Helvetica Physica Acta
31 (1958)
V
Coulomb-Anregung einiger deformierter u-g-Kerne
Martin, M. / Marmier, P. / Boer, J. de
https://doi.org/10.5169/seals-112915

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. <u>Mehr erfahren</u>

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. <u>En savoir plus</u>

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. <u>Find out more</u>

Download PDF: 04.07.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Coulomb-Anregung einiger deformierter u-g-Kerne

von M. Martin, P. Marmier und J. de Boer

Physikalisches Institut der Eidg. Technischen Hochschule, Zürich

(18. II. 1958)

Summary: Electric excitation of the two first rotational levels of Au¹⁹⁷, Ta¹⁸¹, Lu¹⁷⁵, Tm¹⁶⁹, Ho¹⁶⁵, Tb¹⁵⁹, Eu¹⁵³, ¹⁵¹ and Ag¹⁰⁹, ¹⁰⁷ has been studied using protons of 4,05 MeV. Spins, transition probabilities, and multipolarities, as well as moments of inertia, deformation parameters, and gyromagnetic factors were deduced from yields and angular distributions of the gamma-rays.

I. Ergebnisse der Theorie der Coulomb-Anregung

I.1. Einleitung

Seit der Entdeckung der elektrischen Anregung von Rotationszuständen am Tantal im Jahre 1952 sind schon eine grosse Zahl von Arbeiten über diesen Gegenstand erschienen. Die Untersuchung von deformierten Kernen durch die Anregung von kollektiven Bewegungen des Kerns (Rotationen oder Vibrationen) mit dem elektrischen Felde schneller, geladener Teilchen hat sich als eine nützliche und wertvolle Methode erwiesen.

Während die aus Intensitätsmessungen in Gammaspektren erhältlichen Informationen schon für eine grosse Zahl stabiler Kerne vorliegen, sind Gammawinkelverteilungsmessungen besonders für Kerne mit ungerader Nukleonenzahl erst für einige wenige Kerne durchgeführt worden. Abgesehen davon, dass auch durch die E2-Übergänge in solchen Kernen die Theorie der Coulombanregung geprüft werden kann, lassen sich für die gemischten M1+E2-Übergänge der Kaskade eines Rotationsspektrums zusätzliche Informationen für die Systematik deformierter Kerne gewinnen:

1. Die für ein Rotationsspektrum charakteristische Spinzuordnung kann bestimmt werden.

2. Die aus der Messung der Konversionselektronen und Verzweigungsverhältnisse ermittelten E2/M1-Mischungsverhältnisse lassen sich verifizieren.

3. Das Vorzeichen der Mischungsverhältnisse kann ermittelt werden und gestattet die Ausschliessung des einen Lösungspaares der aus den Gammaübergangswahrscheinlichkeiten berechneten gyromagnetischen Faktoren.

Das Ziel dieser Arbeit ist die Vervollständigung des empirischen Materials hauptsächlich durch Winkelverteilungsmessungen für einige deformierte u-g-Kerne und ein Vergleich der Resultate mit dem kollektiven Modell der Kerne.

I.2. Elektrische Anregung von Rotationszuständen

Die Theorie der Coulomb-Anregung ist von ALDER, BOHR, HUUS, MOT-TELSON und WINTHER¹) zusammenfassend dargestellt worden. Es sollen hier nur die für die Auswertung der Messungen wichtigsten Ergebnisse zusammengestellt werden.

Da der Anregungsprozess durch eine elektromagnetische Wechselwirkung zustandekommt, kann für die reduzierten Übergangswahrscheinlichkeiten die Theorie der Multipolstrahlungen benützt werden. Man verwendet für die Beschreibung des einer elektrischen Anregung nachfol-

Fig. 1. Kopplungsschema für deformierte Kerne.Fig. 2. Niveauschema für Anregungs- und Zerfallsprozesse.

genden Gammazerfalls (Fig. 2) zweckmässig eine hypothetische γ - γ -Kaskade (Fig. 3) und interpretiert den Anregungsprozess als Multipolübergang der Ordnung λ . Wenn I_i , I_f und I_{ff} die Spins im Grund-, Anregungs- und Endzustand bezeichnen, so besteht zwischen den reduzierten Anregungs- und Zerfallswahrscheinlichkeiten der Zusammenhang:

$$B(\lambda)_d = B(\lambda, I_f \to I_i) = \frac{2I_i + 1}{2I_f + 1} B(\lambda)_{ex} = \frac{2I_i + 1}{2I_f + 1} B(\lambda, I_i \to I_f).*$$
(1)

a) Das Rotationsspektrum

Im Falle der Anregung von Rotationsniveaus in deformierten Kernen (Fig. 1) wird eine Rotation von Kernmaterie um eine Achse r senkrecht

Fig. 3. Hypothetische γ - γ -Kaskade.

^{*)} Der Index «ex» bedeutet Anregung (excitation) und «d» Zerfall (decay).

zur Symmetrieachse z' bewirkt ohne Beeinflussung des inneren, durch den Spin \vec{K} charakterisierten Kernzustandes. Die Rotationsniveaus sind durch einen Drehimpuls \vec{R} gekennzeichnet, der sich vektoriell mit dem inneren Drehimpuls \vec{K} zum Gesamtspin \vec{I} addiert.

Die Anregung von Rotationsniveaus unterliegt wie in der Theorie der Multipolstrahlungen folgenden Auswahlregeln:

$$\left| \begin{array}{c} I_{i} - I_{f} \right| \leq \lambda \leq I_{i} + I_{f} \\ \pi_{i} \pi_{f} = \begin{cases} (-1)^{\lambda} & \text{für } E\lambda \text{ elektrische} \\ (-1)^{\lambda+1} & \text{für } M\lambda \text{ magnetische} \end{cases}$$
Multipolanregung (2)

Solange nur elektrische Quadrupolanregungen (E2) in Frage kommen, wie dies empirisch für die meisten untersuchten Kerne festgestellt wurde, werden hauptsächlich die zwei untersten Niveaus angeregt. Im Falle von g-g-Kernen mit dem inneren Spin K = 0 sind aus Symmetriegründen nur die Rotationszustände vom Spin 0, 2, 4, ... möglich, so dass nur ein Rotationsniveau vom Spin 2 beobachtet werden kann. Bei u-g-Kernen hat ein Rotationsband die Drehimpulse I = K, K + 1, K + 2, ... Durch E2-Anregung bekommt man deshalb zwei Rotationsniveaus gleichbleibender Parität, wie dies in Figur 7 schematisch dargestellt ist. Bezeichnet man den Spin im Grundzustand mit $K = I_0$, so haben die beiden angeregten Rotationsniveaus die Drehimpulse I_0+1 und I_0+2 . Nach dem kollektiven Modell von BOHR und MOTTELSON²) können die inneren Nukleonenbewegungen von der kollektiven Rotationszustandes vom Spin I zwei Terme bekommt:

$$E_{I} = E_{0} + \frac{\hbar^{2}}{2\Im} \left[I \left(I + 1 \right) + a \left(-1 \right)^{I + \frac{1}{2}} \left(I + \frac{1}{2} \right) \delta_{K, \frac{1}{2}} \right]$$
(3)

Hierin bedeuten \Im das effektive Trägheitsmoment in bezug auf die Achse *r* und der Parameter *a* eine Korrektur im Falle von Rotationsbändern mit $I_0 = K = \frac{1}{2}$. Aus den gemessenen Anregungsenergien $\varDelta E_1$ und $\varDelta E_2$ beider Niveaus können das Trägheitsmoment \Im und der Entkopplungsparameter *a* ermittelt werden:

$$\frac{\hbar^2}{2\Im} = \frac{\varDelta E_I}{I(I+1) - I_0(I_0+1)} \qquad I_0 \neq \frac{1}{2}$$
(4)

$$\frac{\hbar^2}{2\Im} = \frac{\Delta E_1}{3(1+a)} = \frac{\Delta E_2}{2(4-a)}$$
(5)
$$I_0 = \frac{1}{2}$$

$$a = \frac{8\varDelta E_1 - 3\varDelta E_2}{2\varDelta E_1 + 3\varDelta E_2} \tag{6}$$

$$\mathfrak{J} = \frac{350}{\left(\frac{\hbar^2}{2\mathfrak{J}}\right)^{k_{e}}} \cdot 10^{-48} \left[\text{g cm}^2 \right].$$
⁽⁷⁾

Die Beurteilung, ob man es mit einem Rotationsspektrum zu tun hat, kann durch Vergleich des gemessenen Verhältnisses der Anregungsenergien mit den theoretischen Werten (Tabelle I) erfolgen:

$$\frac{\Delta E_2}{\Delta E_1} = \frac{(I_0 + 2) (I_0 + 3) - I_0 (I_0 + 1)}{(I_0 + 1) (I_0 + 2) - I_0 (I_0 + 1)} .$$
(8)

Tabelle I

Verhältnisse der Anregungsenergien für Rotationsniveau im kollektiven Model

I ₀	0	1/2	3/2	5/2	7/2	9/2
$\Delta E_2 / \Delta E_1$	3,00	2,67	2,40	2,29	2,22	2,18

b) Wirkungsquerschnitte für elektrische Anregung

In der klassischen Theorie des Anregungsprozesses kann die Hyperbelbahn eines am Targetkern gestreuten Ions zugrunde gelegt werden, da die Bahn durch die Abgabe der im Verhältnis zur kinetischen Energie kleinen Anregungsenergien wenig gestört wird. Für den totalen Wirkungsquerschnitt einer elektrischen Multipolanregung ergibt die quantenmechanische Theorie:

$$\sigma(E\lambda) = \left(\frac{Z_1 e}{\hbar v_i}\right)^2 a^{-2\lambda+2} B(E\lambda) f_{E\lambda}(\eta_i,\xi) .$$
(9)

Hierin bedeuten:

 $a = rac{Z_1 e \cdot Z_2 e}{m_0 v_i v_f}$ halber (symmetrisierter) minimaler Abstand bei Zentralstoss

 Z_1e , Z_2e Ladungen von Ion und Targetkern

$m_0 = rac{m_1 m_2}{m_1 + m_2}$ reduzierte Masse	¥1
$\frac{m_1}{2}v_i^2 = E_0$ Ionenenergie vor dem Stoss	
$\frac{m_1}{2} v_f^2 = E_0 - \left(1 + \frac{m_1}{m_2}\right) \varDelta E$ Ionenenergie nach dem S	toss

 $B(E\lambda)$ reduzierte Übergangswahrscheinlichkeit

- $f_{E\lambda}(\eta_i,\xi) = f_{E\lambda}(\infty,\xi) R_{E\lambda}(\eta_i,\xi)$ energieabhängige Anregungsfunktion
- $$\begin{split} R_{E\lambda}(\eta_i,\xi) & \text{quantenmechanische Korrektur für den klassischen Grenzfall} \\ \eta_i &= \infty \\ \eta_{i,f} = \frac{Z_1 e \cdot Z_2 e}{\hbar v_{i,f}} & \text{Wechselwirkungszahl für Coulombfeld} \\ \xi &= \eta_f \eta_i & \text{Energieparameter.} \end{split}$$

Die die Stärke der Wechselwirkung im Coulombfeld charakterisierende Zahl η_i muss wesentlich grösser als 1 sein, wenn von reiner elektromagnetischer Wechselwirkung ohne Mitwirkung von Kernkräften die Rede sein soll. Für den klassischen Grenzfall $\eta_i = \infty$ sind in der oben zitierten Arbeit¹) die Anregungsfunktionen $f_{E\lambda}(\infty, \xi)$ tabelliert und graphisch dargestellt, während die quantenmechanische Korrektur für den Fall $1 \ll \eta_i \ll \infty$ berechnet wurde. Für elektrische Quadrupolanregung ist der totale Wirkungsquerschnitt:

$$\sigma(E2) = \frac{m_0^2 v_f^2}{Z_2^2 e^2 \hbar^2} B(E2)_{ex} f_{E2} (\eta_i, \xi)$$

$$= \frac{4,819}{Z_2^2} \frac{A_1}{\left(1 + \frac{A_1}{A_2}\right)^2} (E_0 - \Delta E')^{\text{MeV}} B(E2)_{ex} f_{E2}(\eta_i, \xi)$$

$$AE' = \left(1 + \frac{A_1}{A_2}\right)^2 AE A \text{programming integration} Lebersurform (11)$$

$$\Delta E' = \left(1 + \frac{A_1}{A_2}\right) \Delta E \text{ Anregungsenergie im Laborsystem.}$$
(11)

Die reduzierte E2-Anregungswahrscheinlichkeit $B(E2)_{ex}$ wird in Einheiten von $e^2 \cdot 10^{-48}$ cm⁴ angegeben. Für die Wechselwirkungszahl η_i und den Energieparameter ξ ergibt sich:

$$\eta_i = \frac{Z_1 Z_2}{2} \left(\frac{A_1}{10 \cdot E_0^{\text{MeV}}} \right)^{\frac{1}{2}} \tag{12}$$

$$\xi = \eta_i \left[\left(1 - \frac{\Delta E'}{E_0} \right)^{-\frac{1}{2}} - 1 \right].$$
 (13)

I.3. Gamma-Winkelverteilungen

Die Winkelverteilung der Gammastrahlung, welche beim Zerfall eines elektrisch angeregten Zustandes emittiert wird, kann durch die Theorie der Winkelkorrelation³) einer hypothetischen $\gamma - \gamma$ -Kaskade (Fig. 3), in der der erste Übergang ein reiner 2^{λ} -Übergang ist, dargestellt werden. Allerdings müssen zusätzliche Koeffizienten $a_k^{(\lambda)}(v,\xi)$ eingeführt werden, welche von der Energie E_0 der anregenden Ionen abhängen und den besonderen Anregungsprozess berücksichtigen, während sie von den Spins der beteiligten Zustände und der Multipolordnung des zweiten Kaskadenüberganges unabhängig sind:

$$w(\boldsymbol{\Theta}) = \sum_{k} a_{k}^{(\lambda)}(\boldsymbol{\nu}, \boldsymbol{\xi}) \ A_{k}^{(\lambda)} \ P_{k}(\cos \boldsymbol{\Theta}) \,. \tag{14}$$

Die Winkelverteilungskoeffizienten $a_k^{(\lambda)}(\nu,\xi)$ der quantenmechanischen Theorie sind ebenfalls in der Arbeit von ALDER et al.¹) tabelliert und graphisch dargestellt und weichen in stärkerem Masse vom klassischen Grenzfall $\nu = 0$ ab, als dies bei den Wirkungsquerschnitten der Fall ist. Der Wechselwirkungsparameter ν hängt nur von der Anregungsenergie ΔE , jedoch nicht von der Ionenenergie E_0 ab:

$$\nu = 2 \left(\eta_i^{-2} - \eta_f^{-2} \right) = \frac{4}{Z_1 Z_2} \left(\frac{10 \Delta E'}{A_1} \right)^{\frac{1}{2}}.$$
 (15)

Für E2-Anregungsprozesse ist die Winkelverteilung:

$$w(\Theta) = \sum_{k=0}^{2} a_{k}^{(2)}(\nu,\xi) A_{k}^{(2)} P_{k}(\Theta)$$

= 1 + $a_{2}^{(2)} A_{2}^{(2)} P_{2}(\Theta) + a_{4}^{(2)} A_{4}^{(2)} P_{4}(\Theta)$
= 1 + $B_{2} P_{2}(\Theta) + B_{4} P_{4}(\Theta)$. (16)

Für den Gammazerfall kommen wegen der gleichbleibenden Parität der Rotationsniveaus nur *M*1- oder *E*2-Übergänge oder Mischungen beider in Frage. Die γ - γ -Korrelationskoeffizienten $A_k^{(2)}$ haben deshalb die Form:

$$A_k^{(2)} = F_k \left(2 \ I_i I_f \right) \frac{F_k \left(2 \ I_{ff} I_f \right) \cdot \delta^2 + 2 \ F_k \left(12 \ I_{ff} I_f \right) \cdot \delta + F_k \left(1 \ I_{ff} I_f \right)}{1 + \delta^2} , \tag{17}$$

wobei δ^2 das E2/M1-Intensitätsmischungsverhältnis bedeutet und die Koeffizienten F_k aus den Tabellen von BIEDENHARN und ROSE³) entnommen werden können, wenn man beachtet, dass:

$$F_{k}(2 I_{i} I_{f}) = F_{k}(2 j_{1} j)$$

$$F_{k}(12 I_{ff} I_{f}) = F_{k}(12 j_{1} j) = \frac{[(2 j+1) (2 L+1) (2 L'+1)]^{\frac{1}{2}}}{(-1)^{j-j_{1}-1}} G_{k}(1 j_{1} j) \quad (18)$$

$$L = 1 \qquad \text{für } M1\text{-}U\text{bergang}$$

$$L' = L + 1 = 2 \text{ für } E2\text{-}U\text{bergang}.$$

In der in Gl. (16) angeschriebenen Form ist die Winkelverteilungsfunktion zum Vergleich mit den experimentellen Ergebnissen noch ungeeignet. Man stellt sie vorteilhafter durch eine Entwicklung nach $\cos^{2n}\Theta$ -Gliedern (n = 0, 1, 2, ...) dar:

$$\frac{w\left(\Theta\right)}{1-\frac{1}{2}B_{2}+\frac{3}{8}B_{4}} = 1 + \frac{\frac{3}{2}B_{2}-\frac{30}{8}B_{4}}{1-\frac{1}{2}B_{2}+\frac{3}{8}B_{4}}\cos^{2}\Theta + \frac{\frac{35}{8}B_{4}}{1-\frac{1}{2}B_{2}+\frac{3}{8}B_{4}}\cos^{4}\Theta$$
(19)

und bildet das Verhältnis der Gammaintensitäten bei den Streuwinkeln Θ und 90°:

$$W(\Theta) = \frac{w(\Theta)}{w(90^{\circ})} = 1 + \frac{\frac{3}{2}B_2 - \frac{30}{8}B_4}{1 - \frac{1}{2}B_2 + \frac{3}{8}B_4}\cos^2\Theta + \frac{\frac{35}{8}B_4}{1 - \frac{1}{2}B_2 + \frac{3}{8}B_4}\cos^4\Theta.$$
(20)

Für die meisten gemessenen Winkelverteilungen kann das Glied 4. Ordnung vernachlässigt werden, weil es nur wenige Prozente vom Glied 2. Ordnung ausmacht. Man kann deshalb für die Winkelverteilung näherungsweise schreiben:

$$W(\boldsymbol{\Theta}) = \frac{w(\boldsymbol{\Theta})}{w(90^{\circ})} \cong 1 + \beta_2 \cos^2 \boldsymbol{\Theta}$$
(21)

$$\beta_2 \simeq \frac{\frac{5}{2} B_2}{1 - \frac{1}{2} B_2} \left(1 - 2, 5 \frac{B_4}{B_2} \right). \tag{22}$$

Die Gammaübergänge zwischen Rotationsniveaus mit der Spindifferenz $\Delta I = 2$ sind reine E2-Übergänge, deren Winkelverteilung theoretisch vorausgesagt werden kann. Bei der Spindifferenz $\Delta I = 1$ hat man es mit einer Mischung eines M1-Überganges mit einem mehr oder weniger grossen E2-Anteil zu tun. Aus der gemessenen Anisotropie β_2 und dem durch die Theorie gegebenen Koeffizienten $a_2^{(2)}$ kann der $\gamma - \gamma$ -Korrelationskoeffizient $A_2^{(2)}$ bestimmt werden, aus dem sich das Mischungsverhältnis δ^2 oder die E2-Beimischung $e = \delta^2/1 + \delta^2$ ermitteln lässt.

I.4. Zusammenhänge zwischen Gammaübergangswahrscheinlichkeiten, Mischungsverhältnissen, Lebensdauern und Kernmomenten

a) Gammaübergangswahrscheinlichkeiten und Lebensdauer

Für den Vergleich von Gammaübergängen sind die reduzierten (das heisst energieunabhängigen) Übergangswahrscheinlichkeiten $B(\lambda)$ geeignet, die mit den wirklichen $T_{\gamma}(\lambda)$ und den reziproken (das heisst den Lebensdauern) Gammaübergangswahrscheinlichkeiten τ_{γ} wie folgt zusammenhängen⁴):

$$\frac{1}{\tau_{\gamma}} = T_{\gamma}(\lambda) = \frac{8 \pi (\lambda + 1)}{\lambda \left[(2\lambda + 1)!! \right]^2} \frac{1}{\hbar} \left(\frac{E_{\gamma}}{\hbar c} \right)^{2 \lambda + 1} B(\lambda)_d.$$
(23)

Für die hauptsächlich in Frage kommenden Multipolübergänge gilt:

$$T_{\gamma}(E2) = 1,23 \cdot 10^{-2} (E_{\gamma})^5 B (E2)_d *)$$
(E in keV) (24)

$$T_{\gamma}(M1) = 1,59 \cdot 10^8 (E_{\gamma})^3 B (M1)_d *) . \tag{25}$$

Bei einem M1 + E2-Übergang ergibt sich für die Gammaübergangswahrscheinlichkeit und die partielle Lebensdauer:

$$\frac{1}{\tau_{\gamma}(M1 + E2)} = T_{\gamma}(M1 + E2) = T_{\gamma}(M1) + T_{\gamma}(E2) = \frac{1}{e} \left(\frac{1}{\delta^2} + 1\right) T_{\gamma}(E2) = \frac{T_{\gamma}(E2)}{e}, \quad (26)$$

$$\delta^2 = \frac{T_{\gamma}(E2)}{T_{\gamma}(M1)} \quad \text{Mischungsverhältnis}$$
(27)

 $e = \delta^2 / 1 + \delta^2$ E2-Beimischung . (28)

*) B(E2) wird in $e^2 \cdot 10^{-48}$ cm⁴ und B(M1) in $(e\hbar/2 Mc)^2$ angegeben.

worin:

Bezeichnet α_t den totalen Konversionskoeffizienten, so bekommt man die wirkliche Lebensdauer, welche gegenüber der partiellen um den Faktor $1 + \alpha_t$ kürzer ist, aus:

$$\frac{1}{\tau} = \frac{1+\alpha_t}{e} T_{\gamma}(E2) . \qquad (29)$$

Im Falle eines 2. Rotationszustandes kommt eine weitere Verkürzung seiner Lebensdauer durch den direkten *E2*-Übergang zum Grundzustand hinzu:

$$\frac{1}{\tau_2} = \frac{1+\alpha_3}{e_3} T_{\gamma_3}(E2) + (1+\alpha_2) T_{\gamma_3}(E2) . *)$$
(30)

b) Verhältnisse zwischen Übergangswahrscheinlichkeiten

Im kollektiven Modell von Вонк und Моттеlson²) werden die reduzierten Gammaübergangswahrscheinlichkeiten B(E2) und B(M1) mit dem elektrischen Quadrupolmoment im Grundzustand Q_0 bzw. mit den gyromagnetischen Faktoren für die inneren Nukleonenbewegungen g_K und die kollektive Rotation g_R in Zusammenhang gebracht:

$$B(E2, I_i \rightarrow I_f)_{ex} = \frac{5}{16 \pi} Q_0^2 \langle I_i 2KO \mid I_i 2I_f K \rangle^2 \quad **)$$
(31)

$$B(M1, I_f \to I_{ff})_d = \frac{3}{4\pi} (g_K - g_R)^2 K^2 \langle I_f \, 1KO \mid I_f \, 1I_{ff} \, K \rangle^2 \quad **) \\ \times \left[1 + (-1)^{I_{ff} - \frac{1}{2}} b_0 \, \delta_{K, \frac{1}{2}} \right]^2 . \tag{32}$$

Wie in Gl. (3) für die Energie eines Rotationszustandes kommt hier im Falle $K = \frac{1}{2}$ ein Entkopplungsterm mit dem Parameter b_0 hinzu. Mit Hilfe dieser Beziehungen lassen sich folgende Verhältnisse zwischen Übergangswahrscheinlichkeiten bilden, wobei $K = I_0$ gesetzt ist:

$$\frac{B_2(E2)_{ex}}{B_1(E2)_{ex}} = \frac{\langle I_0 \ 2KO \mid I_0 \ 2, \ I_0 + 2, K \rangle^2}{\langle I_0 \ 2KO \mid I_0 \ 2, \ I_0 + 1, K \rangle^2} = \frac{2 \ (I_0 + 1)}{I_0 \ (2 \ I_0 + 3)}$$
(33)

$$\frac{B_{3}(E2)_{d}}{B_{2}(E2)_{d}} = \frac{\langle I_{0}+2, 2KO \mid I_{0}+2, 2, I_{0}+1, K \rangle^{2}}{\langle I_{0}+2, 2KO \mid I_{0}+2, 2I_{0} K \rangle^{2}} = \frac{2I_{0}+3}{2I_{0}+1} \cdot \frac{(2I_{0})^{2}}{2(I_{0}+3)}$$
(34)

$$\frac{B_{3}(M1)_{d}}{B_{1}(M1)_{d}} = \frac{\langle I_{0}+2, 1KO \mid I_{0}+2, 1, I_{0}+1, K \rangle^{2}}{\langle I_{0}+1, 1KO \mid I_{0}+1, 1I_{0} K \rangle^{2}} = \frac{2I_{0}+3}{2I_{0}+5} \cdot \frac{I_{0}+1}{I_{0}+2} \cdot \frac{4(I_{0}+1)}{2I_{0}+1}$$
(35)

Aus den gemessenen Wirkungsquerschnitten kann man $B_1(E2)_{ex}$ und $B_2(E2)_{ex}$ bestimmen, woraus sich $B_1(E2)_d$, $B_2(E2)_d$ und $B_3(E2)_d$ aus den Gl. (1) und (34) berechnen und das Verhältnis $B_2(E2)_{ex}/B_1(E2)_{ex}$ mit dem theoretischen Wert (33) vergleichen lassen. In Tabelle II sind für einige Spin I_0 diese Verhältnisse numerisch angegeben.

^{*)} Die Bedeutung der Indizes 1, 2, 3 ist aus der Fig. 7 ersichtlich.

^{**)} Die Vektoradditionskoeffizienten siehe Condon und ShortLey⁵).

Die M1-Ubergangswahrscheinlichkeiten erhält man mit Hilfe der Beziehungen (24),(25) und (27) und des Mischungsverhältnisses δ^2 aus den E2-Zerfallswahrscheinlichkeiten:

$$B(M1)_d = 0.69 \left(\frac{E_{\gamma}}{\delta}\right)^2 B(E2)_d . \qquad (E_{\gamma} \text{ in MeV})$$
(36)

Tabelle II

Verhältnisse zwischen Gammaübergangswahrscheinlichkeiten und zwischen Mischungsverhältnissen

$I_0 = K$	$\frac{B_1(E2)_d}{B_1(E2)_{ex}}$	$\frac{B_2(E2)_d}{B_2(E2)_{ex}}$	$\frac{B_2(E2)_{ex}}{B_1(E2)_{ex}}$	$\frac{B_3(E2)_d}{B_2(E2)_d}$	$\left \frac{B_3(M1)_d}{B_1(M1)_d}\right $	$\Bigl(rac{\delta_1}{\delta_3}\Bigr)^2\Bigl(rac{E_{{\gamma}_3}}{E_{{\gamma}_1}}\Bigr)^2$	$\left(rac{\delta_1}{\delta_3} ight)^2_{ ext{theor.}}$
1/2	0,500	0,333	1,500	0,286	1,200	4,200	1,512
3/2	0,667	0,500	0,556	1,50	1,340	2,145	1,095
5/2	0,750	0,600	0,350	3,03	1,450	1,712	1,035
7/2	0,800	0,667	0,257	4,71	1,535	1,520	1,018
9/2	0,833	0,714	0,204	6,47	1,595	1,411	1,010

c) Verzweigungs- und Mischungsverhältnisse

Das Intensitätsverhältnis (Verzweigungsverhältnis) zwischen dem direkten Gammaübergang zum Grundzustand und dem Kaskadenübergang vom 2. zum 1. Rotationsniveau ist gegeben durch:

$$\lambda_{2} = \frac{f_{2}}{f_{3}} = \frac{T_{\gamma_{2}}(E\ 2)}{T_{\gamma_{3}}(E2) + T_{\gamma_{3}}(M1)} = \left(\frac{E_{\gamma_{2}}}{E_{\gamma_{3}}}\right)^{5} \frac{B_{2}(E2)_{d}}{B_{3}(E2)_{d}\left(1 + 1/\delta_{3}^{2}\right)}.$$
 (37)

Das Verzweigungsverhältnis λ_2 liefert somit das Mischungsverhältnis δ_3^2 das mit dem Ergebnis einer Winkelverteilungsmessung verglichen werden kann: $\delta_3^2 = \frac{1}{2} \int B_3(E_2)_d$ (20)

$$e_{3} = \frac{\delta^{2}_{3}}{1 + \delta^{2}_{3}} = \lambda_{2} \left(\frac{E_{\gamma_{3}}}{E_{\gamma_{2}}} \right)^{5} \frac{B_{3}(E2)_{d}}{B_{2}(E2)_{d}}$$
(38)

Die Winkelverteilungen der Gammastrahlung vom Übergang des 1. Rotationsniveaus zum Grundzustand sind für $I_0 \ge 5/2$ nahezu isotrop (die Korrelationskoeffizienten $A_2^{(2)}$ sind kleiner als 6%), so dass man aus ihnen das Mischungsverhältnis δ_1^2 nicht ermitteln kann. Es ist deshalb wertvoll, eine Beziehung zwischen den Mischungsverhältnissen beider Kaskadenübergänge aus der Gl. (36) bilden zu können:

$$\left(\frac{\delta_{1}}{\delta_{3}}\right)^{2} = \left(\frac{E_{\gamma_{1}}}{E_{\gamma_{3}}}\right)^{2} \frac{B_{1}(E_{2})_{d}}{B_{3}(E_{2})_{d}} \cdot \frac{B_{3}(M_{1})_{d}}{B_{1}(M_{1})_{d}} = \left(\frac{E_{\gamma_{1}}}{E_{\gamma_{3}}}\right)^{2} \frac{I_{0}+1}{I_{0}+2} \cdot \frac{I_{0}+3}{I_{0}}.$$
 (39)

In Tabelle II sind für halbzahlige Spins $(\delta_1/\delta_3)^2 \cdot (E_{\gamma_3}/E_{\gamma_1})^2$ und $(\delta_1/\delta_3)^2_{\text{theor}}$ numerisch angegeben, wobei in $(\delta_1/\delta_3)^2_{\text{theor}}$ das theoretische Verhältnis der Gammaenergien eingesetzt wurde. Man sieht, dass für $I_0 \geq 3/2$ die Mischungsverhältnisse beider Kaskadenübergänge bis auf wenige Prozente Unterschied gleich sein sollten.

d) Quadrupol- und magnetische Momente

Aus den Beziehungen (31) und (32) lassen sich das elektrische Quadrupolmoment Q_0 und die gyromagnetischen Faktoren g_K und g_R berechnen, wenn man noch das magnetische Moment des Kerns im Grundzustand μ_0 kennt. Man benötigt hierfür noch eine weitere von BOHR, MOTTELSON und NILSSON²)⁶) angegebene Beziehung für das magnetische Moment eines Rotationszustandes:

$$\mu = \frac{K^2}{I+1} \left(g_K - g_R \right) \left[1 - (2I+1) \ (-1)^{I-\frac{1}{2}} b_0 \ \delta_{K,\frac{1}{2}} \right] + I g_R \quad . \tag{40}$$

Man kann zeigen, dass für den Fall $K = \frac{1}{2}$ der Entkopplungsparameter b_0 verschwindet, wenn das Verhältnis $B_3(M1)_d/B_1(M1)_d$ den theoretischen Wert 1,20 annimmt. Für das magnetische Moment des Grundzustandes gilt dann:

$$\mu_0 = \frac{I_0^2}{I_0 + 1} \left(g_K - g_R \right) + I_0 g_R .$$
(41)

Mit Hilfe der Beziehungen (31), (32) und (41) findet man für die gesuchten Grössen: 10 P(F2)

$$Q_{\mathbf{0}} = \left(\frac{10 \ B(E2)_{ex}}{\langle I_i \ 2KO \mid I_i \ 2I_f K \rangle^2}\right)^{\frac{1}{2}} \tag{42}$$

$$M_{0} = \left(\frac{4,19 \ B(M1)_{d}}{\langle I_{f} \ 1KO | I_{f} \ 1I_{ff} \ K \rangle^{2}}\right)^{\frac{1}{2}}$$
(43)

Das für das zweite Glied in den Ausdrücken für die gyromagnetischen Faktoren zu nehmende Vorzeichen ist durch dasjenige des Mischungsverhältnisses δ bestimmt, wie es sich aus den Winkelverteilungsmessungen ergibt (unter der Voraussetzung, dass das Quadrupolmoment Q_0 positiv ist). In der Tabelle III sind die für die Berechnung von Q_0 und M_0 erforderlichen Vektoradditionskoeffizienten⁵) numerisch angegeben.

Tabelle III

Vektoradditionskoeffizienten	zur	Berechnung vo	ı Q	o und	M ₀
------------------------------	-----	---------------	-----	-------	----------------

	$ \begin{vmatrix} \langle I_0 \; 2KO \mid \\ I_0 \; 2, \; I_0 + 1, \; K \rangle^2 \\ \gamma_1 \end{vmatrix} $	$ \begin{vmatrix} \langle I_0 \ 2KO \mid \\ I_0 \ 2, \ I_0 + 2, \ K \rangle^2 \\ \gamma_2 \end{vmatrix} $	$ \begin{vmatrix} \langle I_0 + 1, 1KO \mid \\ I_0 + 1, 1 I_0 K \rangle^2 \\ \gamma_1 \end{vmatrix} $	$ \begin{vmatrix} \langle I_{0} + 2, 1KO \mid \\ I_{0} + 2, 1, I_{0} + 1, K \rangle^{2} \\ \gamma_{3} \end{vmatrix} $
1/2	0,400	0,600	0,333	0,400
3/2	0,514	0,286	0,267	0,357
5/2	0,476	0,166	0,214	0,311
7/2	0,424	0,109	0,178	0,273

e) Deformationsparameter und Trägheitsmoment

Für einen rotationsellipsoidischen Kern mit der Differenz ΔR zwischen dem grössten und kleinsten Kernradius und einem mittleren Radius $R_0 = 1, 2 \cdot A^{1/3} \cdot 10^{-13}$ cm kann ein Deformationsparameter definiert werden:

$$\beta = \frac{4}{3} \left(\frac{\pi}{5}\right)^{\frac{1}{2}} \frac{\Delta R}{R_0} = 1,06 \frac{\Delta R}{R_0}, \qquad (46)$$

der unter der Annahme eines gleichmässig geladenen Kerns mit dem elektrischen Quadrupolmoment zusammenhängt:

$$Q_{\mathbf{0}} = \frac{3}{(5\pi)^{\frac{1}{2}}} z R_{\mathbf{0}}^{2} \beta (1+0.16 \beta + \cdots) .$$
(47)

Die gemessenen Quadrupolmomente gestatten eine Bestimmung des Deformationsparameters:

$$\beta = \frac{(1+0.64 \ \beta_0)^{\frac{1}{2}} - 1}{0.32} \qquad \beta_0 = \frac{91.6 \ Q_0}{Z \cdot A^{2/3}}.$$
(48)

Das aus den Gl. (4) bis (7) bestimmte, effektive Trägheitsmoment \mathfrak{J} kann einerseits mit dem Trägheitsmoment \mathfrak{J}_{rig} eines starren, ellipsoidischen Kerns und andrerseits mit dem Trägheitsmoment \mathfrak{J}_{irrot} einer umlaufenden, die Kerndeformation erzeugenden Materiewelle verglichen werden:

$$\mathfrak{J}_{\text{rig}} = \frac{2}{5} AMR_0^2 (1 + 0.31 \ \beta...) = 20.7 \left(\frac{A}{100}\right)^{5/3} \times (1 + 0.31\beta) \cdot 10^{-48} \left[\text{g cm}^2\right]$$
(49)

$$\mathfrak{J}_{\text{irrot}} = \frac{2}{5} A M R_0^2 \beta^2 (0.89 + \cdots) = 18.4 \left(\frac{A}{100}\right)^{5/3} \beta^2 \cdot 10^{-48} [g \text{ cm}^2].$$
(50)

II. Messanordnung und Auswertung

II.1. Beschleunigungsanlage

Das Cyclotron der ETH wurde für die vorliegende Arbeit mit Protonen einer reduzierten Energie von $(4,05 \pm 0,05)$ MeV betrieben. Der ausgelenkte Protonenstrahl beträgt am Austritt der Vakuumkammer rund 10 μ A und wird mit Hilfe eines Paares magnetischer Quadrupollinsen (Fig. 4) in einen Messraum fokussiert, der durch eine etwa 2 Meter dicke Mauer gegen die Strahlung der Maschine abgeschirmt ist (Fig. 5).

Durch eine Blende von 10 mm Durchmesser kann im Messraum ein Protonenstrom von 0,5 bis 1 μA erzielt werden. Die magnetischen Linsen verstärken die Stromdichte im Messraum etwa 50fach. Bei diesen Bedingungen erfordert jede Linse eine Erregerleistung von 2,1 A \cdot 200 V = 420 W und ergibt bei ca. 6000 Amperewindungen pro Spule einen Feldgradienten von 820 Gauss/cm längs eines effektiven Weges von 10 cm.

Fig. 4 Magnetische Quadrupollinsen für Strahlfokussierung

Übersichtsplan von Cyclotron- und Messraum

Zwei dicht aneinander gestellte Quadrupollinsen haben einen ziemlich grossen Astigmatismus, der allerdings gerade geeignet ist, die stark astigmatische Quelle im Cyclotron einigermassen zu kompensieren. Das Strahlrohr für den ausgelenkten Protonenstrahl, ein Ablenkmagnet, der den Strahl richtig ins Fokussiersystem einführt, und die Quadrupollinsen sind in der Abbildung 1 ersichtlich*).

Die Verwendung eines Cyclotrons für die Ausführung von Coulombanregungsexperimenten und Gammawinkelverteilungsmessungen bereitet gegenüber einem Van de Graaff-Beschleuniger einige zusätzliche Schwierigkeiten: Im Messraum steht ein Protonenstrom zur Verfügung, der kleiner, energetisch weniger scharf und vor allem weit weniger stabil ist, als dies bei Linearbeschleunigern im allgemeinen der Fall ist. Ferner ist das Umstellen auf eine andere Energie umständlich. Ein Cyclotron hat auch den Nachteil, dass der nutzbare Strom im besten Falle etwa 1% von dem auf den Dees und auf Blenden in Störstrahlung umgewandelten Protonenstrom ist. Die Instabilität des Targetstromes infolge Magnetfeldschwankungen, Änderungen der Hochfrequenz- und Auslenkspannung und Unterbrechungen bei Zündungen im Deesystem kann zu systematischen Fehlern bei der Messung führen. Der kleine Targetstrom und die relativ kleinen Anregungswirkungsquerschnitte machen oft längere Messungen notwendig.

II. 2. Messapparatur

Die Messapparatur ist aus der Abbildung 2 und der Fig. 6 ersichtlich*). Der aus dem Cyclotronraum in den Messraum fokussierte Protonenstrahl gelangt durch eine auswechselbare, isolierte Bleiblende mit einem Lochdurchmesser *D* in eine hochisoliert aufgestellte Messkammer aus Aluminium, die in der horizontalen Messebene der Gammastrahlung aus der Target 1 mm Material zur Absorption bietet. Der unter Vakuum verstellbare Halter kann zwei Targets von 23 mm Durchmesser fassen und gegenüber dem Strahl in 45°-Position gebracht werden. Die untere Target wird im allgemeinen für Eichzwecke benützt. Die Messkammer ist für Wirkungsquerschnittsmessungen über ein Polyäthylenkabel und ein durch einen Polyäthylenkondensator überbrücktes, elektrostatisches Voltmeter von 200 Volt geerdet.

Auf einem mit Gradeinteilung versehenen, justierbaren Holztisch von 1 Meter Durchmesser sind zwei Szintillationsdetektoren in einstellbarem

^{*)} Unserem Techniker, Herrn P. GÜNTERT, sei für die sorgfältige Ausführung dieser Einrichtungen besonders gedankt.

Abb. 1 Strahlauslenkung im Cyclotronraum mit Strahlrohr, Ablenkmagnet (links) und Quadrupollinsen (rechts)

Abb. 2. Messapparatur für Wirkungsquerschnitts- und Gammawinkelverteilungsmessungen

Abstand R um die Messkammer drehbar angeordnet. Die Gammastrahlung wird mit zwei NaI(Tl)-Kristallen von 1×1 inch und zwei Du-Mond-Photomultipliern 6292 registriert. Ein Detektor wird für alle Messungen auf den Winkel 135° eingestellt und ist als Monitor mit einem 1-Kanal-Impulsanalysator verbunden. Der andere Detektor wird für Wirkungsquerschnittsmessungen auf $\Theta = 55^{\circ}$) eingestellt, für Winkelverteilungsmessungen von $\Theta = 0$ bis 90° bewegt und ist an einem 20-Kanal-Impulsanalysator angeschlossen, der durch Verschieben des Impulsspektrums um $\frac{1}{4}$, $\frac{1}{2}$ und $\frac{3}{4}$ Kanäle die Aufnahme eines Gammaspektrums mit 80 Messpunkten erlaubt. Eine Beschreibung dieser Apparatur findet sich in einer Dissertation von H. Guhl⁷).

Um eine zuverlässige Funktion des Monitors zu erzielen, muss im 1-Kanal-Impulsanalysator die Röntgenlinie abgeschnitten werden, weil die Instabilitäten des Protonenstrahls zu Variationen der Absorption der

Fig. 6.

Messapparatur für Wirkungsquerschnitts- und Gammawinkelverteilungsmessungen.

Röntgenlinie in der Target Anlass geben und eine gewünschte Monitorgenauigkeit von 1% verunmöglichen. Um die totale Ladung auf die Target während einer Wirkungsquerschnittsmessung zu bestimmen, wird jeweils die Stoßzahl am Vorwahlzähler des Monitors abgelesen, die sich für die Aufladung einer geeigneten Kapazität von + 100 bis auf + 200 Volt ergibt. Das Vakuum in der Messkammer und im Strahlrohr muss gut sein, wenn die Stromverluste durch die vom Strahl erzeugten Gasionen gering sein sollen. Durch Messung der oben genannten Vorwahlzählerzahl für verschiedene Intensitäten des Protonenstrahls kann diese Bedingung geprüft werden; bei gutem Vakuum kann mit einer Genauigkeit der Ladungsbestimmung von 5 bis 10% gerechnet werden.

^{*)} Für diesen Winkel braucht bei der Bestimmung des totalen Wirkungsquerschnittes die Anisotropie der betreffenden Gammastrahlung nicht berücksichtigt zu werden.

II.3. Targetherstellung

Für die Messungen an den Metallen Gold, Tantal und Silber standen Folien zur Verfügung, während die übrigen, untersuchten Elemente in Form von feinem Pulver erhältlich waren, das in einer Presse zu dünnen Pillen verarbeitet werden musste. Die Dicke der Pillen wurde jeweils so klein als möglich gewählt, um die Absorption der Gammastrahlen in der Target nicht unnötig zu vergrössern.

Die Herstellung geeigneter Pillen bereitete einige Schwierigkeiten: Es zeigte sich, dass nur ganz feines Pulver verwendet werden darf. Eine richtig abgewogene Menge Pulver wird in einer ölgehärteten Pillenpresse aus Söderfors-Stahl bei etwa 5 Tonnen Druck zu einer Pille von 10 mm Durchmesser gepresst und deren Gewicht nachher bestimmt. Die freitragend bestrahlten Pillen waren nicht beständig; sie zeigten nach einiger Zeit Risse, wurden für Protonen zum Teil durchsichtig und verunmöglichten Winkelverteilungsmessungen. Diese Schwierigkeit konnte durch Aufkleben der Pillen mit Perocellinlack auf ein dünnes Nickelblech behoben werden, indem das Blech für eine bessere Halterung und Wärmeabfuhr aus der bestrahlten Pille sorgt. Allerdings muss damit eine zusätzliche, winkelabhängige Absorption der Gammastrahlen im Nickel in Kauf genommen werden.

Die Absorption in der Target beträgt für die gemessenen, niedrigen Gammalinien einiger seltener Erden je nach dem Beobachtungswinkel 10-20%. Die Instabilitäten des Protonenstrahls haben in den nicht ganz gleichmässig dicken Pillen Variationen der Absorption zur Folge, die sich bei den Winkelverteilungsmessungen als systematische Fehler äussern. Solche Messungen können deshalb weniger genau sein als für Targets aus den homogeneren Metallfolien.

II.4. Auswertung der Messungen

a) Gammaspektren

Für die Energieeichung der Gammalinien wurden folgende Eichquellen benützt: Cd¹⁰⁹(87 keV), Lu¹⁷⁷ (113 und 208 keV), Na²² (511 keV), Cs¹³⁷ (661 keV), Co⁶⁰ (1176 und 1330 keV) und ferner die relativ gut bekannten Energien der beiden Rotationsniveaus des Ta¹⁸¹ (136 und 303 keV). Die Genauigkeit der Energieeichung dürfte etwa $\pm 2\%$ betragen.

Bei Rotationsspektren von Kernen mit dem Spin $I_0 \ge 5/2$ sind die beiden Gammalinien des Kaskadenüberganges von nicht sehr verschiedener Energie und lassen sich deshalb mit Szintillationsspektrometern nicht völlig trennen. Der schwächere Übergang vom 2. zum 1. Rotationsniveau erscheint an der oberen Flanke des stärkeren Überganges vom 1. Niveau

Coulomb-Anregung einiger deformierter u-g-Kerne Vol. 31, 1958

zum Grundzustand als Ausbuchtung. Eine Bestimmung der Gammaenergie, welche ja gleich der Differenz der Anregungsenergien beider Rotationsniveaus sein sollte, gelingt, wenn das Spektrum logarithmisch aufgetragen wird und nach Abzug des Untergrundes die beiden benachbarten Linien in Parabeln aufgelöst erscheinen. Dies ist für das Spektrum des Ta¹⁸¹ in Figur 11 gezeigt.

b) Wirkungsquerschnitte und Anregungswahrscheinlichkeiten

Für die gemessenen Anregungsenergien ΔE_1 und ΔE_2 sind die totalen Wirkungsquerschnitte $\sigma(E2)/B(E2)$ nach Gl. (10) für eine Protonenenergie von 4,05 MeV bestimmt worden.

Aus den Gammaspektren wurden die Flächeninhalte der Photospitzen nach zwei Methoden ermittelt, wie dies für das Ta¹⁸¹ in den Figuren 10 und 11 gezeigt ist: In dem linear aufgetragenen Spektrum liegen in den Flanken der Photospitzen immer einige Messpunkte recht gut auf Geraden, die zu einem Dreieck mit einer Basis auf der Höhe eines mittleren Untergrundes ergänzt sind. Vergleicht man die Inhalte dieser Dreiecke mit denjenigen der im logarithmisch aufgezeichneten Spektrum konstruierbaren Parabeln, so findet man innerhalb \pm 5% Übereinstimmung. Für die in den Flanken der 1. Niveaus erscheinenden Kaskadenübergänge findet man eine $\pm 10\%$ ige Übereinstimmung der Differenzflächen im linearen Spektrum (siehe schraffierte Fläche in Fig. 10) mit den entsprechenden Parabelflächen im logarithmischen Spektrum. Die so ermittelten Gammaquantenzahlen werden nach Berücksichtigung der Absorptionen in der Target, in der Messkammerwand, einem eventuellen Absorber und im Kristallhalter durch die Photospitzen-Ansprechwahrscheinlichkeit dividiert, wobei die von MAEDER et al.⁸) angegebenen Werte benützt werden. Aus den so korrigierten, wahren Gammaquantenzahlen Γ_{exp} lassen sich die reduzierten Anregungswahrscheinlichkeiten $B(E2)_{ex}$ für die betreffenden Niveaus errechnen:

$$\varepsilon B(E2)_{ex} = \frac{\Gamma_{exp} \cdot \left(\frac{dE}{d\varrho x}\right)_0}{\frac{\sigma(E2)}{B(E2)} \cdot E_0 \cdot N_G \cdot C \frac{\delta E_\lambda}{E_0} \cdot \omega \cdot P}$$
(51)

Hierin bedeuten:

 $\varepsilon = \frac{\text{Beobachtete Gammaquanten}}{\text{Anzahl Anregungsprozesse}}$

 $\left(\frac{dE}{d\rho x}\right)_0$ = Bremsvermögen der Protonen bei der Maximalenergie E_0 $\omega = \left(\frac{r}{2R}\right)^2$ Beobachtungs-Raumwinkel (siehe Fig. 6) $\frac{-\sigma(E2)}{-B(E2)} = \frac{4,819}{(1+1/A_2)^2} - \frac{(E_0 - \varDelta E')^{\rm MeV}}{Z_2^2} \ f_{E2} \left(\eta_{i_0} \ , \ \xi_0 \right)$

 $N_G = \frac{h \cdot n_X \cdot 6,02 \cdot 10^{23}}{M}$ Anzahl angeregte Kerne X pro Gramm bei der molekularen Häufigkeit n_X und der Isotopenhäufigkeit h in einer Verbindung vom Molekulargewicht M

$$C \frac{\delta E_{\lambda}}{E_{0}} = \frac{\int_{E_{0}}^{0} \sigma(E) \, d(\varrho x)}{\sigma(E_{0}) \frac{E_{0}}{(dE/d\varrho x)_{0}}} \text{ effektive Targetdicke nach Alder et al.}^{1}$$

 $P = \frac{Q}{e}$ Protonenzahl für die gemessene Ladung Q.

Das Bremsvermögen der Protonen wurde für Gold, Tantal, Zinn und Kupfer gemessen und mit dem bekannten von Aluminium⁹) verglichen. Das Bremsvermögen für andere Elemente wurde dann durch Interpolation gewonnen. Ebenso ist die Reichweite für 4,05-MeV-Protonen angenähert bestimmt worden, um die Targetdicken günstig wählen zu können*).

Um aus den so ermittelten $\varepsilon B(E2)_{ex}$ -Werten die reduzierten Anregungswahrscheinlichkeiten selbst zu bekommen, müssen die totalen M1- und E2-Konversionskoeffizienten bekannt sein. Diese wurden durch Interpolation aus neueren Werten von SLIV¹⁰) (K-Konversionskoeffizienten) und älteren von ROSE (L- und M-Konversionskoeffizienten) erhalten*). Unter Berücksichtigung der nicht beobachteten Konversionsübergänge (siehe Fig. 7) lassen sich auch die ε -Verhältnisse ermitteln. Bezeichnen wir mit λ_1 und λ_2 die beobachteten Gammaintensitätsverhältnisse $f_1:f_3$ bzw. $f_2:f_3$, so ergibt sich für diese ε -Verhältnisse:

$$\lambda_1 = \frac{f_1}{f_3} \qquad \qquad \lambda_2 = \frac{f_2}{f_3} \tag{52}$$

$$\varepsilon_1 = \frac{1}{1+\alpha_1} \frac{\lambda_1 (1+\alpha_1)/(1+\alpha_3)}{\lambda_1 (1+\alpha_1)/(1+\alpha_3)-1} \approx \frac{1}{1+\alpha_1} \text{ für } \lambda_1 \gg 1$$
(53)

$$\varepsilon_2 = \frac{\lambda_2}{\lambda_2 (1+\alpha_2) + (1+\alpha_3)} \qquad \varepsilon_3 = \frac{1}{\lambda_2 (1+\alpha_2) + (1+\alpha_3)}.$$
 (54)

Die Genauigkeit, mit der die reduzierten Anregungswahrscheinlichkeiten angegeben werden können, ist durch viele Unsicherheiten, welche in die Auswertung eingehen, beschränkt. Erwähnt seien die Absorption in den verschiedenen Materialien zwischen Target und Kristall, die Ansprechwahrscheinlichkeit für die Photospitze, das Bremsvermögen der Protonen, die Ladungsbestimmung und die Konversionskoeffizienten.

^{*)} Wir sind Herrn R. SZOSTAK von der Technischen Universität Berlin für die Ausführung dieser Arbeit zu Dank verpflichtet.

Eine Angabe von Fehlergrenzen ist bei Vorhandensein aller dieser Unsicherheiten schwierig; die absolute Genauigkeit dürfte jedoch innerhalb \pm 50% und die relative Genauigkeit unter den angegebenen Anregungswahrscheinlichkeiten etwa \pm 20% betragen.

c) Gamma-Winkelverteilungen

Für die Auswertung von Gamma-Winkelverteilungen dicker Targets wird von ALDER et al.¹) empfohlen, die energieabhängigen Koeffizienten $a_k^{(2)}(v, \xi)$ für eine reduzierte Protonenenergie abzulesen:

$$E_{\rm red} = \frac{E_0}{1 + C\left(\delta E_{\lambda}/E_0\right)} \,. \tag{55}$$

Die Gammaspektren sind für die Winkel $\Theta = 0, 15, 30, 45, 60, 75$ und 90° jeweils mit genügender Statistik (statistischer Fehler höchstens $\pm 1,5\%$) aufgenommen worden. Die Stosszahlen einiger repräsentativer Messpunkte in der Photospitze wurden addiert und von der Summe ein individueller, angepasster Untergrund abgezogen, wie dies in den im 3. Teil dieser Arbeit wiedergegebenen Spektren durch die schwach ausgezogenen Linien angedeutet ist.

Die Absorption in der Target wurde in der folgenden Weise berücksichtigt: Eine mittlere Eindringtiefe ϱx der Protonen in die Target kann wie folgt erhalten werden:

$$\varrho \overline{x} = \frac{\int\limits_{E_0}^0 \sigma(E) \, d(\varrho x)}{\sigma(E_0)} = C \, \frac{\delta E_{\lambda}}{E_0} \frac{E_0}{(d E/d \, \varrho \, x)_0}.$$
(56)

Unter der Annahme, dass alle Gammaquanten in dieser Tiefe aus einer Punktquelle emittiert werden, wurde die vom Streuwinkel Θ abhängige Absorption in der Target berechnet. Die Richtigkeit dieser Annahmen wird durch die isotrop sich ergebende Winkelverteilung der 136-keV-Linie des Ta¹⁸¹ (Fig. 12) bestätigt. Die so korrigierten und durch die Intensität bei $\Theta = 90^{\circ}$ dividierten Werte werden in Funktion von $\cos^2\Theta$ aufgetragen und zur Bestimmung einer Anisotropie β_2 nach der Methode der kleinsten Quadrate durch eine Gerade angenähert:

$$W(\Theta) = \frac{w(\Theta)}{w(90^{\circ})} = 1 + \beta_2 \cos^2 \Theta$$

$$\beta_2 = \frac{\sum_{K} [W(\Theta_K) - 1] \cos^2 \Theta_K}{K} = \frac{\sum_{K} [W(\Theta_K) - 1] \cos^2 \Theta_K}{K}$$
(57)

$$\beta_2 = \frac{\kappa}{\sum\limits_K \cos^4 \Theta_K} = \frac{\kappa}{2,75} . \tag{58}$$

Bei M1 + E2-Übergängen wird das Mischungsverhältnis δ^2 auf folgende Weise bestimmt: Für viele Winkelverteilungen ist $B_4 \ll B_2$ (siehe Gl. (16)); der Korrelationskoeffizient $A_2^{(2)}$ kann dann leicht berechnet und mit dem theoretischen Ausdruck verglichen werden (vgl. Gl. (16), (17), (21) und (22)):

$$A_2^{(2)} = \frac{a\,\delta^2 + b\,\delta + c}{1 + \delta^2} = (a - c) \ e \pm b \ \sqrt{e(1 - e)} + c \simeq \frac{2\,\beta_2}{(3 + \beta_2)\,a_2^{(2)}}.$$
 (59)

Man erkennt leicht, dass über dem E2-Anteil e aufgetragen $A_2^{(2)}$ eine schiefliegende Ellipse darstellt, die die Senkrechten e = 0 (reiner M1) und e = 1 (reiner E2) in den Punkten $A_2^{(2)} = c$ bzw. $A_2^{(2)} = a$ berührt. Für eine gemessene Anisotropie β_2 lassen sich jeweils zwei Werte für die E2-Beimischung ablesen, wobei allerdings der eine Wert sich aus Messungen von Konversionselektronen oder des Verzweigungsverhältnisses ausschliessen lässt.

Für die Genauigkeit der einzelnen Messpunkte in den Winkelverteilungen kommen folgende Fehlerquellen in Betracht:

1. Statistischer Fehler: Für das 1. Rotationsniveau ist der statistische Fehler wegen der grossen Impulszahl gering; meistens beträgt er aber für die Übergänge aus dem 2. Rotationsniveau 1-1.5%.

2. Absorptionsfehler: Bei Gammaenergien unter 100 keV beträgt die Variation der Absorptionskorrektur zwischen 45 und 0 bzw. 90° höchstens 10%, so dass man den Fehler auf 1% abschätzen kann.

3. Untergrundsfehler: Der abzuziehende Untergrund kann bei Übergängen aus dem 2. Rotationsniveau bis zu 50% der registrierten Impulszahl betragen. Die gemessenen Winkelverteilungen lassen jedoch erkennen, dass der Abzug eines angepassten Untergrundes doch keine so grossen Fehler ergibt, wie man erwarten könnte.

Auf Grund dieser Abschätzungen ist für die Messpunkte der absolute Fehler ± 2 oder $\pm 3\%$. Da zur Bestimmung der Anisotropien mehrere Messpunkte benützt werden, sind diese mit einem kleineren absoluten Fehler von ± 1 oder $\pm 2\%$ behaftet.

III. Messergebnisse

Die Messergebnisse für die untersuchten Kerne werden im 1. Abschnitt anhand der wiedergegebenen Gammaspektren und Winkelverteilungsmessungen diskutiert. Die Niveauschema mit den Anregungsenergien und Spinzuordnungen und mit den relativen Häufigkeiten und Multipolordnungen der Gammaübergänge sind bei den Gammaspektren mit eingezeichnet (Legende siehe Fig. 7). Mutmassliche Angaben sind in runde Klammern gesetzt und aus anderen Arbeiten entnommene Angaben durch kleine Buchstaben vermerkt. Im 2. Abschnitt werden die Messresultate in der Tabelle XII und den Figuren 24 und 25 zusammengefasst und zur Berechnung der Lebensdauern, elektrischen Quadrupolmomente, Deformationsparameter, Trägheitsmomente und gyromagnetischen Faktoren verwendet.

III.1. Diskussion der Messergebnisse

Au¹⁹⁷

Coulomb-Anregungs experimente an Gold wurden vorwiegend mit Protonen gemacht¹¹)¹²)¹³)¹⁴)¹⁵), ebenso Winkelverteilungs messungen für die 280- und 550-keV-Linien¹¹)¹⁶)¹⁷). Wir haben die Winkelverteilungsmessungen im Hinblick auf die von ALDER et al.¹) neu berechneten Koeffizienten $a_k^{(2)}(\nu,\xi)$ zur Ermittlung des Mischungsverhältnisses für den 280-keV-Übergang wiederholt.

Nach dem von BERNSTEIN und LEWIS¹³) angegebenen Niveauschema gehören das 280- und 550-keV-Niveau einem anomalen Rotationsspektrum an, während die Niveaus bei 77 und 268 keV wahrscheinlich

	Rotationsspektrum bei elektris	scher Anreg	ung von <i>u-g</i> -Kernen
	Elektrische Anregung.	$\alpha_{1, 2, 3}$	totale Konversionskoeff.
<u></u>	Gamma-Übergänge.	$B_{1,2}(E2)_{ex}$	Anregungswahrscheinlichkeit.
	Konversionsübergänge.	I	Spin im Grundzustand.
$\Delta E_{1, 2}$	Anregungsenergien.	z	Protonenzahl.
$E_{\gamma 1, 2, 3}$	Gammaenergien.	N	Neutronenzahl.
<i>†</i> _{1, 2, 3}	Gammaintensitäten.	\mathcal{A}	Nukleonenzahl.

als Einteilchenzustände zu interpretieren sind. Die beiden Kaskadenübergänge von 270 und 280 keV im Rotationsspektrum lassen sich nicht trennen; dies muss bei der Berechnung der Anregungswahrscheinlichkeit $B_1(E2)_{ex}$ berücksichtigt werden. Das Verzweigungsverhältnis des 550keV-Niveaus wurde aus Koinzidenzmessungen*) zu $\lambda_2 = 19$ bestimmt.

*) H. GUHL und B. LOBKOWICZ (unveröffentlicht).

Beobachtet wurde das Intensitätsverhältnis:

$$\mu = \frac{f_1 + f_3}{f_2} = \begin{cases} 2,67 \text{ für dicke Target} \\ 1,5 \text{ für dünne Target} \end{cases}$$

woraus sich für das ε_1 -Verhältnis ergibt:

Fig. 8

Gammaspektrum bei Coulomb-Anregung von Au¹⁹⁷ ^a Niveaus aus Bernstein and Lewis, Phys. Rev. 200, 1345 (1955).

- Tgt Target, Dicke in mg/cm².
- D Protonenstrahl-Durchmesser (Fig. 6).
- *I_m* Mittlerer Targetstrom.
- Q Registrierte Protonenladung.
- R Abstand Target–NaI-Kristall (Fig. 6).
- 2*v* Bleikanalöffnung vor NaI-Kristall.
- Θ Beobachtungswinkel (Fig. 5).
- Abs Absorber zwischen Target und NaI-Kristall.

Für den 190-keV-Übergang ergeben sich sowohl aus dem gemessenen K/L-Verhältnis als auch aus dem α_K -Wert¹⁸) mit den neueren K-Konversionskoeffizienten von SLIV¹⁰) eine E2-Beimischung von 11%, was für die Angabe des totalen Konversionskoeffizienten und die Berechnung der Anregungswahrscheinlichkeit benötigt wird.

Die Messungen, die wir für Gold und Tantal an dünnen Targets ausgeführt haben, ergeben etwa 20-40% grössere Anregungswahrscheinlichkeiten als bei dicken Targets. Diese Diskrepanz könnte von der Unsicherheit des Bremsvermögens $(dE/d\varrho x)_0$ oder der Korrektur $C\delta E_{\lambda}/E_0$ für dicke Target herrühren. Ein Vergleich mit den von anderen Arbeiten entnommenen Messwerten erfolgt in Tabelle IV.

Tabelle IV

Vergleich der Anregungswahrscheinlichkeiten verschiedener Arbeiten bei Coulomb-Anregung von Au¹⁹⁷ (ΔE = Energie des angeregten (Rotations-)Niveaus)

]	⊿E keV	Vorliegen dicke T.	de Arbeit dünne T.	Соок 11)	Stelson ¹²)	Bern- stein ¹³)	Elbek ¹⁵)
$B_{2}'(E2)_{ex}$ $B_{1}(E2)_{ex}$ $B_{2}(E2)_{ex}$ B_{2}/B_{1}	268 280 550	0,20 0,23 1,15	0,055 0,24 0,32 1 3	0,18 0,315 1 75	0,07 0,326 0,423 1,3	0,13 0,334	0,066 0,30 0,42 1.4

Aus den bisherigen Messergebnissen findet man folgende Mittelwerte:

Gamma-Winkelverteilungen bei Coulomb-Anregung von Au¹⁹⁷

Die Anisotropie von -14% für die 280-keV-Linie stimmt gut mit einer Messung von GOLDBURG und WILLIAMSON¹⁶) überein und ergibt ein Mischungsverhältnis von $\delta_1^2 = 0,11 \pm 0,06$. Dagegen haben McGOWAN und STELSON¹⁷) -17,5% Anisotropie gemessen, was mit dem gleichen Winkelverteilungskoeffizienten $a_2^{(2)} = 0,60$ wie oben ein Mischungsverhältnis von $\delta_1^2 = 0,20$ gibt. Die bei nur 3 MeV Protonenenergie gemachte Messung von Cook et al.¹¹) führt mit einem neueren Winkelverteilungskoeffizienten auf ein imaginäres Mischungsverhältnis. Eine Zusammenstellung der Mischungsverhältnisse, die sich aus der Messung der Konversionselektronen¹³)¹⁸) und einer $\gamma - \gamma$ -Winkelkorrelation²⁰) ermitteln lassen, ist in Tabelle V. McGowan und STELSON¹⁹) geben eine Evidenz für die Reduktion des *M*1-*K*-Konversionskoeffizienten der 280-keV-Linie um 21%. Nach neueren Rechnungen von SLIV¹⁰) müsste diese Reduktion sogar 27% betragen, wodurch das Mischungsverhältnis noch kleiner ausfällt. Damit nähern sich diese aus der Messung der Konversionselektronen erhaltenen Mischungsverhältnisse dem Ergebnis unserer Winkelverteilungsmessung, das übrigens sehr gut durch das $\gamma - \gamma$ -Winkelkorrelationsexperiment²⁰) bestätigt wird.

		Bernstein ¹³)	Joly e	t al. ¹⁸)	KANE ²⁰)
		K/L	K/L	α_K	$\gamma - \gamma$ -Korrelat.
Messung		5,5	5,3	$0,29\pm0,03$	
Theorie	M1	6,1	5,8	0,333a	
THEOLIE	E2	2,0	1,5	0,074ª	
$\delta_1^2 E$	2/M1	0,33	0,15	$0,20\pm0,13$	0,12 ± 0,03

Tabelle VMischungsverhältnisse für den 280-keV-Übergang im Au¹⁹⁷a Interpolierte Werte nach SLIV¹⁰)

Für den reinen E2-Übergang von 550 keV ergibt die Theorie 34% Anisotropie, wie auch von McGowan und STELSON¹⁷) gemessen wurde. Dagegen haben wir 36% gemessen, während GOLDBURG und WILLIAM-SON¹⁶) mit 25% bei ebenfalls 4 MeV und COOK et al.¹¹) bei 4,4 MeV Protonenenergie mit 21% tiefere Anisotropien bekommen haben.

Die E2-Beimischung für den nicht isoliert beobachtbaren 270-keV-Übergang wurde einerseits mit Hilfe der Beziehung (39) und andererseits unter Annahme des theoretischen Verhältnisses $B_3(M1)/B_1(M1)$ von 1,35 mit Hilfe der Beziehung (36) aus $B_3(E2)_d$ und $B_1(M1)_d$ berechnet. Innerhalb der Fehlergrenzen liefern beide Methoden dasselbe Ergebnis (siehe Tab. XII); dagegen ergibt das Verzweigungsverhältnis $\lambda_2 = 19$ mit der Beziehung (38) einen viel zu grossen Wert bei dem anomalen Verhältnis der Gammaenergien und einen zu kleinen, aber vernünftigeren Wert für das theoretische Energieverhältnis.

Ta¹⁸¹

Das Tantal ist schon von sehr vielen Experimentatoren untersucht worden, und das durch elektrische Anregung erhältliche Rotationsspektrum ist gut bekannt¹²)²¹)²²)²³)²⁴)²⁵). Ebenso sind für die Gammalinien

Gammaspektrum bei Coulomb-Anregung von Ta¹⁸¹ ^a Gammaenergien aus Heydenburg and Temmer, Phys. Rev. 104, 981 (1956)

Logarithmisch aufgetragenes Gammaspektrum bei Coulomb-Anregung von Ta¹⁸¹ (siehe Abschnitt II. 4.)

von 136, 167 und 303 keV Winkelverteilungsmessungen gemacht worden¹⁶)¹⁷)²⁶).

Am Tantal lässt sich wohl am besten ein Vergleich der Messergebnisse verschiedener Experimentatoren und eine Beurteilung der absoluten Messgenauigkeit vornehmen. In Tabelle VI sind sowohl unsere Messungen

	Vorl. Arbeit dicke T. dünneT.		STEL- SON ¹²)	Gold- Ring ²¹)	DAVIS ²²)	Hey- denb. . ²³)	W0- LICKI ²⁴)	Bern- stein ²⁵)			
$ \begin{array}{c} \varepsilon_1 B_1(E2)_{ex} \\ \varepsilon_2 B_2(E2)_{ex} \\ \lambda_2 \\ \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ B_1(E2)_{ex} \\ B_2(E2)_{ex} \\ B_2/B_1 \end{array} $	$\begin{array}{c} 0,47\\ 0,069\\ 0,82^{b}\\ 1,86\\ 0,08\\ 1,02\\ 1,24\\ 0,28\\ 0,23\\ \end{array}$	0,63 0,086 0,83 ^b 1,86 0,08 1,02 1,65 0,34 0,20	0,83ª 0,13 0,6 2,09 0,08 1,08 2,62 0,58 0,22	0,574 ^c 0,22 ^d	$\begin{array}{c} 0,59^{a} \\ 0,12 \\ 0,66 \\ 2,09 \\ 0,079 \\ 1,08 \\ 1,83 \\ 0,50 \\ 0,27 \end{array}$	$\begin{array}{c} 0,68^{a} \\ 0,054 \\ 0,36 \\ 2,1 \\ 0 \\ 1,1 \\ 2,10 \\ 0,37 \\ 0,18 \end{array}$	$\begin{array}{c} 0,60^{a} \\ 0,114 \\ 0,69 \\ 1,93 \\ 0,083 \\ 1,11 \\ 1,74 \\ 0,47 \\ 0,27 \end{array}$	1,7 0,96 1,9 ^d 0,56 ^d 0,295			
^a berechne ^b Huus et	a berechnet unter der Annahme $\varepsilon_1 = 1/(1 + \alpha_1)$; b Huus et al. ¹⁴) geben ebenfalls $\lambda_2 = 0.8$ an;										

Tabelle VI

Vergleich verschiedener Arbeiten über Coulomb-Anregung von Ta¹⁸¹ (Die εB -Werte sind aus den B(E2) errechnet)

 $^{\rm c}$ aus Koinzidenzmessungen zwischen der 136 und 167 keV-Linie ermittelt;

^d aus einer Messung der Konversionselektronen bestimmt.

einer dicken als auch einer dünnen Target von 14,4 mg/cm² zusammengestellt und mit anderen Arbeiten verglichen. Die um 20–40% höheren Anregungswahrscheinlichkeiten $\varepsilon B(E2)_{ex}$ der dünnen Target sind innerhalb der Fehlergrenzen mit den Ergebnissen anderer Arbeiten im Einklang. Für die Angabe der reduzierten Anregungswahrscheinlichkeiten $B(E2)_{ex}$ sind die totalen Konversionskoeffizienten und das Verzweigungsverhältnis λ_2 erforderlich; während die Konversionskoeffizienten sicher innerhalb $\pm 10\%$ übereinstimmen, haftet dem Verzweigungsverhältnis $\lambda_2 = 0.6 \pm 0.2$ eine Unsicherheit von mehr als 30% an, die von der Unsicherheit in der Wahl des abzuziehenden Untergrundes herrührt. Damit ist auch die Genauigkeit für das Verhältnis der Anregungswahrscheinlichkeiten beschränkt, für das aus den verschiedenen Messungen sich der folgende wahrscheinlichste Wert angeben lässt:

$$B_2/B_1 = 0,24 \pm 0,04.$$

Für die Anregungswahrscheinlichkeiten ergibt die Mittelwertbildung:

 $B_1(E2)_{ex} = 1,85 \pm 0,20$ $B_2(E2)_{ex} = 0,44 \pm 0,10$.

Die vorliegenden Winkelverteilungsmessungen für die 136- und 303keV-Linien stimmen mit den früheren Ergebnissen überein¹⁶)¹⁷)²⁶). Dagegen ist für die 167-keV-Linie die Anisotropie von + 14% (Mischungsverhältnis $\delta_3^2 = 0.14 \pm 0.04$) gegenüber einer Winkelverteilung $W(\Theta) =$ $1 + 0.10 \cos^2 \Theta + 0.09 \cos^4 \Theta \approx 1 + 0.16 \cos^2 \Theta$ bei McGowan und STELson¹⁷) zu vergleichen, die mit einem Winkelverteilungskoeffizienten von

Fig. 12.

Gamma-Winkelverteilungen bei Coulomb-Auregung von Ta¹⁸¹

 $a_2^{(2)} = 0,53$ ein Mischungsverhältnis von $\delta_3^2 = 0,26$ bestimmt haben. Verwendet man jedoch einen neueren Wert von $a_2^{(2)} = 0,615$ nach ALDER et al.¹), so findet man ein Mischungsverhältnis von $\delta_3^2 = 0,19$. In Tabelle VII sind für den 136-keV-Übergang einige Mischungsverhältnisse zusammengestellt, die sich aus der Messung von Konversionselektronen¹³)¹⁴)¹⁹)²⁷) und einer $\gamma - \gamma$ -Korrelationsmessung²⁸) zwischen dem 482keV-(5/2⁺)-, dem 136-keV-(9/2⁺)-Niveau und dem Grundzustand des

Tabelle VII

Mischungsverhältnisse aus Messungen der Konversionselektronen und γ - γ -Korrelation für 136-keV-Linie im Ta¹⁸¹

	Bernstein K/L^{13})	HUUS K/L^{14})	McGowan $\alpha_K^{19})$	BOEHM α_K^{27})	Debrunner γ–γ-Korr. ²⁸)
$\begin{array}{c} \text{Messung} \\ \text{Theorie} & \begin{array}{c} M1 \\ E2 \end{array} \end{array}$	6,3 7,1 1,0	6,5	$ 1,05 \pm 0,15 \\ 1,84 \\ 0,47 $	1,2 1,35 0,47	
$\delta_1^2 = E2/M1$	0,075	0,14	$0,25 \pm 0,10$	0,11	0,20

H.P.A.

Ta¹⁸¹ bestimmen liessen. Die meisten Messungen sind innerhalb der Fehlergrenzen in Übereinstimmung und bestätigen das aus der Winkelverteilung bestimmte Mischungsverhältnis δ_3^2 , das auch mit einem mittleren Verzweigungsverhältnis von $\lambda_2 = 0,6$ über Beziehung (38) im Einklang steht.

Lu¹⁷⁵

Während Coulomb-Anregungsexperimente an Lu¹⁷⁵ schon von einigen Experimentatoren durchgeführt wurden¹⁴)²¹)²³)²⁵), lagen bisher noch keine Winkelverteilungsmessungen vor.

Tabelle VIII

Vergleich	verschiedener	Arbeiten	über	Coulomb-	Anreg	gung	von	Lu ¹⁷⁵	(Mischur	ngs-
verh	iältnisse aus V	erzweigun	ngsver	hältnissen	$\lambda_2^*)$	und	der	Messur	ng von	
		Konv	ersion	selektrone	en**)					

	Vorlieg. Arbeit	Huus ¹⁴)	Gold- ring ²¹)	Heyden- Burg ²³)	Bern- stein ²⁵)	Натсн ²⁹)
$\lambda_2 \\ B_1(E2)_{ex}$	0,95 2,4	3,2	0,90	0,50 2,5	2,86	1,7
$B_2(E2)_{ex}$ B_2/B_1 $\delta_2^2(\lambda_2) *)$	0,45 0,19 0.30		0,23 0.27	0,78 0,31 0.135	0,75 0,26	0.7
$ \begin{array}{c} \delta_{1}^{2}(e_{K})^{**}) \\ \delta_{3}^{2}(e_{K})^{**}) \end{array} $		0,05			0,11 0,08	0,25

Die Anregungswahrscheinlichkeiten $\varepsilon B(E2)_{ex}$ vorliegender Arbeit stehen im Einklang mit den Messungen von HEYDENBURG und TEMMER²³), welche allerdings für das Verzweigungsverhältnis λ_2 einen bedeutend kleineren Wert angeben, weshalb sie ein ziemlich grosses Verhältnis B_2/B_1 bekommen haben (siehe Tab. VIII).

Aus der Tabelle VIII ergeben sich folgende Mittelwerte für die Anregungswahrscheinlichkeiten und deren Verhältnis:

$$B_1(E2)_{ex} = 2.8 \pm 0.3$$

$$B_2(E2)_{ex} = 0.7 \pm 0.2$$

$$B_2/B_1 = 0.25 \pm 0.04.$$

Die Anisotropie des 140-keV-Überganges von + 17% ergibt für die beiden Kaskadenübergänge ein Mischungsverhältnis von $\delta_3^2 = \delta_1^2 = 0.22$, das durch eine neuere Messung der Konversionselektronen²⁹) bestätigt wird und einigermassen mit dem Verzweigungsverhältnis zusammenpasst.

Mit einem magnetischen Moment im Grundzustand von $\mu_0 = +2,9^{30}$) ergäbe sich in ungefährer Übereinstimmung mit Werten von HEYDEN-BURG und TEMMER²³) für die gyromagnetischen Faktoren $g_R = 0,53$ und $g_K = 0,92$. Verwendet man dagegen für das magnetische Moment das Ergebnis $\mu_0 = +2,0$ einer neueren Messung von STEUDEL³¹), so erhält man die Werte $g_K = 0,30$ und $g_K = 0,66$, die besser in die Folge der *u*-g-Kerne Ta¹⁸¹, Lu¹⁷⁵, Ho¹⁶⁵ mit dem Spin $I_0 = 7/2$ passen (siehe Tab. XII).

Tm^{169}

Coulomb-Anregungsexperimente an Thulium sind von HUUS et al.¹⁴) und HEYDENBURG und TEMMER³²) gemacht worden, und Winkelverteilungsmessungen liegen keine vor.

Da das Tm¹⁶⁹ im Grundzustand den Spin $I_0 = \frac{1}{2}$ besitzt, zeigt sein Rotationsspektrum eine starke Anomalie²⁹). Die beiden Übergänge aus dem 2. Rotationsniveau von 110 und 118 keV lassen sich nicht getrennt beobachten. Praktisch wird nur der Kaskadenübergang von 110 keV registriert, weil das Verzweigungsverhältnis nur $\lambda_2 = 0,12$ beträgt²⁹). Eine Messung ohne und mit einem charakteristischen Uranoxydabsorber

Gammaspektrum und Gamma-Winkelverteilung bei Coulomb-Anregung von Tm¹⁶⁹ ^a 1. Rotationsniveau und Verzweigungsverhältnis aus HATCH et al., Phys. Rev. 140, 745 (1956).

von 2 mm Dicke (K-Absorptionskante bei 116 keV, Absorptionsverhältnis für 118,2 und 109,8 keV beträgt 10) ergab keine wesentlich verschiedenen Gammaspektren, wodurch das angegebene Verzweigungsverhältnis auch bekräftigt wird. Vorliegende Anregungswahrscheinlichkeit für das 2. Rotationsniveau $B_2(E)_{ex} = 3,8$ stimmt mit einer Messung der Konversionselektronen von Huus et al.¹⁴) überein.

Die Anisotropie von $-10 \pm 1\%$ der 110-keV-Linie ergibt einen E2-Mischungsanteil von nur $2 \pm 0.5\%$, was sowohl mit dem Verzweigungsverhältnis als auch mit einer von HATCH et al.²⁹) angegebenen oberen Grenze von 3% gut verträglich ist. Aus der M1-Übergangswahrscheinlichkeit $B_3(M1)_d = 0,15$ und unter der Annahme des theoretischen Wertes für $B_3(M1)_d/B_1$ $(M1)_d = 1,20$ erhält man einen sehr gut mit dem Modell einer homogen geladenen Kernmaterie übereinstimmenden gyromagnetischen Faktor $g_R = 0,42$, wenn für das magnetische Moment des Grundzustandes $\mu_0 = -0,21$ eine Messung von LINDENBERGER³³) benützt wird.

Ho^{165}

Das Holmium ist schon von verschiedenen Experimentatoren untersucht worden¹⁴)²¹)²³)²⁵), jedoch ohne Zuhilfenahme von Winkelverteilungsmessungen.

Zu den Kernen Ta¹⁸¹ und Lu¹⁷⁵ mit dem Spin $I_0 = 7/2$ kommt in der Reihe stark deformierter Kerne das Ho¹⁶⁵ hinzu, dem man negative Parität zuschreibt, während die beiden ersteren positive Parität haben.

Alle drei Kerne haben ein ausgesprochenes Rotationsspektrum. Das Ho¹⁶⁵ besitzt im Gegensatz zu Ta¹⁸¹ und Lu¹⁷⁵ ein ziemlich kleineres Verzweigungsverhältnis für den 2. Rotationszustand und demnach eine E2-Beimischung von wenigen Prozenten für die beiden Kaskadenübergänge. Dies macht die Beobachtung des schwachen E2-Überganges zum Grundzustand schwierig, indem der von der Bremsstrahlung und den

Bleiblenden herrührende Untergrund die Gammalinie stark überwiegt (siehe Fig. 16). Daran scheiterte auch eine Messung der Winkelverteilung dieser Linie. Die Spinzuordnung 11/2⁻ für das 2. Rotationsniveau darf deshalb noch nicht als völlig gesichert betrachtet werden, obwohl sie höchst wahrscheinlich ist. Aus gleichen Gründen ist auch die Bestimmung der Anregungsenergie ungenau. Während die vorliegende und die

Gamma-Winkelverteilungen bei Coulomb-Anregung von Ho¹⁶⁵

Messung der Gammastrahlung von HEYDENBURG und TEMMER²³) 207 bzw. 206 keV ergab, bestimmen HUUS et al.¹⁴) und BERNSTEIN und LEWIS²⁵) durch Beobachtung der Konversionselektronen 212 bzw. 218 keV. Messungen mit dem Kristallspektrometer ergaben für die Anregungsenergie des 1. Rotationsniveaus 94,8 keV³⁴), wofür nach der Theorie das 2. Rotationsniveau eine Anregungsenergie von 211 keV bekommen müsste, was gerade dem Mittelwert der vier genannten Messungen entspricht.

Та	be	lle	IX

Vergleich verschiedener Arbeiten über Coulomb-Anregung von Ho¹⁶⁵

	Vorlieg. Arbeit	Huus ¹⁴)	Goldring ²¹)	Heydenburg ²³)	Bernstein ²⁵)
$ \begin{array}{c} \lambda_{2} \\ B_{1}(E2)_{ex} \\ B_{2}(E2)_{ex} \\ B_{2}/B_{1} \\ \delta_{3}^{2}(\lambda_{2}) \\ \delta_{1}^{2}(e_{K}) \end{array} $	0,21 2,8 0,7 0,25 0,05	2,5 0,76 0,3	0,14 0,20 0,035	0,16 2,5 0,52 0,21 0,039	2,79 0,71 0,25 0,044

Aus der Winkelverteilung der 113-keV-Linie findet man ein Mischungsverhältnis von $\delta_3^2 = 0.04 \pm 0.02$, was sowohl mit dem Verzweigungsverhältnis als auch mit einer Messung der Konversionselektronen von BERNSTEIN und LEWIS²⁵) zusammenstimmt. In Tabelle IX sind die Resultate verschiedener Arbeiten verglichen, woraus sich folgende Mittelwerte ausrechnen lassen:

$$B_1(E2)_{ex} = 2,65 \pm 0,15$$

 $B_2(E2)_{ex} = 0,66 \pm 0,1$ $B_2/B_1 = 0,25 \pm 0,04$

Die drei Kerne Ta¹⁸¹, Lu¹⁷⁵ und Ho¹⁶⁵ zeigen einen leicht zunehmenden gyromagnetischen Faktor von $\overline{g}_R = 0,29$, 0,30 und 0,33, was auf ihre gegenseitige Verwandtschaft hindeutet.

Tb159

Das Terbium ist bisher auch ohne Zuhilfenahme von Winkelverteilungsmessungen untersucht worden¹⁴)²¹)²³).

Der 59-keV-Übergang vom 1. Rotationsniveau fällt in die rechte Flanke der viel stärkeren Röntgenlinie und kann deshalb im Gammaspektrum (Fig. 18) nicht beobachtet werden. Da der Spin des Tb¹⁵⁹

Gammaspektrum bei Coulomb-Anregung von Tb¹⁵⁹ a Anregungsenergie aus Huus et al., Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 30, Nr. 17.

 $I_0 = 3/2$ ist, fällt der Kaskadenübergang von 79 keV günstiger als bei den Kernen mit dem Spin $I_0 = 7/2$ und gestattet eine genauere Bestimmung des Verzweigungsverhältnisses $\lambda_2 = 0,16$. HEYDENBURG und TEMMER²³) haben dafür $\lambda_2 = 0,13$ angegeben und ermitteln für das Tb¹⁵⁹

*

das grösste elektrische Quadrupolmoment in der Reihe dieser deformierten Kerne, in Übereinstimmung mit vorliegender Arbeit.

Die Winkelverteilungsmessungen bestätigen für die 138-keV-Linie mit 11% Anisotropie die Theorie und die Spinzuordnung 7/2⁺ für das 2. Rotationsniveau und ergeben ein mit dem Verzweigungsverhältnis und dem K/L-Verhältnis¹⁴) zusammenpassendes Mischungsverhältnis für den 79-keV-Übergang.

Für die Bestimmung der gyromagnetischen Faktoren muss das Mischungsverhältnis bekannt sein. Bei so kleinen Mischungsverhältnissen,

Gamma-Winkelverteilungen bei Coulomb-Anregung von Tb¹⁵⁵

die aus einer nahezu isotropen Winkelverteilung bestimmt werden müssen, wie dies bei der 79-keV-Linie der Fall ist, ist die Genauigkeit sehr gering. Aus diesem Grund geben HEYDENBURG und TEMMER²³) mit $\delta_3^2 = 0,013$ für den gyromagnetischen Faktor $g_R = 0,01$ ($\delta > 0$) an, während wir mit $\delta_3^2 = 0,02$ auf den Wert $g_R = 0,25$ kommen, der zwar vernünftiger erscheint, aber doch sehr unsicher bleiben muss.

Eu^{151, 153}

Die mit angereicherten Isotopen gemachten, neueren Messungen²³)³⁵) haben gezeigt, dass sowohl die 195-keV-Linie als auch die 112-keV-Linie des Eu¹⁵³, das noch ein ausgesprochenes Rotationsspektrum besitzt, mit einem 193-keV- bzw. 113-keV-Übergang des Eu¹⁵¹ (siehe Niveauschema bei CLASS und MEYER³⁵)) für das geringe Auflösungsvermögen eines Szintillationszählers zusammenfallen.

Da uns noch keine angereicherten Isotopen zur Verfügung standen, haben wir, wie andere Autoren¹⁴)²¹)²⁵), eine Messung mit natürlichem Europiumoxyd durchgeführt, was natürlich deren Bedeutung einschränkt. Um aus den $\varepsilon B(E2)_{ex}$ -Werten für die 112- und 195-keV-Linien die Anregungswahrscheinlichkeit für das 2. Rotationsniveau des Eu¹⁵³ zu bestimmen, wurde das von HEYDENBURG und TEMMER²³) angegebene Ver-

468

zweigungsverhältnis $\lambda_2 = 1,62$ benützt. Hierbei wurde allerdings der schwache Beitrag des 113-keV-Übergangs im Eu¹⁵¹ vernachlässigt.

Für das Eu¹⁵¹ können wir nur eine Anregungswahrscheinlichkeit des relativ stark angeregten 2. Niveaus (bzw. 3. Niveaus) von 306 keV angeben. Der $\varepsilon_2 B_2(E2)_{ex}$ -Wert ist mehr als doppelt so gross als derjenige von HEYDENBURG und TEMMER²³). Für die Berechnung der Anregungswahrscheinlichkeit wurde das Verzweigungsverhältnis letzterer Arbeit

Gammaspektrum bei Coulomb-Anregung von Eu¹⁵¹ und Eu¹⁵³ a Niveauschema aus CLASS und MEYER, Nuclear Physics 3, 656 (1957). b Verzweigungsverhältnisse aus HEYDENBURG und TEMMER, Phys. Rev. 104, 981 (1956).

entnommen und für die 113-keV-Linie der totale *M*1-Konversionskoeffizient ($\alpha_3 = 1,4$) verwendet. Wenn man für das 306-keV-Niveau die aus der nahezu isotropen Winkelverteilung nahegelegte Spinzuordnung 7/2 annimmt und die Gültigkeit der Beziehung (42) für das elektrische Quadrupolmoment voraussetzt, so ergibt sich mit $Q_0 = 3,8$ ein mit dem gemessenen Verhältnis der Quadrupolmomente von Eu¹⁵³ und Eu¹⁵¹ von 2,1³⁰) einigermassen zusammenstimmendes Ergebnis. Demgegenüber würde ein Spin von 9/2 einen stark anisotropen *E*2-Übergang fordern und ein zu grosses Quadrupolmoment von 6,5 ergeben.

Eine Messung der Winkelverteilung der 83-keV-Linie scheiterte, weil die von den Bleiblenden herrührende Röntgenstrahlung einen unkontrollierbaren Untergrund besonders für kleine Winkel $\Theta \leq 30^{\circ}$ erzeugt. Die Anisotropie dürfte nicht grösser als etwa 2% sein, so dass ohnehin eine Bestimmung des Mischungsverhältnisses wie bei den Kernen mit dem Spin $I_0 = 7/2$ ausgeschlossen wäre. Für den 195-keV-E2-Übergang wurde die theoretisch vorausgesagte Anisotropie gemessen, obwohl auch der 193-keV-Übergang des Eu¹⁵¹ mitbeobachtet wird. Aus den Gammaspektren von HEYDENBURG und TEMMER²³) ist die Intensität des letzteren allerdings höchstens $\frac{1}{3}$ des ersteren Übergangs, so dass sich erst eine

Gamma-Winkelverteilungen bei Coulomb-Anregung von Eu^{151, 153}

Anisotropie von etwa 10% der 193-keV-Linie störend bemerkbar machen würde. Ähnliche Verhältnisse bestehen für den 112-keV-Kaskadenübergang im Eu¹⁵³, für den die Anisotropie von 22 \pm 2% ein Mischungsverhältnis von $\delta_3^2 = 0.82 \pm 0.4$ ergibt.

Tabelle XVergleich verschiedener Arbeiten über Coulomb-Anregung von Eu¹⁵³a berechnet mit einem Verzweigungsverhältnis von $\lambda_2 = 1,62.$

	Vorlieg. Arbeit	Huus ¹⁴)	Goldring ²¹)	Heydenburg ²³)	Bernstein ²⁶)	Class ³⁵)
λ_{2} $B_{1}(E2)_{ex}$ $B_{2}(E2)_{ex}$ B_{2}/B_{1} $\delta_{3}^{2}(\lambda_{2})$ $\delta_{1}^{2}(e_{K})$ $\delta_{2}^{2}(e_{V})$	2,3 (0,6) ^a (0,26)	$ \begin{array}{c} 1,6 \\ \sim 0,6 \\ \sim 0,37 \\ \sim 2,5 \end{array} $	1,3 0,25 0,26	1,62 2,8 0,83 0,30 0,38	2,77 0,90 0,32 0,48 0.08	1,44 (2,1) 0,53 (0,25) 0,32 (3,3) 2

In Tabelle X sind diese Ergebnisse mit denjenigen anderer Arbeiten verglichen. Für die Anregungswahrscheinlichkeiten und deren Verhältnis lassen sich folgende Mittelwerte ausrechnen:

$$B_1(E2)_{ex} = 2.3 \pm 0.5$$

 $B_2(E2)_{ex} = 0.7 \pm 0.2$ $B_2/B_1 = 0.30 \pm 0.4$

Ein Vergleich der in verschiedenen Arbeiten angegebenen Mischungsverhältnisse zeigt, dass dieselben noch als recht unsicher hingenommen werden müssen. Winkelverteilungsmessungen mit angereicherten Isotopen sollten noch durchgeführt werden. Immerhin kommen die gyromagnetischen Faktoren mit den aus vorliegenden Winkelverteilungen bestimmten Mischungsverhältnissen ganz vernünftig heraus (siehe Tabelle XII).

Gammaspektrum bei Coulomb-Anregung von Ag^{107, 109} ^a Niveau aus HUUS und LUNDEN, Phil. Mag. 45, 966 (1954). ^b Verzweigungsverhältnis aus STELSON und McGOWAN, Phys. Rev. 99, 112 (1955).

Ag107, 109

Das Silber ist schon verschiedentlich durch Coulomb-Anregung untersucht worden, und zwar sowohl mit natürlichem Silber¹²)¹⁴)¹⁷)³⁶)³⁷) als auch mit angereicherten Silberisotopen³⁸)³⁹)⁴⁰). Auch sind Winkelverteilungsmessungen schon durchgeführt worden¹⁷).

Die im natürlichen Silber fast gleich häufigen Isotopen Ag¹⁰⁷ und Ag¹⁰⁹ haben beide im Grundzustand den Spin $I_0 = \frac{1}{2}$ und fast gleiche, anomale Rotationsspektren³⁸)³⁹)⁴⁰) mit einem Entkopplungsparameter

H. P. A.

von a = +0,68. Wir haben im natürlichen Silber für die Anregungsenergien 320 und 420 keV bestimmt. Der sehr schwache Kaskadenübergang von 100 keV ist im Gammaspektrum (Fig. 22) der Comptonverteilung der beiden höheren Gammalinien überlagert und deshalb nicht ausgewertet worden. Für das Verzweigungsverhältnis wurde ein von McGowAN und STELSON¹²) angegebener Wert von $\lambda_2 = 14$ benützt, mit welchem sich fast die gleichen Anregungswahrscheinlichkeiten ergeben wie bei diesen Autoren. Sie sind unter der Annahme berechnet, dass die beiden Silberisotopen durch einen Kern vom Atomgewicht 108 ersetzt werden dürfen. Die mit angereicherten Isotopen gemachten Messungen haben niedrigere Werte ergeben (siehe Tab. XI).

	Tabelle XI					
Vergleich	verschiedener	Arbeiten	über	Coulomb-Anregung	von	Ag

				2					
	Vorl.	Stel-	Huus		Heyde	NBURG	FAGG, WOLICK		
	Arbeit	SON^{12}	14)		38)			³⁹)	
	nat. Ag	nat. Ag	Ag ¹⁰⁷	Ag ¹⁰⁹	Ag ¹⁰⁷	Ag109	Ag ¹⁰⁷	Ag109	
$B_1(E2)_{ex}$	0,26	0,225	0,12	0,13	0,12	0,13	0,16	0,18	
$B_2(E2)_{ex}$	0,35	0,36			0,21	0,23	0,23	0,31	
B_2/B_1	1,35	1,6			1,75	1,75	1,45	1,7	
	1 3						22	12	

Gamma-Winkelverteilungen bei Coulomb-Anregung von Ag nat.

McGowan und STELSON¹⁷) haben für die 320-keV-Linie ein Mischungsverhältnis von $\delta_1^2 = 0.036$ bestimmt, während die vorliegende Winkelverteilung $\delta_1^2 = 0.02 \pm 0.005$ ergeben hat. Rechnet man in obiger Arbeit mit einem Winkelverteilungskoeffizienten von $a_2^{(2)} = 0,78$ für 2,5-MeV-Protonen (nach ALDER et al.¹)) statt mit 0,72, so bekommt man fast dasselbe Mischungsverhältnis wie aus unserer Messung. Es steht auch in Übereinstimmung mit Polarisationsmessungen von STELSON und McGowAN³⁷), die hier $\delta_1^2 = 0,03$ erhalten haben. Für den E2-Übergang von 420 keV ist die gemessene Anisotropie etwas kleiner als die theoretisch erwartete. Demgegenüber hatte die bei 2,5 MeV Protonenenergie gemessene Winkelverteilung von McGowAN und STELSON¹⁷) einen Winkelverteilungskoeffizienten von $a_2^{(2)} = 0,88$ ergeben, der mit dem theoretischen Wert von 0,87 gut übereinstimmt.

Zur Berechnung der gyromagnetischen Faktoren stehen nur das magnetische Moment des Grundzustandes $\mu_0 = -0.12^{30}$) und eine M1-Übergangswahrscheinlichkeit $B_1(M1)_d = 0.45$ zur Verfügung, was für einen Kern mit dem Spin $I_0 = \frac{1}{2}$ nicht ausreicht. Unter der Annahme des theoretischen gyromagnetischen Faktors $g_R = z/A = 0,43$ wird in Gl. (32) der Entkopplungsparameter $b_0 = 0,24$. Damit ergibt sich für die M1-Übergangswahrscheinlichkeit der 100-keV-Linie $B_3(M1)_d = 0.2$ und mit der E2-Übergangswahrscheinlichkeit $B_3(E2)_d = 0,033$ nach Gl. (36) ein Mischungsverhältnis von $\mathcal{E}_3^2 = 10^{-3}$. Wie schon Stelson und $McGowan^{12}$) erwähnt haben, handelt es sich um einen reinen M1-Übergang. Dieses Mischungsverhältnis kann man einerseits mit demjenigen vergleichen, das sich aus dem Verzweigungsverhältnis ergibt ($\delta_3^2 =$ $3 \cdot 10^{-3}$) und andererseits über Gl. (39) mit dem Mischungsverhältnis der 320-keV-Linie $\delta_1^2 = 0.02$ ($\delta_1^2/\delta_3^2 = 43$, woraus $\delta_3^2 = \frac{1}{2} \cdot 10^{-3}$). Da alle diese Mischungsverhältnisse von gleicher Grössenordnung sind, darf man die Annahme $g_R = z/A = 0,43$ bestehen lassen und dies als ein weiteres Argument für den von TEMMER und HEYDENBURG⁴⁰) behaupteten Rotationscharakter dieser beiden Niveaus der Silberisotopen ansehen.

III. 2. Zusammenfassung der Messergebnisse

In Tabelle XII sind die Messergebnisse zusammengestellt und zur Berechnung der für deformierte Kerne charakteristischen Grössen benützt worden. Da alle Angaben zur Verfügung stehen, lassen sich auch die wirklichen Lebensdauern τ der beobachteten Rotationsniveaus nach Gl. (29) und (30) berechnen. Die Lebensdauern der meisten Rotationsniveaus bewegen sich zwischen 10 und 100 $\mu\mu$ s. Einzig das Eu¹⁵³ besitzt zwei Rotationszustände mit wesentlich grösserer Lebensdauer, was sich durch die ungewöhnlich hohen E2-Beimischungen in den beiden Kaskadenübergängen äussert. Im Au¹⁹⁷ und Ag^{107, 109}, die relativ hohe Anregungsenergien haben, sind auch je eine kürzere Lebensdauer errechnet worden.

	<u> </u>		4	5	6	7	8	Q	10	11	12
Kern	i	Е.,	\hbar^2	$\varepsilon B(E2)$	λ	ά	$B(E2)_{am}$	B_{o}/B_{1}	$B(E2)_{a}$	0.	B
		-7	23	$e^2 \cdot 10^{-48}$			$e^{2} \cdot 10^{-48}$	2/ 1	$e^{2} \cdot 10^{-48}$	10^{-24}	r
		keV	keV	cm ⁴		i:	cm ⁴		cm ⁴	cm²	
79Au197	1	280	56	0,15	49	0,40	0,20	1,15	0,13	2,0	0.00
dicke T.	2	550	46	0,21	19	0,022	0,23	[0,56]	0,12	2,8	0,08
107	3	270				0,41			0,17		
Au ¹⁹⁷	3	190		0,025	0	1,2	0,055	12	0.16	22	
dunne 1.	2	550		0,185	19	0.022	0,24	[0.56]	0,10	3.3	
	3	270		0,25		0,41	0,01	[0,00]	0,24	0,0	
Ta181	1	136a	15	0.47	10	1.86	1 24	0.23	1.0	54	
dicke T.	2	303a	15	0,069	0,82	0,08	0,28	[0,26]	0,19	5,1	0,20
	3	167a		0,084		1,02			0,87		
Ta ¹⁸¹	1	136ª		0,63	9,8	1,86	1,65	0,20	1,32	6,2	
dünne T.	2	303ª		0,086	0,83	0,08	0,34	[0,26]	0,23	5,6	
	3	167 *				1,02			1,1 		
71Lu ¹⁷⁵	1	114	13	0,72	8,6	2,66	2,4	0,19	1,9	7,5	
	2	254	13	0,12	0,95	0,13	0,45	[0,26]	0,3	6,4	0,28
T n176	3	140		0,13		1,4			1,4		
71 ^{Lu} io5		102		0,72							
$_{69}\mathrm{Tm}_{100}^{169}$	2	118 ^b	12		0,12 ^b	1,9	3,8	[1,50]	1,3	8,0	0,33
	3	110		0,96		2,6			0,37		
$_{67}^{}\mathrm{Ho}^{165}_{98}$	1	94	10,5	0,77	4,7	3,16	2,8	0,25	2,2	8,0	
	2	207	10,4	0,048	0,21	0,24	0,70	[0,26]	0,46	8,0	0,35
	3	113		0,23		1,79			2,2		
$_{65}^{}\mathrm{Tb^{159}_{94}}$	2	138	11,5	0,051	0,16	0,94	1,9	[0,56]	0,95	8,1	0.38
1.250.00	3	79		0,32		4,54		1002 D 121	1,4		0,50
₆₃ Eu ¹⁵³	1	83	12	0,51	5,2	4,12	2,3	(0,26)	1,7	7,0	
	2	195	12	(0,21)	1,6°	0,26	(0,6)	[0,35]	(0,36)	(6,0)	0,31
	3	112		0,13		1,56			(1,1)		
₆₃ Eu ¹⁵¹	2	306	(44)	0,51	9,2°	0,08	(0,68)		(0,52)	(3,8)	(0,19)
47Ag ^{107, 109}	1	320	64	0,28	15,6	0,02	0,26	1,35	0,13	2,5	
	2	420	63	0,31	14 ^d	0,011	0,35	[1,50]	0,12	2,4	0,20
	3	100							0,033		

Tabelle XII

13	14	15	16	17	18	19	20	21
β_2	sign δ , $\delta^2(\beta_2)$	$\delta_3^2 \left(\lambda_2 ight)$	е	B(M1)	μ_0	g _R	g_{K}	τ
%	E2/M1	E2/M1	% E2	$\left(\frac{en}{2Mc}\right)^2$	$\frac{en}{2Mc}$			μµs
$-14\pm 2 + 36\pm 1$	$-0,11\pm0,06$	$\frac{\delta_1^2}{\delta_3^2} = 2,3$	10 100	0,09	+0,19e	0,61	- 0,19	25 7,5
	(0,05) ^k	4,3 (0,02) ⁿ	(7) ^p 11 ^g	(0,12) ^m				
			10 100	0,11		0,66	- 0,22	21 5,3
			(8) ^p	(0,15) ^m				
$0\pm1\\+18\pm2$	21 6.		(12) 100	0,09	+2,1 e	0,28	0,70	73 34
$+14\pm2$	+0,14±0,04	0,24	12 (12)	0,12 0,12		0,30 0,23	0,69 0,71	56
		×.	100 12	0,15		0,26	0,69	27
+ 1±1	5.		(18)	0,08	+ 2,0 ^f	0,27	0,66	110
$+14\pm1$ +17 ±2	$+0,22\pm0,04$	0,30	100 18	0,09		0,32	0,65	60
					+ 2,8 ^f			
-10 ± 1	-0,02±0,005	0,025	(100) 2	0,15	— 0,21 е	(0,42) ^h	(-2,11)	70
+ 1±1	1		(4)	0,33	+ 3,3 e	0,32	1,12	48
$+ 3\pm 2$	$+0,04\pm0,02$	0,05	(100)	0,48		0,34	1,12	
$+11\pm2$ - 1 ±2	$+0,02\pm0,01$	0,016	100 2	0,3	+1,5°	0,25	1,49	62
+12+2			(43) 100	0,011	+1,5e	0,47	0,65	10^{3}
$+22\pm2$	$+0,82\pm0,4$	0,40	45	0,012		0,49	0,65	510
+ 1±1	+ (0,06)		(6)	(0,55)	+ 3,4 e	0,42	1,74	
-25 ± 1 +26+1	$-0,02\pm0,005$	$\frac{\delta_1^2}{\delta_3^2} = 43$	2 100	0,45	-0,12e	(0,43) i	(-3,42)	3,6 40
	$(1/2 \cdot 10^{-3})^k$	3.10-3	(0,1) ⁱ	(0,2) ⁱ				

Tabelle XII

Tabelle XII

Zusammenfassung der Messergebnisse und Berechnungen charakteristischer Grössen aus Coulomb-Anregungs- und Gammawinkelverteilungsmessungen an einigen deformierten u-g-Kernen (Untersuchung mit 4,05-MeV-Protonen)

Erläuterung der Kolonnen:

- 1 Targetkern.
- 2 Bezeichnung des beobachteten Gammaübergangs (siehe Fig. 7).
- 3 Gammaenergie in keV (Genauigkeit $\pm 2\%$): E_{γ} .
- 4 $\hbar^2/2\Im$ aus den Anregungsenergien mit den Gl. (4) bis (6) berechnet.
- 5 Anregungswahrscheinlichkeit $\varepsilon B(E2)_{ex}$ aus Gl. (51).
- 6 Gamma-Intensitätsverhältnis $\lambda_1 = f_1/f_3$ (siehe Fig. 7). Verzweigungsverhältnis $\lambda_2 = f_2/f_3$ (siehe Fig. 7).
- 7 Totaler Konversionskoeffizient (Interpolation der Werte von SLIV¹⁰) und Rose, E2-Beimischung e aus Kolonne 16): α .
- Reduzierte Anregungswahrscheinlichkeit $B(E2)_{ex}$ 8 (Absolute Genauigkeit \pm 50%, relative Genauigkeit \pm 20%).
- 9 Verhältnis der Anregungswahrscheinlichkeiten B_2/B_1 (Theoretische Werte des kollektiven Kernmodells in eckigen Klammern).
- 10 E2-Zerfallswahrscheinlichkeit nach Tabelle II berechnet: $B(E2)_d$.
- 11 Elektrisches Quadrupolmoment Q_0 nach Tabelle III berechnet. 12 Mittlerer Deformationsparameter β nach Gl. (48) berechnet.
- 13 Anisotropie β_2 aus der Gammawinkelverteilung nach Gl. (58) ermittelt.
- 14 Vorzeichen und Betrag des E2/M1-Mischungsverhältnisses aus β_2 : $\delta^2(\beta_2)$.
- 15 Mischungsverhältnis aus Verzweigungsverhältnis λ_2 nach Gl. (38): $\delta_2^{3}(\lambda_2)$.
- 16 E2-Beimischung aus Winkelverteilungsmessung: e.
- 17 M1-Zerfallswahrscheinlichkeit $B(M1)_d$ aus $B(E2)_d$ (Kolonne 10) nach Gl. (36).
- 18 Magnetisches Moment μ_0 des Grundzustandes für die Berechnung der gyromagnetischen Faktoren g_R und g_K .
- 19 Gyromagnetischer Faktor g_R für Rotationsbewegung aus $B(M1)_d$ nach Gl. (44).
- 20 Gyromagnetischer Faktor g_K für innere Nukleonenbewegungen nach Gl. (45).
- 21 Lebensdauer τ des Rotationszustandes nach Gl. (29) und (30) und mit E2-Beimischung e (Kolonne 16) berechnet.

Mutmassliche Angaben in runden Klammern, theoretische Werte in eckigen Klammern.

Bemerkungen zu Tabelle XII:

- ^a Gammaenergien aus HEYDENBURG und TEMMER, Phys. Rev. 104, 981 (1956).
- b Gammaenergie und Verzweigungsverhältnis aus HATCH et al., Phys. Rev. 104, 745 (1956).
- С Verzweigungsverhältnisse aus HEYDENBURG und TEMMER, Phys. Rev. 104, 981 (1956).
- d Verzweigungsverhältnis aus STELSON und McGowAN, Phys. Rev. 99, 112 (1955).
- ^e Magnetische Momente aus H. KOPFERMANN, Kernmomente (1956).
- Magnetische Momente aus Steudel, Naturwiss. 44, 371 (1957). f
- g E2-Beimischung aus Joly et al., Helv. Phys. Acta 28, 403 (1955), siehe auch Diskussion der Messergebnisse.
- ^h Berechnet unter der Annahme $B_3(M1)/B_1(M1) = 1,20$, woraus $b_0 = 0$.
- i Berechnet unter der Annahme $g_R = z/A = 0,43$, woraus $b_0 = 0,24$.
- k Berechnet mit Hilfe des Verhältnisses $\delta_1^2/\delta_3^2 = 43$ nach Gl. (39).
- 1 Berechnet unter der Annahme $B_3(M1)/\tilde{B}_1(M1) = 1,35$.
- ^m Berechnet nach Gl. (38) mit dem theoretischen Energieverhältnis aus Gl. (3).
- \mathbf{n} Berechnet nach Gl. (36) aus $B_3(M1)_d$ und $B_3(E2)_d$.

Die für das Eu¹⁵¹ in runden Klammern angegebenen Grössen sind unter der Annahme ermittelt, dass das 306-keV-Niveau den Spin 7/2 habe und dass die Beziehungen für das kollektive Kernmodell dafür auch Gültigkeit haben.

In Fig. 24 sind über der geraden Neutronenzahl N dieser Kerne die elektrischen Quadrupolmomente Q_0 , die Deformationsparameter β und eine das Trägheitsmoment \Im enthaltende Grösse $\hbar^2/2$ \Im aufgetragen. In den Fällen, wo die Anregungswahrscheinlichkeit beider Rotationsniveaus ermittelt werden konnte, wurden jeweils Mittelwerte genommen. Der Bereich stark deformierter Kerne mit Deformationen zwischen $\beta = 0,2$ und 0,4 und Quadrupolmomenten zwischen $Q_0 = 5$ und $8 \cdot 10^{-24}$ Quadratzentimeter erstreckt sich von 90–110 Neutronen. Der allgemeine Verlauf und die absoluten Werte dieser Grössen bewegen sich innerhalb der schon von früheren Arbeiten gegebenen Darstellungen¹)¹⁴.

Weiter sind für die untersuchten Kerne die Verhältnisse der gemessenen und für einen starren Kern berechneten Trägheitsmomente \Im/\Im_{rig} über dem Deformationsparameter β aufgetragen. Die Trägheitsmomente sind alle etwa 5-8mal grösser als das Trägheitsmoment \Im_{irrot} für eine umlaufende Welle eines Flüssigkeitstropfens, die den Tropfen um $\varDelta R =$ $1,06 \cdot R_0\beta$ deformiert (siehe Gl. (46) und (50)). Die beobachteten Trägheitsmomente scheinen sich grob wie folgt annähern zu lassen:

$$\mathfrak{J} \approx 6.0 \ \beta^2 \cdot \mathfrak{J}_{\text{rig}} = 2.4 \ AMR_0^2 \ \beta^2 \ (1+0.31 \ \beta) \,. \tag{60}$$

Allerdings könnte für Kerne von noch grösserer Deformation diese Näherung nicht mehr richtig sein, weil das Trägheitsmoment eines starren Kerns nicht überschritten werden dürfte. Die Trägheitsmomente für Kerne mit einem unpaarigen Nukleon sind grösser als diejenigen für g-g-Kerne¹)¹⁴). Diese Tatsache wird damit erklärt, dass in Kernen mit ungerader Nukleonenzahl die niedersten Einteilchenzustände tiefer liegen als in g-g-Kernen und deshalb die inneren Nukleonenbewegungen der Rotation weniger gut folgen können, was in einer Vergrösserung des Trägheitsmomentes für die Rotation resultiert. Für diese tiefliegenden Einteilchenzustände ist im allgemeinen nur die Bewegung des unpaarigen Nukleons verantwortlich.

In Fig. 25 sind die empirischen Winkelverteilungskoeffizienten $a_2^{(2)}(\xi_0)$ aus den beobachteten E2-Gammaübergängen zum Vergleich mit

Vergleich der empirischen Winkelverteilungskoeffizienten $a_2^{(2)}$ (ξ_0) aus den E2-Gammaübergängen mit neueren theoretischen Werten nach ALDER et al.¹) (ξ_0 = Energieparameter)

neueren theoretischen Werten¹) über dem Energieparamter ξ_0 aufgetragen. Es kann von einer guten Übereinstimmung mit der Theorie gesprochen werden. McGowan und STELSON⁴²) haben die quantenmechanische Theorie auch für g-g-Kerne in einer kürzlich erschienenen Arbeit bestätigt.

Durch diese Bestätigung der quantenmechanischen Theorie im Falle von E2-Übergängen in g-g- und u-g-Kernen können wir auch bei gemischten M1 + E2-Übergängen den aus den gemessenen Winkelverteilungen bestimmten Mischungsverhältnissen Vertrauen entgegenbringen. Für die Kaskadenübergänge vom 2. zum 1. Rotationsniveau der Kerne Ta¹⁸¹, Lu¹⁷⁵, Tm¹⁶⁹, Ho¹⁶⁵ und Tb¹⁵⁹ stehen die so bestimmten Mischungsverhältnisse in Einklang mit den aus den Verzweigungsverhältnissen ermittelten Werten, obwohl für die letzteren die Genauigkeit ziemlich geringer ist. Weiterhin haben diese Winkelverteilungsmessungen das Vorzeichen von δ geliefert, wodurch für die gyromagnetischen Faktoren das eine weniger wahrscheinliche Lösungspaar sicher ausgeschlossen werden darf.

Die gyromagnetischen Faktoren g_R für die Rotationsbewegung zeigen Abweichungen vom theoretischen Wert $g_R \equiv Z/A \equiv 0.4$ für einen homogen geladenen, rotierenden Kern. Die Messgenauigkeit ist jedoch nicht genügend, um diese Abweichungen interpretieren zu dürfen*). Einerseits deuten die Trägheitsmomente darauf hin, dass nur ein Teil der Kernmaterie an der Rotationsbewegung teilnimmt; andrerseits ist zu erwarten, dass in Kernen mit einem unpaarigen Nukleon dessen Bewegung wesentlich zum Trägheitsmoment und damit auch zum Rotationsimpuls \vec{R} (siehe Fig. 1) beiträgt.

Die Anschaffung und Herstellung der Apparaturen für diese Arbeit war durch finanzielle Hilfe der Schweizerischen Volkswirtschaftsstiftung möglich. Einer von uns (M.M.) ist der Firma Brown Boveri & Cie. in Baden persönlich für finanzielle Unterstützung zu Dank verpflichtet.

Literatur

- ¹) K. Alder, A. Bohr, T. Huus, B. Mottelson and A. Winther, Rev. Mod. Phys. 26, 432 (1956).
- ²) A. BOHR and B. R. MOTTELSON, Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 27, No. 16 (1953).
- ³) L. C. BIEDENHARN and M. E. ROSE, Rev. Mod. Phys. 25, 729 (1953).
- 4) J. M. BLATT and V. F. WEISSKOPF, Theoretical Nuclear Physics (John Wiley & Sons, Inc., New York 1952).
- ⁵) E. U. CONDON and G. H. SHORTLEY, Theory of Atomic Spectra (Cambridge University Press, New York 1935).
- ⁶) S. G. NILSSON, Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 29, No. 16 (1955).
- 7) H. GUHL, Dissertation ETH., 1958.
- 8) D. MÄDER, R. MÜLLER und V. WINTERSTEIGER, Helv. Phys. Acta 27, 3 (1954).
- ⁹) J. H. SMITH, Phys. Rev. 71, 33 (1947).
- ¹⁰) L. A. SLIV und I. M. BAND, Tabellen für K-Konversionskoeffizienten von Gammastrahlung, Moskau und Leningrad 1956.
- ¹¹) C. F. COOK, C. M. CLASS and J. T. EISINGER, Phys. Rev. 96, 658 (1954).
- ¹²) P. H. STELSON and F. K. McGowan, Phys. Rev. 99, 112 (1955).

*) Anmerkung bei der Korrektur: In einer neuen Arbeit von GOLDRING und SCHARENBERG (Phys. Rev. 110, 701 (1958)) sind die g_R -Faktoren der Kerne Nd¹⁵⁰ und Sm^{152, 154} zu $g_R = 0,22$ und $0,21 \pm 0,04$ bestimmt worden, wobei auch stark gestörte Gammawinkelverteilungen der E2-Übergänge aus den 2⁺-Niveaus beobachtet wurden.

- ¹³) E. M. BERNSTEIN and H. W. LEWIS, Phys. Rev. 100, 1345 (1955).
- ¹⁴) T. HUUS, J. H. BJERREGAARD and B. ELBEK, Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 30, No. 17 (1956).
- ¹⁵) B. ELBEK and C. K. BOCKELMAN, Phys. Rev. 105, 657 (1957).
- ¹⁶) W. I. GOLDBURG and R. M. WILLIAMSON, Phys. Rev. 95, 767 (1954).
- ¹⁷) F. K. McGowan and P. H. Stelson, Phys. Rev. 99, 127 (1955).
- ¹⁸) R. JOLY, J. BRUNNER, J. HALTER et O. HUBER, Helv. Phys. Acta 28, 403 (1955).
- ¹⁹) F. K. McGowan and P. H. Stelson, Phys. Rev. 103, 1133 (1956).
- ²⁰) J. V. KANE and S. FRANKEL, Bull. Am. Phys. Soc. Ser. II, 1, 171 (1956).
- ²¹) G. GOLDRING and G. T. PAULISSEN, Phys. Rev. 103, 1314 (1956).
- ²²) R. H. DAVIS, A. S. DIVATIA, D. A. LIND and R. D. MOFFAT, Phys. Rev. 103, 1801 (1956).
- ²³) N. P. HEYDENBURG and G. M. TEMMER, Phys. Rev. 104, 981 (1956).
- ²⁴) E. A. WOLICKI, L. W. FAGG and E. H. GEER, Phys. Rev. 105, 238 (1957).
- ²⁵) E. M. BERNSTEIN and H. W. LEWIS, Phys. Rev. 105, 1524 (1957).
- ²⁶) J. T. EISINGER, C. F. COOK and C. M. CLASS, Phys. Rev. 94, 735 (1954).
- ²⁷) F. BOEHM and P. MARMIER, Phys. Rev. 103, 342 (1956).
- ²⁸) P. DEBRUNNER, E. HEER, W. KÜNDIG und R. RUETSCHI, Helv. Phys. Acta 29, 463 (1956).
- ²⁹) E. N. HATCH, F. BOEHM, P. MARMIER and J. W. DU MOND, Phys. Rev. 104, 745 (1956).
- H. KOPFERMANN, Kernmomente (Akademische Verlagsgesellschaft, Frankfurt 1956).
- ³¹) A. STEUDEL, Naturwiss. 44, 371 (1957).
- ³²) N. P. HEYDENBURG and G. M. TEMMER, Phys. Rev. 100, 150 (1955).
- ³³) K. H. LINDENBERGER, Z. f. Phys. 141, 476 (1955) und Naturwiss. 42, 41 (1955).
- ³⁴) B. ANDERSSON, Proc. Phys. Soc. 69 A, 415 (1956).
- ³⁵) C. M. CLASS and U. MEYER-BERKHOUT, Nucl. Phys. 3, 656 (1957).
- ³⁶) T. Huus and A. Lundén, Phil. Mag. 45, 966 (1954).
- ³⁷) P. H. STELSON and F. K. McGOWAN, Bull. Am. Phys. Soc. Ser. II, 1, 164 (1956).
- ³⁸) N. P. HEYDENBURG and C. M. TEMMER, Phys. Rev. 95, 861 (1954).
- ³⁹) L. W. FAGG, E. A. WOLICKI, R. O. BONDELID, K. L. DUNNING and S. SNYDER, Phys. Rev. 100, 1299 (1955).
- 40) G. M. TEMMER and N. P. HEYDENBURG, Phys. Rev. 104, 967 (1956).
- ⁴¹) G. M. TEMMER and N. P. HEYDENBURG, Phys. Rev. 99, 1609 (1955).
- 42) F. K. McGowan and P. H. Stelson, Phys. Rev. 106, 522 (1957).

H. P. A.