
On the time arrow and the theory of irreversible
processes

Autor(en): Wu, Ta-You / Rivier, Dominique

Objekttyp: Article

Zeitschrift: Helvetica Physica Acta

Band (Jahr): 34 (1961)

Heft VI-VII

Persistenter Link: https://doi.org/10.5169/seals-113191

PDF erstellt am: 13.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-113191


661

On the Time Arrow and the Theory of Irreversible Processes

by Ta-You Wu
National Research Council, Ottawa, Canada and

Université de Lausanne, Suisse

and Dominique Rivier
Université de Lausanne, Suisse

(10. IV. 1961)

Abstract. In the existing theories of irreversible processes, the time arrow and the
irreversibility are introduced by means of various specific assumptions. In a elementary

discussion, it is shown that time arrow and irreversibility can be introduced
by a general 'probability Ansatz', i.e. a relation between two sets of probabilities
at two instants of time. This Ansatz leads directly to the Master equation. In the
quantum theory, this Ansatz may be founded on the random-phase hypothesis
which leads to the Pauli equation. Special attention is paid to the time reversal
properties of the theories of irreversible processes with respect to the time symmetry
of the underlying microscopic theories.

I. Introduction
The statistical mechanical interpretation of the macroscopic irreversibility

of the approach of a gas towards thermodynamic equilibrium is
well known.

In the underlying classical microscopic theory, the basic Liouville
equation is invariant upon the reversal of time and describes only reversible

processes. In order to get a macroscopic view of the gas, the use of
probability or statistical concepts is necessary; it enables one to formulate

a theory of irreversible processes. This irreversibility pertains only
to the probabilities in the macroscopic picture, and of course does not
contradict the reversibility of molecular dynamics in the microscopic
picture. Consider the Gibbs statistical ensemble method, for instance.
Instead of the 'fine grained1)' distribution function D (qx..., <?,y--, Pn> t)
in the y-space that satisfies the Liouville equation, one works with the
«coarse grained»1) D which is the average D over phase cells of non-
vanishing finite dimensions Aax... AqNApx...ApN representing the limits
of feasibility of practical observations. It is by using this D, which no
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longer satisfies the Liouville equation, that the iï-theorem is established.
In oder, however, to have a quantitative theory that will describe the
macroscopically irreversible processes towards equilibrium, it is usual to
introduce a specific Ansatz in one form of another. The older theory was
that of Boltzmann, developed in the/^-space. In recent years, there have
been proposed other theories, notably those of Bogoliubov and of
Kirkwood. The basic assumptions in these classical theories are different,
both in their forms and their physical meaning. In these macroscopic
views, it seems hence of interest to see how closely is the use of probability
concepts connected with the appearance of a time arrow and irreversibility.

In the underlying microscopic quantum theory, the fact that probabilities

are introduced in a fundamental way through the uncertainty principle

does not prevent on one hand the Schroedinger equation to be
invariant under the (Wigner) time reversal. On the other hand Klein 2) has
shown that irreversibility may already be obtained with the quantum
'fine grained' distribution function without introducing a coarse-grained
function, although a more satisfactory form of the H theorem does make
use of the last one. Therefore also in quantum theory it appears of interest
to investigate what kind of connection exists between the probability
concepts and the appearance of a time arrow and irreversibility. It is the

purpose of the present note to undertake this task in an elementary
manner. Both in the classical and the quantum theory, we shall see the
close relationship between the time arrow, irreversibility, and a general
'probability Ansatz', of a much less specific form than those introduced
in the theories mentioned above. Incidentally, we shall discuss the occurrence

of two equations representing irreversible processes, one towards
the future and the other 'towards the past', the existence of which is a

consequence of the symmetry in time of the basic theories — classical
dynamics or quantum mechanics.

II. Probability Ansatz and irreversibility
Before reviewing the basic assumptions in the physical theories we

shall show that a theory containing a time arrow and describing
irreversible processes can be founded on a 'probability Ansatz' of a very
general form. By 'probability Ansatz' here, we mean a relation connecting
two sets of probabilities at two instants of time.

Let w\ wk(t°) be a set of probabilities at time t°, and wk wk(t) be
their values at time t. We require of the w\ and wk the following properties

w°k>o, 2>ft° i; »XO, 2>* i. (i)
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Let us assume that there existe a 'transition probability' Aik from k at
t° to i at t, and let us make the probability Ansatz

wi(t)=ZAikwk(n. (2)
k

The Aik must then satisfy the following requirements

£Aik=l, ZAi*=1 (3)
k i

and

0<Aik^l. (3a)

Three inferences can now be drawn from this probability Ansatz.

(i) The probability Ansatz defines an arrow of time

Let us assume that the inverse matrix A~x oi A in (2) exists*) and let
us try to calculate the w\ from the wi by inverting (2) :

wk(t°)=2jA^wi(t). (4)
i

From A'1 A 1 and (3), it follows that A^1 also have the proporties (3).
But from these and (3 a), it also follows that

o ^ X*1 < i
is not satisfied (except for Aik Ark ôik, which however is a case of
no physical interest). Thus in (4) A~[k does not describe a 'transition
probability' and in this sense the relation (2) giving wi in terms of w%

cannot be inverted to give w° in terms of the w3).

Following an initial idea of Stueckelberg4) and with the aid of an
inequality relation due to Gibbs, from (l)-(3), Pauli5) proved in a very
simple manner the following relation

-Ewklo&wk ^ -Zwlio%wl (5)
k k

which again shows the presence of a definite order, or arrow, in the two
instants t° and t.

The above result depends only on the form of the probability relation
(2), quite irrespective of the specific physical meaning of the probabilities
w. For example, we may think of the wk as the probability that a random
variable x has the value xk. But in the theory of gases, the wk may be

*) If A x does not exists, the probability Ansatz (2) defines certainly an arrow
of time.
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identified with the average D over the phase cell JJ Ax{ Ap{ at a point in
i

the y-phase space of the system. In this case the relation (5) then acquires
a very important meaning: on identifying the entropy S with the
expression — Zk wk \ogwk, we obtain the law of increasing entropy in the
direction of time from t° to t-

S(t) > S(f>) (6)

ii) The probability Ansatz leads to the Master equation describing the evolu¬

tion of the wk's

From (2) and (3), on calling t — t° At, we obtain

wi~w\=^(Aikwl-Akiw"A. (7)

On writing
Aik aikAt, At>0 (8)

where aik are the transition probabilities per unit time, (7) becomes

(dropping the index °)

-jr 27("t* wk - hi wi) (9)
k

which states that w( is increased by the transitions from all states k to
the state i, and is descreased by the transitions from the state i to all
other states k. (7) or (9), is known as the Master equation. Both are not
invariant upon the reversal of time.

One may note that (7) is of the same form as the Master equation for
a Markovian chain6). For a stochastic variable capable of taking on a
set of discrete values xh, the conditional probability P(xh, n) P(xj j xk, n)
that x, having the value Xj at time t Vs, has the value xk at time t t°A- nAt
(At being the interval between two successive observations of x), is given
by the equation

P(x„ n+1)- P(x„ n) £[P(xk, n) Q(xk, *,) - P(x„ n) Q(xt, xk)] (10)

where Q(xk, x{) P(xk j x{, I) is the transition probability from xk to xt
in the time interval At. The reason for the similarity between (10) and (7)
is of course the similarity between the Ansatz (2) and the Smoluchowski
law for stochastic processes.

iii) The existence of the 'symmetric' probability Ansatz

While (2) defines a time arrow and cannot be inverted into (4) without
losing its probability meaning, it appears important to note that instead
of (2) the following probability Ansatz
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wAx)=ZAikwk(x») (2a)

can be made, where *

To ft ; r x° A- Ax t° - At - t A- 2t° (11)

x increases 'towards the past'. By writing as in (8)

Aik=aikAx, Ax>0 (8a)

one gets the Master equation

Awi _~zy 2J(aikwk-akiwi) (9a)
k

which is symmetric to (9) and, of course, incompatible with it.

III. Classical theories of irreversible processes

In the theory of Boltzmann developped in the /«-space, the basic hypothesis

is the Stosszahlansatz according to which the probable number of
collisions in the time interval At in the volume element Ar between molecules

having velocities between v{ and v{ A- Av{ and those between vk and
vkA-Avkis

gikfkfibdbdcp-ArAviAvkAt (12)

where fk f (r, vk, t), /; f(r, v(, t), cp is the 'impact azimuth', b the
impact parameter and gik= | v{ —vk\. This leads to the Boltzmann equation

it +v'i!k= jdv* d<fdh-h^ ß I - /* /j (13>

where /,' f(r, v\, t), the v\ being the velocities after collision.
That (12) is an Ansatz of a probability nature can be seen from the

following considerations. In the first place, in order that (12) may
represent the probable number of collisions, the elements At, Ar, Avt, Avk

must not be arbitrarily (vanishingly) small, and the /;, fk must
consequently be taken to mean some kind of 'coarse-grained' functions, i.e.,
the average values of the 'fine-grained' /,-, fk over the phase cells Ari Avit
Ark Avk and the interval At. In the second place, the Boltzmann equation
(13) is seen to be a special form of (9). In fact by making the specialization

wl-+f(r,vi,t)
and

Eaki^ f dvk-dq> db -bgik f(r, vk, t)
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the integral on the right is seen to be the transition probability of /; due

to binary collisions with all particles k in state fk.
The Boltzmann equation (13) is seen to be non-invariant under reversal

time: upon replacing t by — t (13) becomes in fact a particular instance
of (9a), physically meaningless (see section V, vii, below). Equation (13)
is not a dynamical equation giving a microscopic description ; because of
the probability (Stosszahl) Ansatz (12), it deals with the probable values

f(, fk in the macroscopic view. It has a definite time arrow and describes
irreversible processes in that direction of time. It is the failure to emphasize

this probability nature that has led to such objections as that of
the 'Umkehreinwand' of Loschmidt and of the 'Wiederkehreinwand' of
Zermelo.

In the more recent theory of Bogoliubov7), the time arrow, and
consequently the irreversibility, are introduced by the 'initial' of 'asymptotic'
condition for the weakening of the correlation effect among particles with
the increase in interparticle distances:

Lim 5(s),
t->-<x>

Fs(qx...qs,p,...ps; SV Fx(t))-JJSfï Fx(qi,pitt) 0 (14)

where Sz\ is the operator of a canonical transformation generated by the
Hamiltonian Hs of the s-particle subsystem of the iV-particle system,
tracing the system s backward in time for an interval t. The limit t -> oo

means that t be long compared with the duration of a collision. The
functions Fs, s 1, N, satisfy the system of equations known as the
Born-Green-Bogoliubov-Kirkwood-Yvon hierarchy which is
equivalent to the Liouville equation and hence invariant upon time reversal.
The Ansatz (14) now introduces the time arrow and the theory is no
longer invariant upon time reversal. In fact, to the first order in gas
density, the equation for Fx (q, p, f) reduces, upon some approximations*),
to the Boltzmann equation (13). That the time arrow is introduced by (14)

can be seen from the calculations of Bogoliubov in obtaining the'generalized

Boltzmann equation' for Fx, but this has recently been brought out
more explicitly by Cohen and Berlin8). These authors have shown that
if one reverses the direction of time in (14), i.e., assumes the correlation
to vanish in the future instead of in the past, then the equation for Fx
would have become a 'Boltzmann equation' that describes irreversible
processes towards equilibrium in the past. Such an Ansatz correspond to
(2 a). Thus we may say that the Ansatz (14) is a kind of generalized 'Stoss-
zahlansatz' of a probability nature, i.e. equivalent to a special case of (2).

*) Mainly very low density of particles and substitution of one step function for
the short or long range forces.
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In the theory of Kirkwood9), the passage from the Liouville equation
to the Boltzmann equation is effected by an averaging of /; over finite
phase cells, a 'time-smoothing', and a product Ansatz for the two-particle
correlation function, playing a role similar to (14). The time arrow and
irreversibility of the resulting Boltzmann equation are again the
consequences of the probability Ansatz of the type (2) for the macroscopic
description.

IV. Quantum theory of irreversible processes

Let us consider now the problem of irreversibility and time arrow from
the quantum theory point of view. Let rp(q, <°) y>° be the state of a

system at an arbitrary instant of time that we shall call t°. Let ip tp(q, t)
be the state at a later instant t t° + At. Let the Hamiltonian of the
system be H H0 + Hx where Hx describes some perturbation
interaction, responsable for establishement of equilibrium via transitions
between eigenstates of H0. Let f° and f be expanded in the complete set
of stationary states cpk(q) of H0 with eigenvalues Ek:

'

Wiq. t°) =ZWk(t°) <PM exp(- ^-)
k x

The amplitudes ipk(t°) and ipk(t) are connected by the unitary operator U

WM=ZUikWk(t»). (15)
k

Then

WM w*(t) =£u,ku*kVk(fi) ft(n +£uik u*,Wk(tP)ri(t») - (16)
k hJf=l

The

\Uik(t,t)\2 Aik(f,t) Aik(At) (17)

are the transition probabilities in the time interval At. The unitary of U
garantees the relations

Zi\wm=Zi\Wi(t°)\2=i-
Consider now an ensemble of iV similar systems and form the density
matrix

iEkt
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where the bar indicates the average over the systems of the ensemble.

Now, as a consequence of the axioms of quantum mechanics, the wave
function of a state always contains an undeterminable phase factor. Let
this phase factor be absorbed in the amplitudes ipnk and xpk in (15). On

averaging (16) over the systems of the ensemble, one usually assumes

that10)

Qij(t°) WrWwJ^f0) 0 for * * ; (19)

This assumption, known as the random-a priori-phase hypothesis (R.P.H.),
is not only plausible on account of the random distribution of the

(unknowable) phases of the ipka)(t°) but even seems unavoidable, for otherwise,
instead of

Qn(t)=Z!Alk(At)-ekk(t<>) (20)
k

which results from (16), (18) and (19), one would have obtained for the
probability density Qi{(t) an expression which would depend on the
fundamentally undeterminable phases differences of ^,-°X°) and yî"1^0) and such

a result would have been outside the realm of quantum mechanics11).
The relation (20) is seen to be of the same form as the probability

Ansatz (2). In the classical theory, the Ansatz (2) on the probabilities
depends on the necessity of the adoption of the macroscopic view by
introducing phase cells of finite (i.e., non-vanishing) size. In the quantum
theory, the finite size of the phase cells is already a consequence of the
uncertainty principle. The R. P. H. may therefore be regarded as the
quantum equivalent of the Ansatz (2).

From (20), in the same way as (5) is established from (2)-(4), we readily
obtain the law of increasing entropy

S(t) ^ S(t°)

if
S(t)=Sf(t)=B-£Qkk(t) log Qkk(t) (21)

is the 'fine-grained' entropy, as defined by Klein2)*).
For small At (but large compared with the microscopic periodic times

of the individual systems), Uk{ can be calculated according to the pertur-

*) It is known (Tolman, ref. 1, the footnote p. 461) that a complete statistical
treatment of the problem uses a «coarse-grained» entropy, Sc — ZJ wK \o%wK,

k
n

with wK Ijn 2J Qk j. averaged over a group of n states between which macro-
i 1 l

scopic measurement cannot distinguish. The transition from Sf to Sc is then
obtained through an argument which is essentially the same as that already used in
the classical theory (see section III) and which, for this reason, is no longer relevant
to the present section. See also Pauli and Fierz's paper12).
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bation theory of Dirac and Aik may be shown to be equal to aikAt. From
(20), with (17), we obtain, as in (9)

k

which is known as the Master, or the Pauli equation13).
Thus by making the R.P.H. (19) at any arbitrary instant t° of time,

one can calculate, or predict, the qu at a later instant or time by (20) or
(22). Either of these equations, however, does not permit one to calculate
the gjj(<°) from the QH(t). We have seen that the relation (4) obtained
by inverting (2) has no probability meaning. Here in quantum mechanics,
the reason for this can be made more explicit. In order to calculate the
•Quit0) from an observation of Qkk(t), at the time t, one must make the

R.P.H. at the instant t, as is obvious simply by inverting t and t° in the
argument leading to (20).

But fundamentally, the necessity of the R.P.H. at time t for calculating

Qu(t°) from Qkk(t) is a consequence of the connection between the
R.P.H. and the measurement of the 'fine-grained entropy Sf': in fact the
R.P.H. at a given time, let say t", may be thought as the necessary
result of the measurement at that thime t0 of the 'fine-grained' entropy
Sfas given by (21). This may be seen in two ways as follows:

In the first place, in order that Sf(t°) £ Qkk(t°) [— log Qkk{t0)] is to be

interpreted as an expectation value of a physical quantity at the time t0,

it is necessary that Qik[t0) 0 for i 4= k. For, then only, Sf(t°) may be

written as Sf(t°) Tr [q • (- log^)] (i!0).

In the second place, in order to find Sf(t°) from observations at the
time t°, it is necessary to measure \ogQkk(tP) or Qkk(t°). And this imply the
measurement of the complete set of observables E (which completly
defines the eigenstates (q \ Ek, t0} cpk(q) e~<l£fc*')!*) on each system (a)

of the ensemble. Immediately after this measurement, the system (a) is

in the state | £(a,(^°)>, and the density matrix is then given by [we find it
convenient to use here Dirac's notation instead of the conventional one] :

Qmn(t°) S <X HP) I X> jfZ<E" I £<X V) <EM I X> (*°)
(a)

^27W-W)N

which is always diagonal. As time goes on, transitions due to Hx occur
according to (15), and non-diagonal terms appear, so that at a later time
t > t° one has on one hand



670 Ta-You Wu and Dominique Rivier H. P.A.

Tr [Q(t) logg(*)] Tr [g(fi) logg(i°)]

but, on the other hand

S/W -JEW) ioge**(0 S -27e**(<°) log &*(*») s,(^

for, obviously, S/(i) 4= Tr [ç(t) logg(t)} if g(<) is not diagonal.
In order to measure Sy at the time t, one has to measure again the complete

set of observables E at that time t, to get

9mn(t) ±Z<EJEM> (f) <£<«)/£„> (t) -L^^W *°W
(a) (a)

which is again diagonali In the sense given above, the R.P.H. at time t
is equivalent to the measurement of the 'fine-grained' entropy Sf at
the time t. This emphasizes the prominant rôle of the measurement for
introducing irreversibility in quantum theory1*).

In order to compute Q{i(fi) from Qkk(t), one use the inverse of (15) and
rewrites (16) in the form

\Wi(t) \*=ZAik \w(t°)\2 +£Cim \Wm(t) \2 A-£Dimnfm(t) rp*n(t) (23)
k m m^r-n

where

On making the R.P.H. at time t, namely

imm -

Qmn(t) Wm(Ì) tftö 0

one gets a matrix equation

Q'(tf>) A-l(l-C)Q(t) (24)

which is seen to be different from the inverse of (20), namely Q(t°)
A'1 g(t). This last relation has no probability meaning, just as (4). On
the other hand, the entropy

x'°) -i;^o)iog^0)
calculated at time fi from the R.P.H. at time t will satisfy the relation
S'(t°) > S(t), but is different from S(fi) (see fig. 1).

While (20), or (22), has a definite time arrow and is meaningful only
in the direction in which the entropy increases, it should be possible, by
virtue of the invariance of the Schroedinger equation upon theWigner
time reversal (time reversal and complex conjugation of the equation),
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to formulate the symmetrical theory with the time arrow in the opposite
direction to that in (20). This is done in (24), but can be put in a more
symmetric form, similar to (2a) and (9a).

Sf-r)?-

S(r°)

9(f)
~?s(D

s(0

<-i1—1—,
rïf° f

Al—>

Fig. 1

Entropy probable values S(t) andS(r), given the measured value S (fi) S(T°), and
entropy probable value S'(t°), given the measured value S(t).

Let us start again from any arbitrary instant which we shall call
fi t°, and let be x x° + Ax fi — At 2 fi — t an earlier instant,
x increasing towards the past. From the invariance of the Schroedinger
equation, we have, similarly to (15) and (16) :

Wi(r)=ZU*kfk(x°) (15a)

and

WM tfW Z U*ik UikWk(x°) y>k(x°) +£ U*k Ui, %(t°) Wl(x»). (16a)
k *4=/

On making the R.P.H. (19), we get as in (20)

Qu(r)=ZBikQkk(fi) (20a)

where the Bik(Ax) | Uik(At) \2 are the same function of Ax as the Aik(At)
are of At in (17).

In the same way as in (21), we get this time (see fig. 1)

S(x) ^ S(t°)
For 'small' Ax, we have

Bik aikAx Ax > 0

-JaT =Z(aikQkk- akiQu)

(21a)

and

(22a)
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which is of the same form in x as (22) is in t. (20 a) and (22 a) are special
cases of the general relations (2 a) and (9 a). It should be emphasized that
(20a), or (22 a), is valid only for the calculation, or 'postdiction', of the
state at an earlier instant from the present (arbitrary) instant at which
the R.P.H. is made. As (2a) and (9a), (20a) and (22a) become meaningless

if the direction of time is reversed.

V. Summary and Remarks

The above results (21) and (21a) which state that, starting from any
arbitrary instant of time one will find a greater (at least equal) entropy
in either the future or the past, must be carefully interpretated. We shall
summarize the theory and its interpretation in the following propositions :

(i) Starting from a probability observation at any arbitrary instant of
time, we may ask for the probable behavior of a system either at a later,
or at an earlier time. At these two questions, the answers given by (20) to
(22) and (20a)-(22a) respectively, are symmetrical. This symmetry in the
possibility of making either choice in the direction of time and in the
resulting equations is inherent in the symmetry in time of the basic
theories namely, classical dynamics and quantum mechanics.

(ii) This irreversibility pertains only to the probabilities concerning this
state of the system. Equation (20), or (4), gives a definite prediction of
the probable result of an observation on the system. There is no conflict
between the prediction of a probable increase in entropy and any
fluctuation in an actual observation.

(iii) The two choices of the time arrow are, however, mutually exclusive

in the sense that (20) is valid only for the prediction of the system
at a later time, while (20 a) is valid only for making a 'postdiction'— i.e.

a statement about an earlier time, on the basis of the information at the
(arbitrary) present instant.

(iv) Let us assume that a measurement of the 'fine-grained' entropy is
made at an arbitrary instant, say t fi. Equations (20), (21) predict a

greater (at least equal) entropy at any later instant t > t0, let us say tx.
Let us assume that a second measurement of the fine-grained entropy is
made on the system at tx. Its probable value is given by (20) or (21) and
the same equations predict the probable value of Sf at a time t > tx, let
say t2. Equation (21) tells us that S(fi) < S(tx) < S(t2). This procedure
can be continued to later times. By making the intervals tx — t0.t2 — tx...
'small' (but not arbitrary small), we may picture the entropy 'curve'
from the instant t fi as a sequence of points, which begins at t fi and
increases at later times, as indicated by the solid curve in Figure 2. But
if an inquiry is made about the values of S(x) at earlier instants, we have
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to use Equation (20 a) and (21a) and we shall obtain an exactly symmetrical,

but independent and separate, branch for the entropy 'curve', as

indicated by the dotted curve in Figure 2.

s(A\ s(t)

Fig. 2

Symmetrical 'entropy curres'

(v) From (ii) and (iv), it follows that (22) and (22a) are mutually
exclusive of each other and that they do not imply

2JQii

At
Mi
At

0

or equilibrium for the system.

(vi) If (20a)-(22a) 'postdict'that a system approaches an equilibrium
state in the past in an irreversible manner, it is not to be interpreted to
mean that a certain state of the system at present has arisen from an
equilibrium state in the long, long past. To describe the evolution from
the past to the present, one must use equations (20)-(22) which, however,
do not describe a change from an equilibrium to a non-equilibrium state,
but always describe an irreversible and monotonie approach to the
equilibrium state.

(vii) While the two directions of time are on equal footing according
to the basic theory (see (i) above), the 'postdiction' about an increase in
entropy towards the past cannot be verified by comparison with
observation, in the same way as a prediction about the future can be verified
by observation. In fact, it is difficult to give any operational meaning to
the 'postdicted' probabilities for the past. Thus, at least on the basis of
our built-in biological time arrow, only (20)-22), describing irreversible
evolutions towards equilibrium in the future in the ordinary sense, are
of practical significance.
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