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On the Asymptotic Behaviour of Wightman Functions
in Space-Like Directions

by H. Araki*), K.Hepp and D.Ruelle
Eidgenössische Technische Hochschule, Zürich

(1. II. 1962)

Abstract. The exponential decrease of the truncated vacuum expectation value
of a product of field operators (each field being smeared out over a compact set)
at large separation of their arguments along a fixed space-like hyperplane is proved
under the assumptions of translation invariance, stability of the vacuum, existence
of a lowest non-zero mass and local commutativity, but without assuming full
Lorentz invariance or temperedness of the fields. A result is also obtained for the
case of lowest mass zero.

1. Introduction and statement of the results

Since its introduction by Haag1) the asymptotic condition in spacelike

directions has been studied by several authors 2~5). The problem is to
determine the asymptotic behaviour of the Wightman functions of the
basic fields A(x)

(Q,A(xx)...A(xn)Q) (1.1)

or of the vacuum expectation values (VEV) of smeared out fields B(x)

(Û, B(xx) B(x„)Q) (1.2)

for large space-like separation of some of the arguments %
The discussions by Araki3) and Jost and Hepp4) are mainly based on the

assumptions of Lorentz invariance and spectral conditions. They show
that, if the points xi are separated into two clusters, (1.2) approaches a
limit faster than any (negative) power of the separation distance between
the clusters, when this distance is space-like and tends to infinity.

*) On leave of absence from the Department of Nuclear Engineering, Kyoto
University, Kyoto, Japan.
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Araki further shows that, in the case of the dilatation of Jost points,
(1.1) converges exponentially towards its limit*).

On the other hand the discussion of Ruelle5) is based on translation
invariance, spectral conditions and local commutativity but without
further use of Lorentz invariance or positiveness of the metric in Hilbert
space. He proves the vanishing of the truncated VEV corresponding to
(1.2) faster than any (negative) power of the diameter of the point set

{xf), when the x{ are in a space-like plane and the testing functions are

inj/.
We present here a proof of the exponential approach of (1.2) to its

limit for testing functions in CD under the following assumptions* *), which
are similar to those of Ruelle.
(T) There exists a unitary representation T(a) of the translation group
satisfying

T(a) A (x) T(- a) A (x + a). (1.3)

(S) There exists a unique vacuum state Q satisfying

T(a)Q Q. (1.4)

In Q1 the spectral measure E of the unitary representation T(a) defined
by

T(a)= fei{MdE(p), (1.5)

3

(p, a) p» a° -£ pl a1 (1.6)
i l

has its support in

V™ {fi: (p,p) A M2, p°> 0}, M>0, (1.7)

(C) [A (xx), A (x2)] 0 if (xx - x2, xx - x2) < 0 (1.8)

Our main idea is simple and may be sketched as follows for the case of
the separation into two clusters (the proofs of the different steps will be

*) Theorem I of ref. 3) is stated for points xi with the same time component and
assumes local commutativity, but the exponential vanishing of

(Q, A(xx) E1 A(x2) ...E^A(xn) Û)

can be proved in the same way without local commutativity, for xi — xi+1 =¦ ff+
X £/, where f2- + X f/ should be a Jost point for sufficiently large X and A->- oo, Çp

f/ fixed (with at least one f/ £ 0).
**) The operator valued distribution A(x) is not assumed to be tempered unless

explicitly stated. Apart from the Lorentz invariant support conditions implied by
the spectral condition and by locality, no use of invariance with respect to Lorentz
rotations is made.
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given in later sections). We investigate the behaviour for large space-like
I xx — x2 of the function

hX2(i) <Bx(xx) B2(x2)>0- <Bx(xx)y0 <B2(x2)y0

<Bx(0)T(-i)E0^B2(0)>0, (1.9)

where <... >0 denotes the vacuum expectation value, E£¦ is the orthogonal
projection on Q^ and B{(xA is defined by

Bi(xi) / àx\... dx'm cp^xl, xA) ]J A (Xi A- x]), (1.10)
J i-i

tpieCDtrii), Ì=l,2.
Now, due to (C), the function

Hi) hX2(i) - h2X(-1) < [Bx(xx), B2(x2)] >0 (1.11)

vanishes for | g D(cpx, cp2)', where

D((plt cp2) {x'2 — X xl g supp cpf, i 1, 2} (1-12)

and D' is the set of all points which are space-like to every point in D.

Furthermore, due to (S), the Fourier transform h(p) of A(|) vanishes for
(p, fi) < M2. Therefore, Ä(|) has the Jost-Lehmann-Dyson6) representation

00

A(D =Jd(x2)Jd%' [4(| - r) ex(§', x) + -A-4 (f - §') gt(g', «)] (1.13)

M' D,

where the three-dimensional region Dx is compact.
The function A12(l), being the positive frequency part of h(tj), is

obtained if 4 is replaced by 4+) in (1.13).
The exponential vanishing of Ä]2(|) at large space-like distances is

finally derived from the following asymptotic formulae valid for (f, f) <
0, \i\ [-(ÇJ)]112 bev¬

ane!

_d
di'

^'(fl-XwX^^XX)]- <L14»

r4+'(fl --f (idX)""^"'" ['+ ° (X)] • f1-1"

The result is the following
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Theorem 1. (T), (S) and (C) imply that

\KM)\^cm-^c-^{iA-^)
if £ g D'x and [f] ïg ô > 0, where A12(|) is defined by (1.9), C is a constant

independent of |, [|] is the shortest sfiace-like distance between £ and a

compact set Dx and £)j is the convex closure of the complement, in the plane
{1:1° 0}, of the intersection D' O (|° 0}, where D is defined by (1.11).

In short, if the fields in Bx(xx) and B2(x2) are mutually separated by a
large space-like distance R, hX2(£) tends to zero at least as fast as R~3,2X

e~MR. The weight functions qx and q2 are simply related to h(p) and

p°h(p), which are bounded complex measures and, from this, C can be

explicitly expressed by certain VEV's.
As a consequence of theorem 1 one has the following

Theorem 2. (T), (S) and (C) imply that the truncated VEV of the product
of the fields Bt(xf) (i 1,... n) tends to zero at least as fast as R*2 e-MRl("-1)i
when the diameter R of the point set {xf\ goes to infinity and x\ x®.

Our method also yields a result for the case M 0 :

Theorem 3. (T), (S) with M 0 and (C) imply that

|Mf)l=SXI]-2(i + -P)
if f G D'x where h12(£) is defined by (1.9), C is a constant independent of |
and [|] is again the shortest space-like distance between £ and Dx.

Remark: The formulation of the above theorems is not optimal because
of the special rôle played by the space-like hyperplane {£ : £° 0} in the
definition of Dx and in theorem 2. More adequate results can be easily
obtained in particular cases.

2. The case of two clusters (proof of theorem 1)

First, we note that, due to (T), the Fourier transform hX2(p) of hX2(£)

exists and is given by

hX2(p) dp (2 ti)-2 d <BX(0) E(p) B2(0) >0 (2.1)

According to Jost and Hepp4)

(£°)( (n (^H ^)
is a bounded complex measure for arbitrary positive integers / and mr
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In particular, for any bounded continuous function %(p) one has

dp X(p) (p°y hX2(p) <

< || (P0)' B2(0) Q\\ ¦ \\BX(0)* Q\\ (2ti)-2 sup \%(p) \ (2.2)
(p,p) a M1, p°>0

where P° is the energy operator and (P0)' B2(x) Ü is obtained from
B2(x) Q ii cp2 (x'v x'r(2)) is replaced in (1.10) by

(*'d^)' <P2(x'i + x,...x'r{2) + x) X0.

Correspondingly we obtain from (1,11) :

"dpx(P)(P0)lkp) <Ct sup \X(p)\, (2.3)
{p,p)ÌS,M*

C, (2jr)-2{|| (P°y B2(0) Q\\ • llß^O)* ß|| +

+ \\(PoyBx(0)Q\\-\\B2(0)*Q\\}. (2.4)

Now, the boundedness and support properties of h(p) imply that the
function

H(l s) (2ti)~2 [dp «-**¦«> cos{s)'(p,p)) h(p) (2.5)

is infinitely continuously differentiable and satisfies

m-Ê(Ar-(Af}^">. (")
% i

(2.7)
-,„ i 0 for odd n,X- H(£, 0) {

ds \ Uf Hi) for even n.

Due to (C), Ä(|) vanishes for £ in D(cpx, tp2)'. H(Ç, s) and all its derivatives
therefore vanish along the time-like segment defined for fixed § by

s 0, ||0| < min If- fi (2.8)

where D0 is the complement in the plane \ß : |° 0} of the intersection
D(cpx, <p2)' Ci {£ : |° 0} and is compact.

The uniqueness theorem for the solutions of (2.6) (see e.g. Wightman7))
states that if H(£, s) vanishes of infinite order along a time-like segment,
it also vanishes in the double-cone spanned by this segment.
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If we let | go to infinity in (2:8) and apply this theorem, we see that

(-^r)/H(^,S)||0 0 0 if %$Dlt 1 0,1, (2.9)

where Dx is the convex closure of D0 and is compact.
H(£, s) may be expressed in terms of its Cauchy data in the plane

{(|,S):|o 0}:

H(l s) -Jd^'Jds' [A A* (I - f. * - s') H(P, s') |r._0 +

+ zi® (| - I', s - s') -A, #(f, s') |f.. 0] (2.10)

where, due to (2,9), the ^'-integration may be restricted to Dx and

/1(5) (I, s) - i(2n)-*[dp dx «-*«&*>-«<! e(p°) ò(p2 - x2). (2.11)

Setting s 0 in (2.10) and taking the ^>° > 0 part of (2.11), we obtain

-J- OO -f- OO

Ml) - (27i)-^Jd^'Jds'Jdxe-i"s' [~AM (| _|') x
Z>! — CO — CO

x ff(r, s') |ro. 0 + 4+> (i - r) ^ ff(F, s') |r.. „J, (2.12)

where we have

4+>(|) _ i(2A)-3 fdfi e~i(p^ 0(fi°) ô(fi2 - x2) (2.13)

- i (2ti)-2 x Kx{xl/-(Ç,£)) ltf-(è,Ç) for (|,|)<0. (2.14)

We may thus write (see (2.5))

h12(ï) -(2 7i)-2fdÇ'f(£,%'), (2.15)

HS. ê') =Jdp [Xi(p, 11') A(/>) - » *2 (A f, I') £° *(fl] (2.16)

where*)

*) Note that, in proceeding from (2.12) to (2.16), the exchange of the s'- and
^»-integration is allowed because

oo

/ =/costs') A(X+)(S) dx - »(851)-* (- (f, |) + s'2)-3'*
0

01
and I ~ ls'l_3>^är ~ Is'I-5 f°r l^']-^00.

so that the convergence of the ^'-integration is uniform in p in (2.17) and (2.18).
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+ 00 00

Xi(P. f. =§') w-1 e1?* J ds' cos(s' fkpfp))fdx cos(^ s') -A- x
-00 0

x 4+> d -1') |r.. 0 eipi' ^-r 4wf) (* - n II" - 0. (2-17)

+ 00 co

Z«(0. f. f') ^_1 e,pi'/ ds' cos(s' i(P>t))[fa coste s') x
- 00 0

x d<+) (| - I') I,,., c*'* Afâji (I - I') lr«-o • (2-18)

Applying (2.3) to (2.15), (2.16) we obtain the majorization

I Ml) I ^ (2 ») -2 7(1),) [C0 sup I Xi(P, 11') I + X sup I x*(p, I, §') |]

(2.19)

where V(DX) denotes the volume of Dx and the supremum is taken over
all fi, I' such that (fi, fi) ^ M2, l'e Dx.

On the other hand, from (1.14), (1.15) and (2.14) we get

|f|w^i«i|4+)(D|<4,

|!|5/2 ||0|-lgM|||
0

4+'(Dd|° <4
for x ^ M and space-like f such that ||| [- (£, I)]1'2 ^ ô > 0.

These majorizations finally yield the formula

IMI) I ^ (2 A)-2 V(DX) [I0-3/2 „-»W [C0 4 + Cx A2 ig-], (2.20)

where [£] is the shortest space-like distance between | and Z)1.

3. The case of zero mass (proof of theorem 3)

We assume that Q is the only eigenstate belonging to the eigenvalue 0

of P*. Thus its positive frequency part hX2(p) may again be uniquely
obtained from h(p), since h(p) has zero measure for the point {fi 6j, and

every step in the previous section up to equation (2.8) is valid with M
replaced by zero.

Furthermore, since

4+)(D -*(27r)-2(|,|)-1 for (|,0 <0 (3.1)

and since x Kx(x) and xs dfdx [Kx(x)/x] are both bounded for x :> 0, we get

|4+>(!)I<4H|X (3-2)
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^r4+)(|)|<4||o|.|||-4 (3.3)

for x ^ 0 and space-like f. Therefore

|Ml) I =S V(DX) [|]-2 [C, 4 + C, 4 -[gi] (3.4)

4. The case of many clusters (proof of theorem 2)

We investigate now the behaviour of the truncated VEV

<B1(x1)...Bn(xn)>T (4.1)

for large separation of the xit assuming x\= x\.
The main idea is the following. If R(x) max | xt — xA, there exists a

», ;
partition of the point set {xf) into two families such that the distance of
their convex hulls is at least R(x)j(n — 1)*).

Theorem 1 may then be applied, the constants C, still depending on
the configuration of points in each family. However, apart from the
volume factor V(DX), Cl may be proved to be uniformly bounded, due to
the following lemma, which is a direct consequence of the Schwarz

inequality :

Lemma: For x\— x° the VEV

<Bx(xx)...Bn(xn)>0 (4.2)

is a bounded function of its arguments.

Proof of the lemma.

a) Since (4.2) is a continuous function of the difference variables

xi — xi+x, it is bounded in any region of the type max|#,. — Xj\^
(«-1)1..

" " i:i

b) If max | Xf — xf | > (n — 1) L, there exists a partition of the point
i,i

set {xf} into two families Fx, F2, such that x{ G Fx and x} G F2 imply
I xi ~ xj I > L. Furthermore, since D(cpis cpf) is compact for all i, j, it is
possible to choose L such that [B^xf), B^xff] 0 whenever | x{ — Xj \ >
L. We may therefore rewrite (4.2) in the form

<B'1(x'1) B'k(x'k) B[(xi) Bl_k{xnn_k) >0 (4.3)

*) Let max I x{ — x41 be obtained for i h, j — I and consider the plane ortho-
i,i

gonal to xk — Xi through each xt. Then there always exist two neighbouring planes
with a distance not smaller than R(x)j(n — 1), and these planes divide the point
set {xt} into two families Fx, F2 with the required properties.
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where

x'f e Fx, 1 SXXs X x'je F2, 1 ^ ; Sa n — k

The absolute value of (4.3) is bounded by

USX)* B[(x'x)* Q\\ ¦ \\B[(x'x) B"n_h (x':_k) Q\\ (4.4)

c) Each factor of (4.4) is the square root of a VEV of type (4.2) which
can be majorized again as above. This process has only to be repeated a
finite number of times since (b) eventually leads to constant bounds with
factors of the type i(Bt(xf) B,•(%)*)'>0- The lemma is thus proved.

We present now the details of the proof of theorem 2.

If max |x{ — x-\ R(x), there exists a partition of the Xf into two fami-
», i

lies Fx and F2 such that their convex hulls C(FX) and C(F2) have a
distance not smaller than R(x)j(n — 1).

Let R(x) 2: (n — 1) L, then using the locality of the truncated VEV
one may rearrange the Bt(xt) in (4.1) in the form

<B'1(x'1) B'k(x'k) BKx'i) B"n_h (x"n_k) yl (4.5)

similar to (4.3). (4.5) may be written as a sum of products of ordinary VEV

<KK) ¦ ¦ ¦ KK KK) ¦ ¦ ¦ KK >o • (4-6)

This sum does not change if each factor (4.6) is replaced by

<KK) ¦ ¦ ¦ KK) E°L KK ¦ ¦ ¦ B'isK >« ¦ (4-7)

when r • s 4= 0, if it is left unchanged when r ¦ s 0 and if the terms
which contain only factors with r ¦ s 0 are crossed out*).

We remain thus with terms containing at least one factor of the type
(4.7). According to the above lemma the other factors are majorized
by constants. The VEV (4.7) may be majorized according to (2.20),
where £° 0 and [£] + L is not smaller than the distance of C(FX),
C(F2), which is at least R/(n — 1). In the expression (2.4) for the
constant Cj, 5](0) and B2(0) are to be replaced by B'Ax\f\ ¦¦¦ B'ir(x'ir) and

*) To see this, write the definition formula (see ref. J) for the truncated VEV) :

<...>0r <...>0-2:i7<...>0r, (a)

where the summation extends over all partitions of {xx, xn} into several sets.
From this follows immediately

<...),r (...£,i...>rrff(...)[, O?)

where the summation extends over the partitions which are not finer than (Fx, F2).
The property stated follows by iteration of (ß).



Vol. 35, 1962 Asymptotic Behaviour of Wightman Functions 173

B'f(x-[) B'js(x"s). Because of the lemma, Ct has again a bound
independent of the x'i, x'j. On the other hand, the volume factor V(DX) is
smaller than (2 R A- L)s. This completes the proof of theorem 2.

5. The case of testing functions in X
In this section we generalize theorem 1 and theorem 3 to the case

where 95,6 A/in (1.10) using the additional assumption of the tempered-
ness of the field A(x) (yet still without using Lorentz invariance). For
each q 2ï 1 we introduce a partition of unity cAQ(x) + (Ae(x) 1 in R*'M
such that Ae(x) vanishes outside of the region max [| x°\ A- | #¦ |] sg q and

i
ac2(x) vanishes in the region max [\x°\ + \Xj\] < Q — 1/2. The derivatives

i
of all order of a1, a2 are assumed to exist and to be bounded uniformly
in q. Introducing the functions

9^ «>; e rX <PÏe <4 <p, e A/

instead of cpt in equation (1.10) we obtain fields B\Q, B2e such that

X B)e A- B2e

Since cp}e g CD, we may apply formula (2.20) to B}g with the result

I <B\e(xx) Ei- B\e(x2) >01 < E 03 [0-3/2 e-Mm (1 + J^L) (5.1)

forO<ó^ [£].
The factor q3 comes from V(DX) and £ is a constant which may be

chosen independent of q because of the boundeness*) of norms like
|| B\e(Ö) Q\\ with respect to q.

In the right-hand side of the relation

Ml) <B\Q(xx) El B\Q(x2)\ A- <B\e(xx) El B\Q(x2)y0A-

+ <B2le(xx) El B\e(x2)>0 + <B\e(xx) El B\e(x2)>0 (5.2)

the first term is majorized by (5.1), the other terms tend to zero faster
than any power of q-1 when g -> 00 because of the temperedness of
Wightman functions.

If we restrict f by ||°| g A 111, 0 < X < 1, and take

2,=i5i(i-(XT) <")

*) <p\ belongs to a bounded set of ^'/when 1 g g < 00.
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we find

[I] [(|l| -2e)2- l^l2]1'2^ IH (iti-- X2)1'2^ |f I (^)1'2. (5.4)

Introducing (5.3) and (5.4) in (5.1), we see that all terms in (5.2) decrease

faster than any power of | £ | when |f | ->• oo, M > 0.

Theorem 1'. (T), (S), (C) and the temperedness of the field imply that the

function hX2(£) defined by (1.9), where cpx, cp2eA/, tends to zero faster than any
power of |f|-1= (— (I.0)1'2 when |f| ->oo with the restriction ||°| igl |||,
0< A< 1.

In the case M 0, (5.1) is replaced by

\<B\e(xx) El Ble(x2)y0\<Ee3 [|]-2 (l + jgi) (5.5)

(5.4) remains valid if 2 q is replaced by a quantity smaller than (5.3),
for instance

when

ifxxxrx
and we have

Theorem 3'. (P), (S) zróA M — 0, (C) and the temperedness of the field
imply that the function Â12(|) defined by (1.9) where cpx, cp2e A/, tends to zero

as fast as |f \-2+r> for any positive rj when |f | -> oo with the restriction

||°|^A|||, 0<1< 1.
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