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Support of a field in momentum space

by Derek W. Robinson
Institut für Theoretische Physik ETH, Zürich*)

(1. III. 1962)

The theory of a scalar field A(x), defined under the assumptions of
Lorentz invariance, locality, absence of negative energy states, uniqueness

and cyclicity of the vacuum, is considered. It is proved that if the
Fourier transform of the field in momentum space vanishes in the
neighbourhood of a space-like point then the theory describes a generalized
free field.

1. Introduction

In recent years local quantum field theory has been extensively
studied from an axiomatic viewpoint. This study has led to insight into
many of the mathematical difficulties which proliferate in this subject
and has also helped to understand some of the connections between the
physical postulates upon which the theory has been founded. Many
models of local field theories have been examined but unfortunately no
model has been found which satisfies all the axioms of the theory and
also leads to a scattering matrix different from unity. We mention as an
example 'generalized free fields'1)2).

In this paper the support properties in momentum space of a local
field are considered. It is shown that these support properties lead to a

very simple criterion for deciding whether a field is a 'generalised free

field'3), and to the result that it is necessary for a field to have support
for all space-like momenta in order that it should be an interacting field.
It may be deduced from counter examples that this condition is not a
sufficient condition for a field to have scattering matrix different from
unity.

Section 2 of this paper summarises the axioms and defines the structure

of the field theory considered in the following sections. Two theorems

*) Present address: Univ. of Illinois, Urbana, Illinois.
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are also stated. Section 3 contains the statement and proof of the theorem

which constitutes the main result of this paper. Section 4 contains
a summary of the results with a short discussion.

2. Definitions and Theorems

A neutral scalar field theory is defined, in the manner of Wightman4),
by the following assumptions

1. The linear space of states 0, W is a separable Hilbert space with
scalar product denoted by (0, W). A neutral scalar field maps each

testing function cp(x) e S into a linear operator A(cp) of §. We assume
that the intersection of the domains of all A (cp) contains a dense manifold
D in § which is invariant under all A (cp). For all 0, W e D

{<P,A(cp) ìF) (A(y)&,ìF)

is assumed to be linear and continuous in cp i.e. a distribution in S'.

Symbolically we write

A(cp) I d*x A(x) cp(x)

and in the following we work with the field A(x). It is therefore necessary
to keep in mind that all equations should be interpreted in the sense of
distribution theory5).

2. Lorentz invariance. There exists a unitary representation U(a, A)
of the proper orthochronous inhomogeneous Lorentz group fulfilling the
following conditions

a) U(a,A)A(x)U-1(a,A)=A(Ax+a),

b) U(a, A) D C D

At this point we elaborate a little more fully the properties of the
representation T(a) U(a, 1) of the subgroup of translations. A simple
generalization of Stone's theorem allows us to make the spectral
decomposition 6)

T(a) fdE(k) eika

where k is in momentum space. £ is a uniquely determined projection
valued measure. To each Borel set A in momentum space there corresponds

a projection E (A) E(A)2 E (A)* in <r>.
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3. Absence of negative energy states. The support of E lies in the
closure V+ of the forward light cone where we define

X {P ¦ Po > o P2 > 0}

4. The vacuum state Ü is unique. The vacuum Q e D is cyclic with
respect to successive operations of A (x) on Q.

5. Locality. The field satisfies the following commutation relation

[A (x), A (y)] 0 for (x - y)2 < 0

In order to fully prepare the ground for the next section we now quote
two theorems7) which will be extensively used.

Theorem A: If g is the set of all tempered distributions F(y) which
vanish for y2 < 0, and if CS is the set of all tempered distributions G(q, a)

on five dimensional space, labeled by (q0, qlt q2, q3, a) satisfying

/ ô2 d2 ô2 ô2 ô2 \
\TqJ ~ AqJ ~ Aq% ~ AqJ ~ AcA) G^' ^ ° '

G(q, a) G(q, - a)

then the transformation

G(q, a) -~5- / d*y cos(cr^y2) e-'w F(y)

maps g one-to-one on (5, and G(q, a) defined by the transformation has
the property that G (q, 0) is a tempered distribution and is the Fourier
transform of F(y).

Theorem B (Uniqueness theorem) : If G(q, a) is a tempered distribution
in the set G then G(q, a) has the following support properties

a) If G(q, a) vanishes of infinite order on a time like segment, it vanishes

in the double cone subtended by that segment.

b) If G(q, a) vanishes in a slab bounded by two space like surfaces,
it vanishes in the dependence domain of the slab.

The proofs of these theorems and further discussions thereof may be
found in the reference cited. The uniqueness theorem is a consequence
of Huyghens principle and although it is not the strongest theorem that
may be derived from this principle it suffices for our purpose.

3. Support properties of the field

The essential content of the present article is contained in the theorem
which we now quote and prove.
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Theorem: If a neutral scalar field A (x) is cyclic in <r> with respect to the
vacuum Q and if the following conditions are satisfied

1. Lorentz invariance.
2. Absence of negative energy states.
3. Locality
4. The support of the Fourier transform of the field

MP)^-~^fdHe-iP'A(x)

excludes the neighbourhood of a space like point p in momentum space
then A (x) is a generalized free field.

The support of the field in momentum space is a Lorentz invariant
set and thus condition 4 of the theorem is equivalent to the statement
that A (p) has support R defined by

R {p:p2 <-a cr p2 ^ - b}

The real positive numbers a and b satisfy the condition a~> b but are
otherwise arbitrary. It is not necessary that b is positive but we make
this assumption in order to avoid placing restrictions on the physical
spectrum of the field.

In order to prove the theorem we consider the tempered distribution
in two variables f(xv x2) defined by

f(x1,x2) (W1[A(x1),A(x2)]Q) (1)

where W is a vector in §. We derive from this distribution the tempered
distribution in one variable

F(y) W"/ dH ^f(x + y'x~ y) (2)

where cp(x) is a test function in S. The Fourier transform of /(%, x2) is
defined by

kpi. pè -(iV/^1 #*2 e~,{piXi+p2Xi) /(*i. *»)

and we find that the Fourier transform of F(y) is given by

m ^fd2pcì(p)}{ì±A,^-Y o)

The Fourier transform of cp(x) has been introduced

V{P) ~r^JdixeiP'cp(x).
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We next consider the measure E determined by the spectral decomposition

of the translation operator. We make a decomposition of unity

£E(D{) 1 (4)
i

where the Borel sets D{ are chosen such that

X U D,
(5)

and Z~L CtDj cp if i =# /

Corresponding to this partition of unity we may decompose /(%, x2)

/(%> *i) £fi(Xi, x2) (6)

where *

fi(x1,x2) {E(Di)W,{A(x1),A(x2)]Û).
Similarly

F(y)=gF{(y)
where *

F*W AAW\ äH fM f* (x + y''X-y) ¦

The distributions F;(y) and Fs(q) have support properties determined
by conditions 3 and 4 of the theorem. These support properties are the
following

1. F{(y) =0 if y2 < 0

and

where

2. Ft(q) 0 unless qeC C1UC2 (7)

Ca=l?:Xö.^eF+XieÄ
The support F;(^) for D; a neighbourhood of Pt is depicted in figure 1.

We have defined

D-( {q:-qeD(}.

The support of F{(q) may be seen from figure 1 to be the union of two
cones minus two 'grooves' which are both bounded by sections of timelike

surfaces (one-sheeted hyperboloids). These grooves arise from the
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assumed properties of the support of the field A(x) in momentum space.
The grooves are absent if the diameter of the set D, is larger than some
number «(e) determined by e a — b, the real number determining the

gap in the support of A(p). However, we have the freedom to choose the
diameter of T)l arbitrarily small, thus we may assume the grooves to be

present.

^

Fig. 1

The support C of Ft(q) when L)i is a neighbourhood of Pi.

In order to examine the support of F{(q) we use theorems A and B of
section 2. We define

G,{q, o)
(2ji)2

d*y cos(o- }/y2) «-'«» Ft(y) (8)

and then from Theorem A and the support property of F{(x) we are
ensured that

G{(q, a) e ©
and

Gt(q, 0) F,(q)
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The ground is now prepared to apply Theorem B. The initial application

of Theorem B makes use of the first part of the theorem only. The
procedure is to take time-like segments which lie completely outside of
the support of the distribution G(q, a). The support of G(q, a) must then
lie outside of the double cones subtended by these segments and therefore

the support of Ft(q) lies in the plane a 0 but outside of the four

Fig. 2

The support C of Ft(q) after the first application of theorem B.

dimensional intersection of these double cones with the plane a 0. It
is now important to note that the bounding surfaces of the grooves are
time-like surfaces and hence it is possible to enlarge these grooves by
taking time-like segments lying in the grooves. If the locus of the vertex
points of the upper groove is denoted by Ru and that of the lower groove
by R[ (see figure 1), it is possible to choose a series of time-like segments
connecting points of Ru to points of Rt. After removing the subset of the
support contained in the double cones subtended by these segments we

are left with the support of F{(q) depicted in figure 2. The figure is a little
misleading insofar that it depicts the support C of Ft(q) as the union of
two sets of empty intersection. The intersection of these sets may be



410 Derek W. Robinson H. P. A.

non-empty, this depends critically on the neighbourhood Du but this
does not affect the next part of the argument.

To continue further it is necessary to clarify the properties of the grooves

and in particular the loci, Ru and Rt, of their vertex points. The
boundary surfaces of the grooves are one-sheeted hyperboloids having
as asymptotic surfaces light cones which envelope Dt(ox Z)_,-). If the
domain Di is decreased in diameter the cones approach one another, the
grooves deepen, and the points of Ru and Rt recede from the origin. If it
were possible to decrease T)l in diameter to the limit of being the point Pi
the two asymptotic surfaces would be identical with the light cone having
vertex at Pt. In this limit the upper (lower) groove would be bounded on
both sides by hyperboloids asymptotic to the light cone with vertex
P{(— P;) and the points of RU(R{) would lie on the cone at infinity.

We now define V\_(Vi) as the closure of the smallest forward (backward)

light cone with the property Dt C V\. (D{ Q.VÌ). The next stage in
the argument is to show that the support C of F{(q) can be reduced to

C u; U VA (9)

This follows from the properties of the partition of the unity. If q' $ C

we choose an open covering {D{ a} of the set D;, with corresponding

partition of the distribution F{{q), such that

Fia(q') 0 forali«,
and hence

w)=2xy<7')=°-
a

That this choice is possible is clear from the discussion of the last
paragraph. By choosing the diameters of the covering sets D,- a sufficiently
small we may ensure that q' lies outside of the support of each Fia(q).
The support C given by (9) is depicted in figure 3.

Figure 3 shows the support as the union of two sets of empty
intersection but as mentioned before this is not necessarily the case. The
intersection V\ O Vy is certainly non-empty if the domain Di contains
the origin. If D{ does not contain the origin it may be assumed that the
intersection is empty. The justification of this assumption follows from
a similar argument to that given above, namely Dt may be decomposed
into a union of sets having the required property for each of which the
following application of Theorem B is valid. In the next part of the
discussion we consider a set Dt not containing the origin and assume that

V' n vr <f>.
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To reduce the support of Ft(q) further it is necessary to use both parts
of theorem B applied to the distribution Gt(q, a). First construct double
cones on time like segments not contained in the support C. The
intersections of these double cones with the plane q0 0 are spheres in four
dimensional space and by the first part of Theorem B we have the result
that Gt(q, a) vanishes in the interior of these spheres. These spheres have
their centres in the plane a 0, and by assumption the subspace q0 0

a 0 of five dimensional space is not contained in the support of Gf(q, a).

v.'

D.:

The support C

Fig. 3

of Ft(q) after the second application of theorem B.

The union of the interiors of all possible four dimensional spheres
obtained in this way is the complete four dimensional subspace q0 0 of
(q, a) space. Again there is by assumption a real positive e such than the
subspace q0= e a 0 lies outside of the support of Gt(q, a). Thus by
repeating the above argument we arrive at the conclusion that G{(q, a)
vanishes in the slab bounded by the space-like surfaces q0 0 and q0 e.

The second part of Theorem B now ensures that Gt(q, a) vanishes in the

complete five dimensional (q, a) space and hence F{(q) vanishes in the
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four dimensional a 0 subspace. Thus we have proved that Ft(q) vanishes

unless Di is a neighbourhood of the origin.
Using this result we now see from (3) that

/;(*!> X2) 0

unless D{ is a neighbourhood of the origin.
Thus from (6)

/X. x2) =1 I dE(k) W, [A(Xl),A(x2)] Ü

for any arbitrary neighbourhood of the origin. In the limit

(<F, [A(xx), A(x2)] Ü) {Ea V, [A(xt), A(x2)] Q) (10)

where En is the projection onto the vacuum.
Therefore

[A(x1),A(x2)]Q=W(x1-x2)Q (11)

where

W(x1-x2) {Q,[A(x1) A(x2)]Q).

This is the conclusion of the first part of the proof.
The second part of the proof follows an argument given by R. Jost8)

which we briefly paraphrase. Using the above result and also locality

(Ü, A (x0) ...A (xn) [A (x), A (y)] A (y0) ...A (ym) Q)

W(x-y) (Q, A(x0) ...A(xn) A(y0) ...A(ym) Q) (12)

if (x — yA2 < 0 and (y — yk)2 < 0 for k 0,1 m. However, both
sides of equation (12) may be continued analytically to points (z0 zn,

z, w,w0 wm) in the tube S

/m (wk — wk_j) e V+ Im (w0 — w) e V+

S: Im (zk - zA_j) e V+, Im (z - z„) e V+

Im z I mw real parts arbitrary

Equation (12) holds for all points in S and the corresponding boundary
values. Thus (12) holds for all real values of (x0 xn, x, y, y0 ym) and
we have, using the cyclicity of the vacuum

[A(x1),A(x2)] W(x1-x2).
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As W(xx — x2) is the vacuum expectation value of the commutator
W(x1 — x2) has a Källen-Lehmann spectral representation9)10). Therefore

„
[X%)> A(x2)] / dm2 q(m2) A(xx — x2, m2)

o

which is the definition of a generalized free field.

4. Summary and Conclusions

There are a number of interesting conclusions which may be drawn
from the theorem which has been proved in the preceeding section. A
generalized free field is known to have support in momentum space only
in or on the light cone1)2). Thus we may conclude that the support
properties of the fields may be used to divide all local fields into one of two
classes. The first class of fields have support only in or on the light cone
and are generalized free fields. The second class of fields have support
everywhere outside the light cone. Interacting fields are fields of the
second class. However, not all fields of the second class have a scattering
matrix which differs from unity. If we construct a field from the Wick
product of free fields we certainly obtain a field of the second class, but
this field has scattering matrix equal to unity.

The author would like to thank Prof. R. Jost for his hospitality in
Zurich and Profs. H. Araki, R. Jost, Drs. D. Ruelle, O. Steinmann
and Mr. K. Hepp for advice and encouragement. This work was carried
out whilst the author was the holder of a NATO Research Fellowship.
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