jedes J gelten:

$$\Delta^{i} W_{\delta}' + \Delta^{i} W_{\beta}' = \Delta^{i} W_{\delta} + \Delta^{i} W_{\beta}$$
⁽¹⁹⁾

das heisst die Summe der Isotopie-Verschiebungen der gestörten Terme sollte gleich sein der Summe der Verschiebungen der ungestörten. Die nach der Gleichung (18) berechneten Werte $\Delta^{i} w^{(c)}$ erfüllen diese Bedingung nicht. $\Delta^{i} w_{\delta}' + \Delta^{i} w_{\beta}'$ ist für beide Paare grösser als $\Delta^{i} w_{\delta}^{(c)} + \Delta^{i} w_{\beta}^{(c)}$. Vol. 31, 1958

Wie Figur 20 zeigen soll, können «in 1. Näherung entstörte» Vibrations-Isotopie-Verschiebungen $\Delta^i w^*$ nach den folgenden Beziehungen berechnet werden:

$$\Delta^{i} w_{\delta}^{*} = \frac{1}{2} \left[\Delta^{i} w_{\delta}^{'} + \Delta^{i} w_{\beta}^{'} - (C^{i} - C) \right]$$

$$\Delta^{i} w_{\beta}^{*} = \frac{1}{2} \left[\Delta^{i} w_{\delta}^{'} + \Delta^{i} w_{\beta}^{'} + (C^{i} - C) \right]$$
(20)

Mit C = -48 und $C^i = +9$ cm⁻¹ erhält man hieraus für $\delta(v = 3)$ und $\beta(v = 15)$

$$\Delta^{i} w_{\delta}^{*} = 176 \text{ cm}^{-1} \qquad \Delta^{i} w_{\beta}^{*} = 233 \text{ cm}^{-1}$$

das heisst nahezu Übereinstimmung mit $\Delta^{i} w_{\beta}^{(c)}$, nicht aber mit $\Delta^{i} w_{\delta}^{(c)}$. Eine in 2. Näherung weitergeführte Entstörung, also die Berücksichtigung

Rotations- $(\Delta^{i}W')$ und Vibrations- $(\Delta^{i}w')$ -Isotopieaufspaltungen der gestörten β -Terme $(W_{\beta}' \text{ und } W_{\beta}'^{i}, \text{ ausgezogene Termkurven})$ und der gestörten δ -Terme $(W_{\delta}' \text{ und } W_{\delta'}^{i}, \text{ gestrichelte Termkurven}).$

der störenden Einwirkung entfernterer Niveaus analog den Überlegungen in § 7 hätte [Gleichungen (10) und (12)], da alle $C_{ik}^i > C_{ik}$ sind, zur Folge, dass alle ε_{δ}^i und ε_{β}^i für die Isotopen kleiner würden als die entsprechenden ε_{δ} und ε_{β} für das Hauptmolekül. Sie würde also die $\Delta^i w_{\delta}^*$ um $\varepsilon_{\delta} - \varepsilon_{\delta}^i$ weiter verkleinern, die $\Delta^i w_{\beta}^*$ um $\varepsilon_{\beta} - \varepsilon_{\beta}^i$ vergrössern. Man sieht leicht ein, dass dabei die letztere Differenz $\varepsilon_{\beta} - \varepsilon_{\beta}^i$ wesentlich kleiner wird als $\varepsilon_{\delta} - \varepsilon_{\delta}^{i}$, da die δ -Niveaus in ein und derselben Entfernung von doppelt so vielen β -Niveaus beeinflusst werden als umgekehrt. Eine Abschätzung zeigt, dass $\varepsilon_{\beta} - \varepsilon_{\beta}^{i} \approx 0$ ist.

Herrn Dr. G. HERZBERG sowie auch Herrn J. SHOOSMITH in Ottawa danken wir für die entscheidend wichtige Hilfe bei der Aufnahme der Spektren. Unser Dank gebührt auch Herrn Dr. P. G. WILKINSON in Chicago für die freundliche Überlassung einer Platte, die einzelne unserer Analysen in wertvollster Weise zu erweitern gestattete, sowie Herrn Prof. M. FIERZ für nützliche Diskussionen. Wir danken auch dem Schweizerischen Nationalfonds für wissenschaftliche Forschung, der dem einen von uns (A. L.) einen Gastaufenthalt in Basel ermöglicht hat.

Basel und Stockholm.

Physikalische Institute der Universitäten.

Literatur

- ¹) S. W. LEIFSON, Astrophys. J., 63, 73 (1926).
- ²) H. Sponer und J. J. Hopfield, Phys. Rev. 27, 640 (1926).
- ³) H. P. KNAUSS, Phys. Rev. 32, 417 (1928).
- ⁴) Y. TANAKA, J. Sci. Res. Inst. Tokyo 43, 160 (1949).
- ⁵) L. H. SUTCLIFFE und A. D. WALSH, Proc. Phys. Soc. London A 66, 209 (1953).
- ⁶) F. F. Marmo, J. O. S. A. 43, 1186 (1953).
- 7) F. A. JENKINS, H. A. BARTON und R. S. MULLIKEN, Phys. Rev. 30, 150 (1927).
- ⁸) R. SCHMID, Z. f. Phys. 64, 279 (1930).
- 9) G. HERZBERG, A. LAGERQVIST und E. MIESCHER, Canad. J. Phys. 34, 622 (1956).
- ¹⁰) M. UEDA, Science of Light (Japan) 3, 143 (1955).
- ¹¹) P. BRIX und G. HERZBERG, Canad. J. Phys. 32, 110 (1954).
- ¹²) G. HERZBERG und T. J. HUGO, Canad. J. Phys. 33, 757 (1955).
- ¹³) R. F. BARROW und E. MIESCHER, Proc. Phys. Soc. London A, 70, 219 (1957).
- ¹⁴) E. MIESCHER, Helv. Phys. Acta 29, 401 (1956).
- ¹⁵) M. W. FEAST, Canad. J. of Res. A. 28, 488 (1950).
- ¹⁶) R. SCHMID, Z. f. Phys. 64, 84 (1930).
- ¹⁷) J. J. GALLAGHER und C. M. JOHNSON, Phys. Rev. 103, 1727 (1956).
- ¹⁸) R. S. MULLIKEN, Journ. of Phys. Chem. 41, 5 (1937).
- ¹⁹) G. HERZBERG, Spectra of Diatomic Molecules, 1950.
- ²⁰) L. GERÖ und R. SCHMID, Z. f. Phys. 121, 459 (1943).
- ²¹) L. GERÖ, Z. f. Phys. 116, 379 (1940).
- ²²) G. GLOCKLER, J. Chem. Phys. 16, 604 (1948).
- ²³) Y. TANAKA, J. Chem. Phys. 22, 2045 (1954).
- ²⁴) W. H. FLETSCHER und G. M. BEGUN, J. Chem. Phys. 27, 579 (1957).