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Supersymmetries and Essential Observables

by J. M. Jauch*) and B. Misra**)

(5. VI. 1961)

Summary. A new type of symmetrytransformation called supersymmetry is
introduced and studied. It is shown that such symmetries always occur in a physical
system with superselection rules. They are described by unitary transformations
which commute with all the observables of the system. It is further shown that
systems which admit a complete set of commuting observables and a supersym-
metry must contain a certain class of observables, called essential observables,
which must be represented in every complete system. Furthermore in that case the
supersymmetries form an abelian group.

The applications of these results to C-number gauge transformations in quantum
electrodynamics leads to the conclusion that the total charge operator is always a
superselection operator. This explains why it is impossible to prepare a state which
is a superposition of states corresponding to different eigenvalues of the charge.
A corollary of this result is the fact that the 1- and 2-components of the isotopie spin
cannot be observables.

1. Introduction

In quantum mechanics a symmetry transformation is a unitary or anti-
unitary transformation of the space of statevectors which leaves the time
evolution of the system invariant. The study of symmetry transformations

has played an important rôle, not only in the practical application
for the determination of term structures of stationary states, but also in
the understanding of the fundamental aspects of the theory.

It occurs frequently that symmetry transformations leave, in addition
to the Hamiltonian, other observables invariant. In this paper we direct
our attention to a class of symmetry transformations which leave all the
observables invariant. Obviously such transformations are only possible
if there exist non-trivial transformations which commute with all observables,

that is, the system must have superselection rules. For this reason
we refer to such symmetries as supersymmetries.

*) University of Geneva and CERN, Geneva, Switzerland.
**) University of Geneva.
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An example of such a transformation is for instance the iteration of the
time reversal transformation. There is no reason to doubt that this
transformation commutes with all the observables, corresponding to the situation

in classical mechanics. However, in the presence of a spinorfield, this
transformation is not trivial (that is, not just a multiplum of the identity),
because it is possible to show that it must anticommute with the spinorfield1).

It is precisely this property which was used for instance by Wick,
Wightman and Wigner in their proof that a spinorfield cannot be an
observable2). Thus supersymmetries are expected to occur whenever
there are superselection rules. This justifies the choice of terminology.

We shall show in this paper that supersymmetries are always connected
with another phenomenon, which we have called the occurrence of essential
observables. Such observables can be described in the following way:
every complete set of commuting observables defines a certain algebra
of bounded operators. Since such complete sets can be chosen in many
different ways there exist many different such operator algebras. The
intersection of all these algebras contains at least the multiples of the
unit operator. If it contains any other operators, we shall say that there
exist essential observables. Loosely speaking then, an essential observable
is one which must be represented in every complete set of commuting
observables.

The essential observables generate themselves an algebra which we
have called the core. We shall demonstrate that the core is identical with
the center of the algebra of all observables.

This result is a corrolary of the theorem that the commutator algebra
of a von Neumann algebra 91 (that is the algebra of all the bounded
operators which commute with all operators in 9t) is abelian if and only
if there exists a maximal abelian sub-algebra in 9t. We shall prove this
theorem in section 3 (Theorem 3).

This theorem has another application which we mention here too
although it is not the main subject of this paper. In the axiomatic formulation

of quantum field theory it is customary to assume that the Hilbert
space of statevectors can be represented as a direct sum of Hilbert spaces
each consisting of physically realizable state vectors3). It is easy to see

that this is equivalent to the assumption that the commutator algebra
9t' of all observables is abelian4). Now, by the above theorem, this is

equivalent to the assumption that there exist at least one maximal abelian
subalgebra of 91. But, as it was shown in a previous publication4), this
means simply that the system permits a complete system of commuting
observables. In this form the assumption that 91' be abelian has a direct
physical interpretation and becomes therefore quite plausible.
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2. Definition of supersymmetries

We shall assume that the pure states of the quantum mechanical
system are described by normalized elements ip from a separable Hilbert
space § with positive definite scalar product. The observables are
represented by linear self adjoint operators operating on elements ye§.
Let S be the system of all the observables and denote by 91 the von
Neumann algebra of all bounded operators generated by the observables4).
This algebra is defined as the set of all bounded operators which commute
with all bounded operators which commute with S

91 {S}". (1)

Observables, as one knows from many examples, need not be bounded
operators and if they are not, they would not be themselves contained in
the algebra 91. Nevertheless the algebra 91 is a mathematically convenient
and physically entirely adequate characterization of the kinematical
structure of the set of all observables. For the unbounded observables
we can introduce the weaker concept of affiliation. With this we mean
the following property : every observable (bounded or not) is represented
by a self adjoint linear operator A and such an operator defines a unique
family of spectral projections. If every one of these spectral projections
is contained in 91 we say A is affiliated with 9Ì.

It follows from the definition (1) that every self adjoint operator
representing an observable is affiliated with 91 and that 91 is a smallest von
Neumann algebra with this property.

We introduce the concept of supersymmetry with the following definition:

A unitary operator U is a supersymmetry if it differs from a multiplum
of the identity and commutes with the set S of all observables.

Two remarks which motivate this definition may be useful.
First, it should be noted that this definition makes only sense if every

supersymmetry is also an ordinary symmetry. This is true if the Hamiltonian

of the system (defined as the generator of the time-displacement
operator) is also an observable. The Hamiltonian is interpreted as the
total energy of the system and its observability is usually taken for granted.

This amounts to the assertion that it is in principle possible to prepare
states, by suitable physical arrangements, with an arbitrary small spread
in energy.

Secondly we have defined a supersymmetry as a unitary transformation.

There are of course also antiunitary symmetry transformations
possible. Such transformations can never be supersymmetries. That is, an
antiunitary transformation cannot commute with all the observables. The
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proof is based on the fact that the time reversal transformation T is

always antiunitary5). Let X be an antiunitary supersymmetry transformation,

then TX is also a time reversal transformation. But as a product of
two antiunitary transformations it is itself unitary. This is not possible.

The following theorem gives a criterion for the existence of super-
symmetries :

Theorem I
A quantum mechanical system has a supersymmetry if and only if the

algebra 91 of bounded operators generated by the set of all observables
is reducible.

Proof: We say a von Neumann algebra 91 is irreducible if its commutator

algebra 91' is trivial (that is consists only of the multiples of the
identity) ; otherwise it is called reducible. For the proof of the necessity
of the condition we assume U is unitary and it commutes with all
observables S. That is

Ue{<5}'.
We wish to show that

Vi e 31'. (6)

In order to verify this, we need the following properties of von Neumann
algebras :

(1) Every von Neumann algebra 9JÌ is identical with its double corn-
mutant :

9Jc" 9JÏ.

(2) The commutant of a set S of self-adjoint operators is a von
Neumann algebra.

Let us define then

{S}' 9Ji.

It follows with properties (1) and (2)

{S}'" 9JT 9Ji=9i'
and therefore

U g 91'. (7)

Since VL is different from the identity the commutant 91' is not trivial,
hence 91 is reducible. This proves the necessity of the condition.

To prove sufficiency, we assume 91' to be non trivial. We must show
91' contains at least one unitary operator. In order to show this, we use
another property of von Neumann algebras : every von Neumann algebra
can be generated by its unitary operators6). Since 91' is non trivial, there
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must exist at least one unitary operator U e 91' which differs from the
identity. This completes the proof.

We have previously shown 4) that the reducibility of 91 is characteristic
for the existence of a superselection rule. Hence, we have the corollary:

A supersymmetry exists if and only if there exists a superselection rule.

3. Essential observables

We shall now assume that there exists at least one complete set of
commuting observables At. In the above mentioned reference4), it was shown
that such a set generates a maximal abelian von Neumann algebra

*={Aty, (8)

31 W. (9)

Furthermore the algebra 91 generated by all observables satisfies4)

9c'c5R- (10)

Let 31; be the set of all maximal abelian algebras contained in 91. The
intersection of them is again a von Neumann algebra which we shall call
the core £ of 9Î

<Z=0%- (H)
From 31; C 91 follows

91' C 3i; 31; C 3t (12)

and by taking the intersections

9î'Ç(£c9t- (13)

Thus the core always contains the center, which, in this case, is identical
with 91'. But for algebras generated by observables we can say even more.

We shall, in fact, show that for algebras which satisfy (10), the following

theorem is true :

Theorem 2

For a von Neumann algebra with abelian commutator algebra the core
is identical with the center.

Or
91' C 31 implies 3 £.

Proof: We note that 3 31' and the inclusion

3C<£
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is already proved (equation (13)). Thus, we proceed to establish

£C3-
In order to do this, we need the following three lemmata.

Lemma 1 : Let 31 C 91 be an abelian subalgebra of a von Neumann algebra
91 with abelian commutator algebra 91' C 9Ì, then 31 31' O 91 implies
31 31'. In other words, an algebra which is maximal abelian in 91 does

not have any abelian extension.

Proof of Lemma 1: Assume 9i'C 91, 31 C 91, and 31 31' O 91. We show
first that 3 Q 31. If this were not so, there would exist an operator
Z G 3 and Z $ 31. But this operator is both in 91 (since it is in 3 Q 91)

and in 31' (since 3 9t'C 31'). Hence 31C31'O 91 and 31 4= 31'n 91. This
contradicts the assumption. Thus 3 Q 31 and since 3 91' also 9l'C3l.
Consequently 31' C 91" 91 and so 31 31' O 91 31'. This proves the
lemma.

Having established that maximal abelian algebras in 91 have no
abelian extensions, we show next that there exist maximal abelian
algebras in 91.

Lemma 2: Every abelian algebra in a von Neumann algebra 91 can be
extended to a maximal abelian algebra contained in 91.

Proof of Lemma 2: Let 31 C 91 be an abelian algebra in 91. Let tf> be the
class of all abelian algebras in 91, containing 31. It is partially ordered

by inclusion. If ^0 is a linearly ordered subclass of cf>, then the union of
all elements in cf>0 is again an abelian algebra contained in <f> and it is

an upper bound for cf>0. By Zorn's lemma <f> contains a maximal element
3t0 for which 3I0 % D 9L By lemma 1 it follows 3IÓ 3I0, and this
proves lemma 2.

A simple corollary of this is

Lemma 3: Every operator T e 91 is member of at least one maximal
abelian algebra in 91.

Proof of lemma 3: T generates the abelian algebra {T}" and according
to lemma 2 this algebra can be extended to a maximal abelian algebra
in 91. This proves lemma 3.

The proof of the theorem is now easily completed as follows. Let
S e d. If S were not in 3. then there exists an operator T g 91 which
does not commute with S. But S g 31,- for all i e I. Thus T cannot be
in any 31;. This contradicts the lemma 3. Thus S G !^ and

£C3-
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This proves the theorem.
Observables in the core are called essential observables. A complete set

of essential observables is a set of observables affiliated with the core with
the property that the algebra generated by them is identical with the
core. Every complete set of commuting observables contains a complete
set of essential observables.

We mention now a few corollaries which follow from the preceding
results. By combining theorem 1 and 2, we see that a physical system has
essential observables if and only if it has superselection rules and therefore

supersymmetries. The essential observables generate an abelian
algebra which is identical with the center of the algebra generated by all
observables. This establishes the connection between essential observables
and supersymmetries mentioned in the introduction.

Another interesting consequence is obtained from lemma 3 : either every
observable is a member of a complete set of commuting observables or
there exists no such complete set.

A further consequence of these results is the following : if 91' is abelian,
then there exists a maximal abelian subalgebra of 91. On the other hand,
it is trivial7) to show that if there exists a maximal abelian algebra in 91,

then 91' is abelian. Thus, we have the

Theorem 3

The necessary and sufficient condition for the existence of a complete
set of commuting observables is that the commutant 91' of the algebra 91

generated by all observables is abelian.
This is the theorem which we have announced and briefly discussed in

the introduction.
A simple corollary is: A physical system with no superselection rules

always admits a complete set of commuting observables, a statement that
would have been obvious in the first place.

4. Application to gauge transformations

One of the main problems in the investigation of the kinematical structure

of physical systems is to find superselection rules. According to our
theorem 1, this problem is identical with the finding of supersymmetries.
In either case these properties amount to a physical assumption. Yet the
formulation with the help of the concept of the supersymmetry has a
certain heuristic advantage. One may, for instance, assume that transformations

which do not affect the classical limit of observables are super-
symmetries in their quantum mechanical interpretation.
45 H. P. A. 34, 6/7 (1961)
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Based on this assumption one would look for Abelian groups of
symmetry transformations which leave the classical limit of the observable
quantities invariant. Such transformations are for instance the gauge-
transformations for a system of charged particles interacting with an
electromagnetic field.

In the following, we shall make the assumption that C-number gauge-
transformations are supersymmetries and we shall find the corresponding
superselection rules. Since there does not yet exist a mathematically
satisfactory formulation of a realistic field theory we shall use the
conventional rules hoping that, in spite of the heuristic character of this
theory, the symmetry transformations here considered, have a significance

also in a future improved formulation of field theory.
Let W(x) represent a spinorfield interacting with an electromagnetic

field represented by a vectorpotential Ax(x). The field operators satisfy
the usual commutation rules and field equations9). A C-number gauge
transformation is given by

Aa(x)-+A[(x) Aa(x) + dxA(x),
(14)

W(x) -+W'(x) W(x)e,eA^

where A(x) is a scalar function satisfying

d" dflA(x) 0 (15)

These transformations are generated by the formally unitary transformations

U=eiF (16)

with

F=[do»F/l, (17)

F^X^A-Ad^x,
X^à*Ax.

(18)

The integration for F is extended over a space-like hyperplane a which,
because of

d>d,x o (19)

can be chosen arbitrary.
The operator F satisfies the commutation rules

i[F,A,(x)] =d,A(x),X À

(20)
i[F, W(x)] =ieW(x)A(x)



Vol. 34, 1961 Supersymmetries and Essential Observables 707

which are formally equivalent with

A'A(x) UAÄ(x)U-\
(21)

W'(x) U W(x) U1.
Because of (20) and (19), the group of unitary operators Vi{A} associated
with all the different functions A(x) is Abelian and satisfies

U{AX}U{A2} VL{AXA-A2}. (22)

If we assume that the group H{A} represents a supersymmetry, then only
operators which commute with U{A} can be observables.

We shall now show that this assumption leads to the conclusion that
the total charge of any system is a superselection operator, that is an
operator which commutes with all observables.

To this end, we use the identity

F/l=xd/lA-A(dvF;-Jjl) (23)

which follows from the field equation

0*0,4,= -/, (24)

and the expression (18) for F Let us now consider as a special choice for
A a constant, such that d„ A 0. We obtain then for

r

F=A(F0-Q) (25)
with

Fn=-Jdo,dvF>", (26)

Q -fdo/lJ». (27)

Because of d dv FßV 0, the integral for F0 can always be written as

an integral over 3-space with only space-like derivatives

F0= f d^xdiF«'
a

where the space like plane a can be placed anywhere. By an application
of Gauss's theorem, the integral can be expressed as a surface integral
at infinity. If one were dealing with numerical functions of one could
introduce here the assumption that the fields vanish at infinity such that
F0 0. However, this often used argument is not applicable since we are
dealing with field operators which vanish nowhere.
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However, it is easy to see that the operator F0 commutes with all the
field variables at finite space-time points and therefore the operator
— AQ has the same commutation rules with all dynamical variables as
the operator F. In particular, one verifies directly the relations

i[Q,Ax(x)]=0-

i [Q, W(x)} =-ie W(x)

which are obtained from (20) and (25) by specialization of A(x) to a
constant. These particular canonical transformations are therefore
represented by the unitary operators

U e-W,

Q -fda/lJ".
According to our assumption, these transformations represent super-

symmetries and therefore any operator which does not commute with
them, is not an observable. This leads to the conclusion that the total
charge operator Q is a superselection operator. This corresponds to the
well known fact that it is not possible to prepare a physical state which
is a superposition of different charge states.

In order to emphasize the physical content of this conclusion, it should
be placed in opposition to the situations which are obtained from other
conserved quantities which are not superselection operators. Such operators

are, for instance, the total momentum or the spin. Even though the
total momentum is a conserved quantity in systems with displacement
invariant interactions, it is perfectly possible to prepare states which are
superpositions of the total momentum eigenstates. The same is of course
true for the spincomponent in any fixed direction of space.

On the other hand, one must not confuse a statistical mixture with a

superposition. It is quite possible to have a statistical mixture, represented
by a density operator, which mixes states with different eigenvalues of
the charge. What is excluded by the supersymmetry is the possibility of
preparing a pure state which is a superposition of states with different
charge eigenvalues.

An immediate consequence of this result is that the 1- and 2-compo-
nents of isotopie spin cannot be observables. This is so because in the
known elementary particles the 3-component of the isotopie spin differs
from the total charge operator by an additive constant. Thus, the 1- and
2-components of isotopie spin can never commute with the total charge
operator and according to the preceding result cannot be observables.
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This result, which was known before, is derived here from the assumption
that C-number gauge transformations are supersymmetries.

A further conclusion which follows from theorem 2 is that the total
charge is an essential observable. Every complete system of observables
must contain as one of them the total charge.
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