Ein Beispiel zum Nukleon-Vertex

Autor(en): Jost, Res

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 31 (1958)

Heft III

PDF erstellt am: 09.08.2024

Persistenter Link: https://doi.org/10.5169/seals-112911

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.

Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

Ein Dienst der *ETH-Bibliothek* ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

Ein Beispiel zum Nukleon-Vertex

von Res Jost, ETH., Zürich

(6. II. 1958)

Zusammenfassung: Es wird an Hand eines Beispiels gezeigt, dass die lokalen Vertauschungsrelationen und das Massenspektrum zur Herleitung der Dispersionsrelation für den Nukleon-Vertex nicht hinreichen.

§ 1. Einleitung

Analytizitätseigenschaften von Streuamplituden und verwandten Grössen erfreuen sich seit einiger Zeit unter dem Namen «Dispersionsrelationen» (D.R.) einer zunehmenden Beliebtheit. Man kümmert sich dabei weniger um die Herleitung solcher Beziehungen, sondern man diskutiert Streuexperimente unter dem Gesichtspunkt ihrer Gültigkeit. Dabei ist freilich zu beachten, dass die D.R. in den meisten Fällen so schwache Aussagen sind, dass sie durch das Experiment weder bewiesen noch widerlegt werden können. Sie müssen daher durch zusätzliche Betrachtungen über die Matrixelemente selbst ergänzt werden. Diese Probleme sollen aber hier nicht diskutiert werden.

Vielmehr wollen wir uns mit der Frage der Herleitbarkeit der D.R. befassen. Die bekannten gelungenen Herleitungen beruhten auf der mikroskopischen Kausalität der zugrunde gelegten Feldtheorie und der Ausnützung des Massenspektrums¹)²). Voll ausgenützt wurden die beiden Voraussetzungen bisher in keinem Fall. Wir werden aber sehen, dass sie für den Beweis der D.R. für den Nukleon-Vertex nicht ausreichen. Eine ähnliche Situation besteht in der Nukleon-Nukleon Vorwärtsstreuung.

Uber den Nukleon-Vertex ist das folgende bekannt²): Falls das Verhältnis der π -Masse μ zur Nukleonmasse M grösser als $\sqrt{2} - 1$ wäre, dann gäbe es eine D.R. Wir werden zeigen, dass aus mikroskopischer Kausalität und Massenspektrum eine D.R. nicht folgt, sofern das erwähnte Verhältnis kleiner ist als $2/\sqrt{3} - 1$. Dies ist tatsächlich der Fall. Die angegebene Schranke für das Massenverhältnis ist nicht optimal. Es lohnt sich vielleicht, die Verhältnisse etwas näher zu beschreiben, soweit das beim unbefriedigenden Stand der Dinge möglich ist. Währenddem die Vertex-Funktion $\Gamma(w)$ für $\mu/M > \sqrt{2} - 1$ in einer von $w = (2\mu)^2$ bis ∞ längs der positiven reellen Achse aufgeschnittenen Ebene regulär ist, ist dies bei abnehmendem μ/M nicht mehr notwendigerweise der Fall. Das Regularitätsgebiet wird dann (in einer bisher unbekannten Weise) z. T. durch Kurven begrenzt, die nicht ausschliesslich Stücke der reellen Achse sind. Natürlich kann man immer auf das tatsächlich vorhandene Regularitätsgebiet die Cauchysche Formel anwenden und derart eine verallgemeinerte D.R. herleiten.

Mit allem Nachdruck muss aber festgestellt werden, dass unser Beispiel nur zeigt, dass aus gewissen Annahmen die D.R. für den Nukleon-Vertex nicht folgt. Diese Annahmen sind durchaus nicht erschöpfend. Zum Beispiel ist die Unitarität der S-Matrix nicht darunter enthalten. Stellt man sich etwa auf den Standpunkt der Feldtheorie von LEHMANN et al.³), so äussert sich dieser Umstand darin, dass das Gleichungssystem für die r-Funktionen nur zum geringsten Teil ausgenützt worden ist. Es ist durchaus möglich, dass die Benützung dieses Gleichungssystems die Situation radikal ändert.

Welchen Wert man der Tatsache beimessen soll, dass die betrachtete D.R. in jeder Ordnung der Störungsrechnung richtig ist⁴), wird hier nicht entschieden.*)

Unsere Überlegungen werden für 3 skalare Felder A(x), B(x) und C(x)durchgeführt. Dabei sollen B(x) und C(x) Teilchen der Masse M = 1 beschreiben. Sie stehen für das Nukleon-Feld. A(x) steht etwa für das Mesonfeld und beschreibt Teilchen der Masse μ .

§ 2. Die Beziehungen zwischen den Dreipunktfunktionen

In diesem Paragraphen führen wir die verschiedenen Dreipunktfunktionen ein, diskutieren ihre Eigenschaften und leiten die zwischen ihnen bestehenden Relationen $ab^{3})^{5}$. Zugrundegelegt werden 3 lokale, skalare Felder A(x), B(x) und C(x).

Definitionen:

$$W_{ABC}(x_0 - x_1, x_1 - x_2) = \langle A (x_0) B (x_1) C (x_2) \rangle_0$$
(1)

$$G_{ABC}(x_0 - x_1, x_2 - x_2) = \langle [A(x_0) B(x_1)] C(x_2) \rangle_0$$
(2)

$$\begin{aligned} r_{ABC} \left(x_0 - x_1, x_0 - x_2 \right) &= \Theta \left(x_0 - x_1 \right) \Theta \left(x_1 - x_2 \right) \\ G_{ABC} \left(x_0 - x_1, x_1 - x_2 \right) &+ \Theta \left(x_0 - x_2 \right) \Theta \left(x_2 - x_1 \right) \\ G_{ABC} \left(x_0 - x_2, x_2 - x_1 \right). \end{aligned} \tag{3}$$

^{*)} Siehe Anmerkung bei der Korrektur.

Eigenschaften: Da unter unseren Voraussetzungen die *CTP*-Invarianz besteht, gelten

$$W_{ABC}\left(\xi,\,\eta\right) = W_{CBA}\left(\eta,\,\xi\right) \tag{4}$$

$$G_{ABC}\left(-\xi,-\eta\right) = G_{ABC}\left(\xi,\eta\right) \tag{5}$$

Ausserdem folgen aus den Definitionen

$$G_{ABC}(x_0 - x_1, x_1 - x_2) = -G_{BAC}(x_1 - x_0, x_0 - x_2)$$
(6)

$$r_{ABC}(x_0 - x_1, x_0 - x_2) = r_{ACB}(x_0 - x_2, x_0 - x_1).$$
(7)

Wegen Lorentz-Invarianz und Lokalität sind die eingeführten Funktionen selber Lorentzinvariant und es gelten weiter

$$G_{ABC}(\xi, \eta) = 0 \text{ falls } \xi^2 < 0 \text{ oder } \{ \eta^2 < 0 \text{ und } (\xi + \eta)^2 < 0 \}$$
 (8)

$$r_{ABC}(\xi, \eta) = 0 \text{ falls } \xi \notin V_+ \text{ oder } \eta \in V_+.$$
(9)

Aus den üblichen Voraussetzungen über das Spektrum hat man weiter*)

$$W_{ABC}(p, q) = 0 \text{ für } p \Subset V_+ \text{ oder } q \Subset V_+$$
(10)

$$G_{ABC}(p, q) = 0 \text{ für } q^2 < 0 \text{ oder } \{ p^2 < 0 \text{ und } (q - p)^2 < 0 \}.$$
 (11)

(10) und (11) gestatten oft Verfeinerungen. Diese werden sich im folgenden als entscheidend erweisen. Im allgemeinen hat A(x) Matrixelemente zwischen dem Vakuum und den Ein-Teilchen-Zuständen der Masse M_A . Diese sind für uns ohne Interesse, und wir denken sie uns im folgenden durch die Anwendung eines Klein-Gordon-Operators entfernt. Dagegen ist es wichtig, bei welcher Masse das Kontinuum der Mehr-Teilchen-Zustände einsetzt. Dies geschehe bei einer Masse m_A . Dann gelten zu (10) und (11) die Verschärfungen

$$\begin{split} \tilde{W}_{ABC}\left(\phi,\,q\right) &= 0 \text{ für } p^2 < m_A^2 \text{ oder } q^2 < m_C^2 \end{split} \tag{10'}$$

$$\tilde{G}_{ABC}\left(\phi,\,q\right) &= 0 \text{ für } q^2 < m_C^2 \text{ oder}$$

$$\{ p_2 < m_A^2 \text{ und } (q - p)^2 < m_B^2 \}.$$
 (11')

Schliesslich erfüllt $G_{ABC}(x_0-x_1, x_1-x_2)$ die Jacobische Identität. Es gilt

$$G_{ABC}(x_0 - x_1, x_1 - x_2) + G_{BCA}(x_1 - x_2, x_2 - x_0) + G_{CAB}(x_2 - x_0, x_0 - x_1) = 0.$$
(12)

*) $\tilde{F}(p, q)$ steht für die Fourier-Transformierte von $F(\xi, \eta)$.

Res Jost

Relationen: Offenbar bestimmen die Wightman-Funktionen W_{ABC} die zwei andern Systeme von Dreipunktfunktionen vollständig. Über sie setzen wir die Eigenschaften, die aus Lorentzinvarianz, Lokalität und Spektrum folgen, voraus. Das nächste Interesse gilt dann der Frage, die Funktionen G_{ABC} so zu charakterisieren, dass es zu ihnen Wightman-Funktionen der vorausgesetzten Art gibt.

Wir behaupten, dass die Eigenschaften (5), (6), (8), (11) und (12) dazu hinreichen. In der Tat, falls wir definieren

$$\widetilde{W}_{ABC}(p, q) = \Theta(q) \Theta(p-q) \widetilde{G}_{ABC}(p, q) + \Theta(p) \Theta(q-p) \widetilde{G}_{CBA}(q, p)$$
(13)

so ist $W_{ABC}(p, q)$ kraft der Jacobi-Identität

$$\tilde{G}_{ABC}(p,q) + \tilde{G}_{BCA}(q-p,-p) + \tilde{G}_{CAB}(-q,p-q) = 0$$
(14)

und dank (5) und (6) lorentzinvariant. (11) garantiert (10). Ausserdem wird (2) in Wightman-Funktionen ausgeschrieben zu einer Identität. Die Lokalität ist trivial durch (8) ausgedrückt.

Endlich fragen wir uns nach den Eigenschaften, die r_{ABC} haben muss, damit dazu ein G_{ABC} mit den Eigenschaften (5), (6), (8) und (11) gehört.

Wir setzen anfangs lediglich (7) und (9) voraus und definieren

$$G_{ABC}(x_0 - x_1, x_1 - x_2) = r_{ABC}(x_0 - x_1, x_0 - x_2) + r_{ABC}(x_1 - x_0, x_2 - x_0) - r_{BAC}(x_1 - x_0, x_1 - x_2) - r_{BAC}(x_0 - x_1, x_2 - x_1).$$
(15)

Dadurch werden (5), (6), (8) und (12) erfüllt. (11) wird nach der Substitution von (15) als Bedingung für $r_{ABC}(\xi, \eta)$ aufgefasst. Diese bedeutet, dass

$$\widetilde{r}_{ABC}(p-q,q) + \widetilde{r}_{ABC}(-p+q,-q) - \widetilde{r}_{BAC}(-p,q) - \widetilde{r}_{BAC}(p,-q) = 0$$
(16)

unter den Vorasussetzungen von (11) und (11').

Nun ist nach BARGMANN, HALL und WIGHTMAN⁷) $\tilde{r}_{ABC}(\phi, q)$ Randwert einer analytischen Funktion der Quadrate p^2 , q^2 , $(\phi + q)^2$. Wir bezeichnen diese Funktion mit $f_{ABC}(w_1, w_2, w_3)$. Ein einfaches funktionentheoretisches Argument zeigt, dass (16) äquivalent ist zu

$$f_{ABC}(w_1, w_2, w_3) = f_{BAC}(w_3, w_2, w_1).$$
(17)

Ausserdem gilt (7), welches aussagt, dass

$$f_{ABC}(w_1, w_2, w_3) = f_{ACB}(w_2, w_1, w_3).$$
(18)

Vol. 31, 1958

(17) und (18) gelten natürlich nur in den Regularitätspunkten von f. Ihr Sinn ist, dass die verschiedenen Funktionen f sich durch eine einzige analytische Funktion ausdrücken lassen.

Im Beispiel werden wir (17) und (18) dadurch befriedigen, dass wir alle Funktionen $f_{XYZ}(w_1, w_2, w_3)$ gleich einer in w_1, w_2, w_3 symmetrischen Funktion $f(w_1, w_2, w_3)$ setzen werden.

Diese Funktion muss regulär analytisch sein für Werte, die sich wie fogt darstellen lassen

$$w_1 = (p_1 + ip_2)^2$$
 $w_2 = (q_1 + iq_2)^2$ $w_3 = (p_1 + q_1 + ip_2 + iq_2)^2$ (19)

wobei $p_2 \in V_+$ und $q_2 \in V_+$. Ausserdem werden wir zu verifizieren haben, dass (16) unter den Bedingungen von (11) und (11') erfüllt sind.

Die Vertex-Funktion schliesslich ist durch

$$\Gamma_{A}(w) = f_{ABC}(M_{B}^{2}, M_{C}^{2}, w)$$
(20)

definiert. Unser Beispiel wird $\boldsymbol{M}_B=\boldsymbol{M}_C$ annehmen und diese Masse auf 1 normieren.

§ 3. Abschätzungen über das Regularitätsgebiet von $f(w_1, w_2, w_3)$

Das durch (2.19) charakterisierte Gebiet ist vollständig bekannt⁸). Für unsere Zwecke ist es aber bequemer, nur mit einer Approximation dieses Gebietes zu arbeiten. Die nötigen Abschätzungen werden in diesem Paragraphen hergeleitet.

Uns interessiert nur derjenige Teil des Regularitätsgebietes, für den $u_k > 0$ für k = 1, 2, 3. Dabei ist $w_k = u_k + iv_k$ gesetzt. Diese Einschränkung bedeutet offenbar

$$p_1^2 > p_2^2 > 0, \ q_1^2 > q_2^2 > 0, \ (p_1 + q_1)^2 > (p_2 + q_2)^2 > 0$$
 (1)

d. h. p_1 , q_1 und $p_1 + q_1$ sind immer zeitartig.

Unter dieser Einschränkung gelten die folgenden Abschätzungen:

1. Abschätzung: Falls $v_1 > 0$ und $v_2 > 0$ dann ist $u_3 < (\sqrt{u_1} - \sqrt{u_2})^2$. Beweis: Zunächst folgt aus $v_1 > 0$, dass $p_1 \in V_+$ und aus $v_2 < 0$, dass $q_1 \in V_-$. Zu zeigen ist dann

$$(p_2 q_2) - (p_1 q_1) > \sqrt{p_1^2 - p_2^2} \sqrt{q_1^2 - q_2^2}$$
(2)

Das Minimum der linken Seite bei fester rechter Seite wird offenbar für $p_1 = -\lambda q_1$ und $p_2 = \mu q_2$ erreicht. Dann bedeutet (2)

$$\mu q_2^2 + \lambda q_1^2 > \sqrt{\lambda^2 q_1^2 - \mu^2 q_2^2} \sqrt{q_1^2 - q_2^2}$$
(3)

was erfüllt ist.

2. Abschätzung: Falls $v_1 > 0$, $v_2 < 0$ und $v_3 > 0$, dann ist $u_1 - u_2 > 0$. Beweis: Es ist 12 12 2 2 2

$$u_1 - u_2 = p_1^2 - p_2^2 - q_1^2 + q_2^2$$
$$= [(p_1 + q_1)^2 - (p_2 + q_2)^2] + 2 q_2 (p_2 + q_2) - 2 q_1 (p_1 + q_1).$$
(4)

Nun bedeutet $v_3 > 0$, dass $p_1 + q_1 \in V_+$. Andererse its ist $q_1 \in V_-$. Daher ist jeder Term der rechten Seite positiv.

3. Abschätzung: Falls $v_1 > 0$ und $v_2 > 0$, dann ist auch $v_3 > 0$. Falls ausserdem noch Re $w_1 w_2 = u_1 u_2 - v_1 v_2 > 0$, dann ist auch $u_3 - u_1 - u_2$ > 0.

Beweis: Aus der Voraussetzung folgt, dass $p_1 \in V_+$ und $q_1 \in V_+$. Daher ist $v_3 = 2 (p_1 + q_1) (p_2 + q_2) > 0$.

Nun soll weiter gelten

$$(p_1^2 - p_2^2) \ (q_1^2 - q_2^2) - 4 \ (p_1 \ p_2) \ (q_1 \ q_2) > 0 \tag{5}$$

und daraus soll

$$u_3 - u_1 - u_2 = 2 \left((p_1 q_1) - (p_2 q_2) \right) > 0 \tag{6}$$

folgen. Bezeichnen wir den (hyperbolischen) Winkel zwischen p_1 und p_2 mit χ_1 ($\chi_1 > 0$) und analog den zwischen q_1 und q_2 mit χ_2 , dann lautet (5)

$$(p_1^2 - p_2^2) \ (q_1^2 - q_2^2) - 4 \ \sqrt{p_1^2 p_2^2 q_1^2 q_2^2} \ Ch \ \chi_1 \ Ch \ \chi_2 > 0 \,. \tag{7}$$

Setzt man weiter $\Psi_1 = \not\triangleleft \not p_1 q_1$ und $\Psi_2 = \not\triangleleft \not p_2 q_2$, dann gilt $\Psi_2 \leq \chi_1 + \chi_2 + \Psi_1$ also

$$u_{3} - u_{1} - u_{2} = 2 \left[\sqrt{p_{1}^{2} q_{1}^{2}} \quad Ch \ \Psi_{1} - \sqrt{p^{2} q_{2}^{2}} \quad Ch \ \Psi_{2} \right]$$

$$\geq 2 \left[\sqrt{p_{1}^{2} q_{1}^{2}} \quad Ch \ \Psi_{1} - \sqrt{p_{2}^{2} q_{2}^{2}} \quad Ch \ (\chi_{1} + \chi_{2} + \Psi_{1}) \right]$$

$$> 2 \left[\sqrt{p_{1}^{2} q_{1}^{2}} - 4 \sqrt{p_{2}^{2} q_{2}^{2}} \quad Ch \ \chi_{1} \ Ch \ \chi_{2} \right] \quad Ch \ \Psi_{1}$$
(8)
und mit (7)

und $\operatorname{Im}(I)$

$$u_{3} - u_{1} - u_{2} > \frac{2}{\sqrt{p^{2} q^{2}}} \left[p_{1}^{2} q_{1}^{2} - (p_{1}^{2} - p_{2}^{2}) (q_{1}^{2} - q_{2}^{2}) \right] > 0.$$
(9)

Es seien a > 0, b > 0 und c > 0. Ausserdem werde d = b + ic gesetzt. Weiter sei

$$z = x + iy = \sqrt{1 + a^2 - w}$$
(1)

wobei die Wurzel für positiven Radikanden positiv gewählt ist.

Wir setzen dann (siehe § 2 Ende)

$$f(w_1, w_2, w_3) = (z_1 + z_2 + z_3 - d)^{-1}$$
(2)

und behaupten, dass diese Funktion in dem im vorigen Paragraphen diskutierten Gebiet regulär sei, falls nur

$$1 + a^2 - (b + c)^2 > 0 \tag{3}$$

ist. Eine Singularität tritt in (2) auf, falls $z_1 + z_2 + z_3 = d$ ist. Da aber (1) die Geschnittene w-Ebene auf Re z > 0 abbildet und uns Singularitäten nur interessieren, falls sie in der geschnittenen Ebene liegen, können wir uns auf solche beschränken, für die gilt $0 < Re z_k < b$. Dieser Streifen aber wird durch die Umkehrung von (1) auf das Innere einer nach rechts offenen Parabel mit Scheitel in $w = 1 + a^2 - b^2 > 0$ abgebildet. $f(w_1, w_2, w_3)$ hat also nur Singularitäten, falls gleichzeitig $u_k > 0$ für k = 1, 2, 3. Das war die Voraussetzung, unter denen die Abschätzungen des § 3 hergeleitet wurden.

Jetzt definieren wir $z_3 = d - z_1 - z_2$ und entsprechend

$$w_3 = 1 + a^2 - (d - z_1 - z_2)^2. \tag{4}$$

Nun wollen wir zeigen, dass der Punkt $w_1 = 1 + a^2 - z_1^2$, $w_2 = 1 + a^2 - z_2^2$ und w_3 unter keinen Umständen die Abschätzungen aus § 2 erfüllt.

Zuerst untersuchen wir, unter welchen Bedingungen die 1. Abschätzung verletzt ist. Dort ist die wesentliche Voraussetzung $v_1 v_2 < 0$, welche sich auf $y_1 y_2 < 0$ abbildet. Weiter schreiben wir die 1. Abschätzung passend $u_1 + u_2 - u_3 > 2 \sqrt{u_1 u_2}$. Es ist dann zu untersuchen, wann die umgekehrte Ungleichung gilt.

Nach (4) und (1) wird

$$u_1 + u_2 - u_3 = 1 + a^2 - b^2 + c^2 + 2 (b - x_1) (b - x_2)$$

- 2 (c - y₁) (c - y₂) (5)

andererseits aber

$$\begin{aligned}
\sqrt{u_1} \ \sqrt{u_2} &= \sqrt{1 + a^2 - x_1^2 + y_1^2} \ \sqrt{1 + a^2 - x_2^2 + y_2^2} \\
&\geq \sqrt{1 + a^2 - x_1^2} \ \sqrt{1 + a^2 - x_2^2} + |y_1 y_2| \\
&\geq \sqrt{1 + a^2 - b^2 + (b^2 - x_1^2)} \ \sqrt{1 + a^2 - b^2 + (b^2 - x_2^2)} - y_1 y_2 \\
&\geq 1 + a^2 - b^2 + \sqrt{b^2 - x_1^2} \ \sqrt{b^2 - x_2^2 - y_1 y_2}
\end{aligned}$$
(6)

wobei die Schwarz'sche Ungleichung und die Beschränkung $0 \leq x_k \leq b$ verwendet worden sind. Anwendung der letzten Tatsache liefert weiter

$$\sqrt{u_1 u_2} \ge 1 + a^2 - b^2 + (b - x_1) (b - x_2) - y_1 y_2.$$
(7)

Vergleicht man (5) mit (7), so findet man, dass $u_1 + u_2 - u_3 < 2 \sqrt{u_1 u_2}$ falls nur

$$y_1 + y_2 < \frac{1 + a^2 - b^2 + c^2}{2c} \tag{8}$$

ist.

Jetzt wird gezeigt, dass in den verbleibenden Fällen mit $y_1 y_2 < 0$ die 2. Abschätzung verletzt ist. Wir setzen also die Negation von (8) voraus. Den Voraussetzungen der 2. Abschätzung entspricht $y_1 < 0$, $y_2 > 0$. Dann wird

$$y_3 = c - y_1 - y_2 \le c - \frac{1 + a^2 - b^2 + c^2}{2c} < 0$$
(9)

was im Einklang steht zu $v_{\mathbf{3}}>0.$ Aber jetzt wird

$$u_{1} - u_{2} = -(x_{1} + x_{2})(x_{1} - x_{2}) + (y_{1} + y_{2})(y_{1} - y_{2}) \leq b^{2} - (y_{1} + y_{2})^{2}$$
$$< -\left[\frac{1 + a^{2} - (b + c)^{2}}{2c}\right]^{2} < 0.$$
(10)

und das steht im Widerspruch mit der 2. Abschätzung.

Zum Schluss bleibt noch die Diskussion des Falles $v_1 v_2 > 0$ oder $y_1 y_2 > 0$. Gemäss der 3. Abschätzung bietet nur der Fall Interesse, für den auch $v_1 v_2 > 0$ oder $y_1 y_2 > 0$. Weil aber $y_1 + y_2 + y_3 = c > 0$ muss notwendig $0 \le y_k \le c$. Unter dieser Voraussetzung wird

$$u_{3} - u_{1} - u_{2} \leq -\left[1 + a^{2} - b^{2} + c^{2} + 2(b - x_{1})(b - x_{2}) - 2c^{2}\right]$$

$$< -\left[1 + a^{2} - b^{2} - c^{2}\right] < 0$$
(11)

was der 3. Abschätzung wiederspricht.

Aus der eben durchgeführten Verifikation schliessen wir, dass

$$r(p,q) = (z_1 + z_2 + z_3 - d^{\dagger})^{-1}$$
(12)

die Fouriertransformierte einer invariant-retardierten Funktion ist. Wir identifizieren sie mit den 6 Funktionen r_{XYZ} aus § 2. Die Gleichungen (2.16) sind dann erfüllt, sofern nur $p^2 < 1 + a^2$, $q^2 < 1 + a^2$ und $(q - p)^2 < 1 + a^2$ ist. Unser Beispiel erfüllt also alle in § 2 gestellten Forderungen, falls $1 + a^2 \ge m_X^2$ für X = A, B, C.

Für die Vertex-Funktion ergibt sich mit $M_A = M_B = 1$

$$\Gamma_A(w) = (z + 2a - d)^{-1}.$$
(13)

 $\Gamma_A(w)$ hat offenbar einen Pol bei z = d - 2a = b - 2a + ic. Dieser liegt in der geschnittenen w-Ebene, wenn

$$b - 2a > 0. \tag{14}$$

Die Existenz eines solchen Poles ist mit der Gültigkeit einer Dipersionsrelation unverträglich. Diese Kalamität kann in unserem Beispiel nur auftreten, falls $a^2 < 1/3$ ist. Das bedeutet im Fall des Nukleon-Vertex

$$\frac{M+\mu}{M} < \frac{2}{\sqrt{3}}$$

was erfüllt ist.

Es würde zu weit führen, wenn der Verfasser alle Physiker namhaft machen wollte, denen er im Hinblick auf diese Arbeit verpflichtet ist. Besonderen Dank schuldet er J. R. OPPENHEIMER, dem Direktor des Institute for Advanced Study, für die Einladung zu einem längeren Aufenthalt in Princeton und der *National Science Foundation* für ihre finanzielle Unterstützung.

Anmerkung bei der Korrektur. Drei neue Arbeiten von R. KARPLUS, C. SOMMER-FIELD, E. WICHMANN; Y. NAMBU und R. ÖHME (alle im Druck) befassen sich u. a. mit der Vertex-Funktion in der niedrigsten störungstheoretischen Näherung. Vergleiche dazu auch G. Källen und A WIGHTMAN⁸) (im Erscheinen in Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd.). Appendix III. Während die Autoren zu einer beträchtlichen Klärung der Verhältnisse auf der reellen Achse gelangen, bleibt das eventuelle Auftreten komplexer Singularitäten vollständig im Dunkeln.

Res Jost

Literatur

- N. N. BOGOLJUBOW, B. W. MEDWEDEW und M. K. POLIWANOW, Problem der Dispersionsrelationen, Verlag Gostechisdat. Vervielfältigte Vorlesungsausarbeitungen durch das Institute for Advanced Study, Princeton N. J.
- ²) J. BREMERMANN, R. OEHME und J. G. TAYLOR, Phys. Rev. 109, 2178 (1958)
 In dieser Arbeit findet sich das zu besprechende Beispiel in Fussnote¹⁸).
- ³) V. GLASER, H. LEHMANN, K. SYMANZIK und W. ZIMMERMANN, Nuovo Cimento 6, 1121 (1957) und frühere Arbeiten.
- ⁴) Y. NAMBU, Nuovo Cimento 6, 1064 (1957).
- ⁵) A. WIGHTMAN, Phys. Rev. 101, 860 (1956).
- ⁶) G. KÄLLÈN und A. WIGHTMAN, Rochester Report 1957.
- ⁷) D. HALL und A. WIGHTMAN, Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. 36, No. 5 (1957).
- ⁸) vgl. ⁶). Eine neue Arbeit von G. KÄLLÈN und A. WIGHTMAN wird viel tiefere Resultate einer systematischen Untersuchung des Regularitätsgebietes von $f(w_1, w_2, w_3)$ enthalten.

Corrigenda HPA Vol. 31/1

S. 39. Tabelle B. Addendum: 10^{-6} in den Spalten unter $d_{(u,K)}$, $d_{(u,o)}$, $d_{(T,K)}$, $d_{(T,O)}$.

S. 42. Fussnote ¹⁴) soll heissen W. G. L. Jb. 1953... statt W. et L. Jb. 1953... S. 42. Fussnote ¹⁹) soll heissen Mehrparametrige... statt Mehrparametrige...