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On the Electrical Conductivity of Metals by the Resolvent Method

by Aloysio Janner

Battelle Memorial Institute, Geneva, Switzerland

(10. III. 63)

Synopsis

Using the resolvent method previously developed by VAN Hove and the author
for describing dissipative quantum many-body systems, general expressions are
derived for the asymptotic value of the time integral of operators which are diagonal
at initial time (i.e. diagonal with respect to the eigenfunctions of the unperturbed
Hamiltonian).

As illustrative example the formalism is applied to the calculation of the zeroth
order electrical conductivity tensor for spherically symmetric impurity centres.
Electron-electron interactions are however neglected. The result is compared with
that derived by VERBOVEN for the same case, but using time-dependent perturba-
tion. General agreement is found up to a non-Markoffian term which in fact should
be omitted.

It is finally shown, how the same result can also be obtained from the Markoffian
approximation of the general master equation.

1. Introduction

As CHESTER and THELLUNG!) have shown by their calculation on the electrical
conductivity of metals, the evaluation of transport coefficients by means of the Kubo
formula is a relatively easy matter if one knows the solutions of the master equation
describing the time evolution of one of the factors involved in the correlation function.
Actually, such a solution is explicitly known only in the weak coupling case (4 - 0,
t = oco; A%t finite), for which the non-Markoffian general master equations derived
by VAN Hove?) and by the author?) reduce to the Markoffian Pauli master equation.

Higher order effects of various kinds can of course be taken into account by
improving the various approximations made along the basic calculation. It is in this
way, discussed in detail by CHESTER and THELLUNG!), that VERBOVENY) obtained
explicit expressions for the conductivity tensor to zeroth order in the coupling con-
stant. For getting corrections to higher order than this one, such a procedure is of
course not suitable,
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The aim of the present paper is to give a calculation performed, as far as possible,
to general order in the perturbation, the various contributions being then obtained
directly from the general expressions by power series expansion in the coupling con-
stant. It was while looking for this goal that a general master equation for the inter-
ference term was derived one year ago®). The general expressions mentioned above
are here given in what we may call their spectral form, and in fact the last integration
1s performed only after having made the expansion in powers of A. From this point of
view we have not yet reached our final goal. Even so, there are general questions
which can be discussed to all orders in the perturbation.

The present investigation is based on the fact that the solution of the general
master equation represents a much too detailed information on the system, with
respect to what is really needed, i.e. the asymptotic value ({— ~o) of the time integral
of the solution. As shown in sections 2 to 5, this result can be better obtained directly
from asymptotic equations. As illustrative example we apply in section 6 the forma-
lism to the calculation of the zeroth order conductivity tensor for an electron scat-
tered by spherically symmetric impurity centres. In section 7 the expressions obtained
are compared with those derived by VERBOVEN?), and in the last section we add some
concluding remarks.

We know of other independent efforts5)%) performed along the same pattern of
thoughts with a view to refining, by means of higher order corrections the basic
formula for the conductivity. With the present approach we hope to give a contri-
bution for a better knowledge of equations of the master type.

2. Outlines of VAN Hove’s resolvent method

We here briefly recall some general results of VAN Hove’s?2)3) perturbative treat-
ment based on the resolvent, which allows compact expressions to general order in the
perturbation. The resolvent R, is related to the operator of motion U, by means of a
complex Fourier transform:

U=

=5 / die= "R, (2.1)

where

R,= (Hy+AV =)L,

! is a complex number and y an integration contour encircling counter-clockwise a
sufficient portion of the real axis. 4 V represents the perturbation of H,, the unper-
turbed hamiltonian whose eigenstates |« » are known and form a complete set,
normalized (in the limit of an infinite system) to:

o o'y =0(e — o). (2.2)

The matrix elements of an operator 4,, which for the initial time ¢ = 0 1s diagonal
in the a-representation, may be written as:

A a) =< | U, AU, |a>= f ey A )] 2, ot 2 &), (2.3)
where
Z (g a’) = Py (g ) Ol — &) + I (g ) . (2.4)
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For A(xy) a smooth function of &, P, (2y ) is not trivially zero for the systems we
are considering here, and represents a coarse-grained transition probability. 7, («y o &)
describes interference effects. The Fourier-transformed expressions corresponding to
(2.3) and (2.4) are:

Ayp(eo) =< | Ry AR, |a'> A/-doco Aog) Z,p (g’ , (2.5)
Zip(agaa’) =X, (o) O — o) + ¥, (g et’) , (2.6)
where
t —l i rop(i=v ’
2, (wa0) = oo | dzfdz FN 7 (g 0 o) (2.7)
v ¥

(y and y' as above). Z,,; obeys a general master equation which can be put into the
following very convenient form:

Zyp (o) = Dt(dﬂ) D (o) {(5(0(0 — o) O — ')+ V) (wgaea’)
(2.8)
22 [ doy Wy (g o) Zype (o af)} ]

which is expressed in terms of D, (the diagonal part of R)), of V;,- and of WW,,, whose
definitions are:

D,=R] D,|a>=]|e> D)), (2.9)
| {1—ADV+2DVDYV—..)AQ—AV D, VD,— . )}alo

(2.10)
. / doy Aerg) Vi (g ') ,

(V=AVD,V+ . )AWV—AVD,V+. )hulo>= |a>/d%A(%) W, (g ). (2.11)

The suffixes “id” and “‘ind” mean “irreducible diagonal part” and “irreducible
non-diagonal part” (for definitions, see rf. 3, p. 49). The singularities of Z,,, are
represented by cuts along the real axis in the complex / and /" planes and by a simple
pseudo-pole (see H, p.465) for/ = FE F 10,/ = E 4+ 40, and E real, determining the
asymptotic value of Z,, which is given by:

+ 00
lim Z (a0 0) = / dE 75 (aga ), (2.12)
t—+ o0 A
4 1 L ! ’
Zh mao) = F 4oy, lm (—0) Zy (spac). (2.13)
: V—E +1:0

Assuming interconnection of states with equal unperturbed energy (implying that
the states | « > are dissipative) and the validity of a generalized microscopic rever-
sibility (W, (¢ o) = W, (¢ )), one obtains for Z£ the simple expression

n n _ Ag(e) Qp (ko) '
2 \ogoeol) = Jdny Aoy (2.14)
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where (5 is defined by:
Qe =

and Ay is its diagonal part. The hypothesis of a generalized microscopic reversibility
is not an essential one, and can be dropped?). In this case, however, one needs a more
elaborated formulation than the one adopted here.

1
m ——
0>n—>0 271

(Rg pin — iy (2.15)

3. Asymptotic time-integrated master equation

We consider the time integral of the operator 4, introduced above, and we suppose
the existence of a corresponding asymptotic operator A, :

= hrJrcl / dt A, . (3.1)
This implies that:
’ 11131 Ay =10 (3:2)

and together with (2.5), (2.12) and (2.13), that 4,,, is a bounded operator in the
complex /, /’-planes. Interchanging the time integration with the complex ones, we

get for Ay

~ - i-1T
Ap—  lim _(-2_515.2- [ dl / ar —i.--((l--j;,)m A, (3.3)
¥ 7

The term obtained from the limit # = 0 in (3.1) vanishes because A4, approaches
to zero as | //' |7 when / and /" - oo, and the integration paths can be deformed to
infinity. Denoting the two partial contours above and below the real axis respectively
by y* and y~, one verifies that in (3.3) for 7 > 0 only y~ and 9’* give a non-vanishing
contribution; for T < 0 there only remain y+ and y'~

Using the asymptotic formula:

G(E-E)T . 5
T rio = £ 2mid(E - E) for T— Loo (34

where upper (and lower) signs are taken together, one finally obtains for (3.3):

+ 00
Ay (wa’) = 4 -~ lim B o doy A (o) f AE Zp =iy pein(@oaa). (3.5)

277 0< g

The limit - 0 has to be taken only after integration over a,, because in this limit
Zg+in E+ iy itself becomes singular. |

Let us now look at the formal solution of the general master equation. We intro-
duce a matrix formalism which allows a much shorter notation. We consider an
“Initial state” || o« ’> with the following two properties:

Cotg | O || owa’> = 0 (g ') for a general operator O (3.6)
and
g || o’y = 8oty — &) Oor — ') . (3.7)
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In particular we have for a two-indice diagonal operator of the type of X, ,:
Xy (paa’) =X, (0 ) O — ) (3.8)
and for a one-indice diagonal operator of the type D,:
D, (g ') = D (o) (g — o) O — o) . (3.9)

Multiplication from the left of a general operator by diagonal ones is defined according
to the rules of matrix multiplication. So, for example: ~

gives (2.8) for the “final” state {og | and the “initial” one || a o’ > *).
Remembering that:

D,=Hy—1—-22G) ! (3.11)
where
G,=WV—-AVDV+R2VDVDV—.)yu (3.12)
one finds
DE+in_DE—in
DgyinDe_in= 208+ Ggyiy—Gg_iy (4:19)

For further reference we recall that

im Gy, =Kg+ilp (3.14)

0< np—0

where Jp + O for a dissipative system. In this case (3.13) gives:

aA 2
Dg i oDg_i0= —1272* . (3.13a)

We define an operator £2;; +,, in the following way

7 1 1
‘QE:F“’/’ - 72 £ 24 (GE+in - GE—t‘n) 24 (DE+1‘77 - DE~£17) EFinEtin (3.15)

giving for n > 0
'QE:FH):]E—TCAE WE:FiO,Ej:iO' (3.15&)

The general master equation (3.10) can now be written as:

1
22 ‘QEI{—iv; ZE'-F-’L'ﬁ,Ej:z'T,r: 2 (DE—{-ir,‘ o DE-—z'r]) (1 g VESFin,E;I:iq) * (3‘16)

The corresponding formal solution is:

1
ZElL~in,Ej:i17 - (/12 'QE:Fiq)_l 24 (DE+in o DE—ir)) (1 = VE:}-in,Ej:in) ]

. (3.17)
+ ZE$1317,E:|:1217‘

*) These formal “bra’’ and “‘ket” are related to the physical states ay, o and o’ in the following
way:
ot | oy || @D > Cor ] wus | otg>Lotg | oon 0D+
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ZQ i EL , 15 a solution of the homogeneous equation:

AZQ [1’” ]Z‘z]’iﬂ,E‘LﬁH:()' (3.18)
In the following we omit Z-,, » . ;. because it gives a vanishing contribution to .»L:.
In fact one verifies that:

lim ZY
0<n—0

-y (3.19)

Fin, ELin

where ¢ is an arbitrary constant.

For the same reason also, the residue of the polein 1/nof Zp - ;, £, i, (%o a’) van-
ishesin (3.5) after integr ation over . This poleis related to the existence of a zero eigen-
value 0@ = 0 of 2, . ;, in the limit of y - 0. We assume that there is only one such
vanishing eigenvalue in the spectrum of 2 . ;. For a dissipative system, the assump-
tion is physically reasonable as can be seen by looking at the corresponding weak
coupling limit. It then follows that there exists an eigenvector ¥V, with component

1 (&) which fulfil the equation:

lim [ do’ Q. (xa’) x9(x) = oW xD(@) = 0. (3.20)

0<y—0

In fact, using the property:
fdoc' Qp -y, (@a) :fdoc’ Qp iy (0 o) = ;j, (3:21)
one finds a solution of (3.20); namely,
xM(et) = const . (3.22)

In (3.5), therefore, one may take the limit # - O before integrating over «, if one
excludes from £, . ;, ist zero eigenvalue. Indicating this by a tilda, we obtain:

zii (o) =fda0 A(etg) Zs (g ), (3.23)
where
+ o0
~ 1 & g
L=+ Do / dEZE;iO,EiiO
-0 . (3:.24)
= 77 / ;}17 AL+ Vi £io g 140 -

In the following, however, we omit for simplicity the tilda on £2z% ;o; of course, the
expressions derived are then only meaningful after integration over «, The various

contributions to A. are obtained by integration over E of the expansion in A" of

Es +i0,E + i0- The point discussed in section 1 is that we have not been able to perform
the integration over E without expanding first,
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4. Perturbative expansion in powers of 4

From now on we restrict our considerations to /L_ (one easily obtains from it the
corresponding results for 4_). Before calculating explicitly the various contributions

toZg ;o &+ 0, we indicate for further reference the series expansions in power of 4 of
the most important operators occurring in (3.17). We introduce first two new types
of functions defined by:

VAV AV A, Vg o = | oc>/ doy dots ... dot, Ay (o) Aglots) ... A (0,) -
s W Tty By s 06, 5) B
and
@ VAV AV o Ay Ve | & l
(4.2)

= [ day da .. oy, Asfor) Agfag) o Ay V oty oty ) |

We call V-irreducible those contributions in which only sums of W and V-functions
respectively occur. By V-reducible are denoted the terms where products of such
functions appear. The term of order A* in the expansion is indicated by the suffix »
put on the corresponding operator.

In particular looking at (3.11) and (3.12) we find for D, , and G, , the system of
recurrent relations:

22 B
D, («) = (e—0? Gy_p, (@) + e—b® m%; G, ) G i) + o0, (4.3)

o) zfdocoDn’l(oc o) — 4 Z /ddodoh n—m—1,1(%) } (4.4)

wm=0v
X Dm,l(a’l) PV (dﬂ o d‘) + e

&, always means () and represents the unperturbed energy of the state | a;>. The
V-irreducible contribution to G, , is:

9 B | Aoy doy o do, W ooy - oty )
Gri(@) = (= 2) / Eo—10) (61 —10) ... (g,—0) ]

From (4.3) and (4.4) the explicit evaluation of the lower terms yields:

Dy ) = (e =01, Dya) =0, Dy,fo) =22~ [)_zj'%giLﬁ? (4.6)
and
Gy, (o) = f oy W (e @) , = gl / doty dory W (0t oy ) ’
| e e )

_ag [ Aoy Ay dog W0 o 05 0t) 2/‘ doty dovy W ooty 2y) W (otg )
Gy lo) = 4 f (ey=10) (g—1) (e5—1) .4 (ey =1 (5= 1)
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where the second right-hand side term of the last relation represents the V-reducible
contributions to G, ;. In the same way one gets from (2.10) the general term V, ,:

Vi (@ooa’) = — AV (aa’) {D, _y (o) dog — &) + Dy_y, (') Sorg — )}
n—-2

+ 12 2 {V (G(OOC a,) Dn—m—Z,l(m) Dm,l'(a") "f‘./'dOCI I/ (OCI o o(l) (48)

m=0

X {Dn-mwz,l(al) Dm,i(a) 6(050 - af) I Dn—m—z,l’(al) Dm,l’(a") 6(&0 - G.)] e }
and in particular:

Viiw (l@goea’) =—A4AV (xa) 1 o+ -d(%—:,l}. (4.9)

The general term W, - also looks very similar. We indicate here only the first three
terms:

Wo L (“0‘1) =W (o x) ,
W o) I
Wiv lfdocl ocl_o; T ((E—TO__O?)E) ] ’ (4.10)

a9 __'j'?{__(oh oy Oty ) w (011 oy Oy %) W (g %1%y %) ]
Worr (@oa) = 4 /dald% [ =) =0 T o=t T =0 (& _z)]'

All these are V-irreducible contributions. The development of J, is best obtained
from (3.15a) together with (3.21). We have:

Josle) == j'dao Seo — E) W (00,

J1, ele) = T/ dowy O(ep — E) Wl,E~z'0,E+£0 (otg ) , (+.11)
]2,E(O(') == ]2,13(0‘) + ];,E(O‘)
with
“n/d% g — E) W2E mE-{_m(%O‘)
and

Ta, (o) = [ dtg Ay () W (200

where [ 5 is the V-reducible contribution.
A, g follows directly from D,, ; , ;0. The first terms are:

Ao u8) = 04(0) = 8 — B), Ay plo) — 0 |
and A2 * do W ) - (4.12)
A2, L((’X.) - _2_71,_L {( E — 1: O) - 2/ (Ti?—l‘f(jtiz) ~— G C.} . ’

As operator in an integral over a, 4, («) takes the form:

s [l )2 frute 519
n {6(8 _ E)} 108}/ B (-EIEE )W ()]

(4.12a)
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{0/0¢} is a differential operator due to a partial integration and acts therefore on all
the functions depending on ¢ (and also on « because o = «(¢g)), in the a-integral, not
included in the other {...} bracket.

It is also useful to consider the V-irreducible contribution to 2, r_;:

Qz,Eﬁm: ]Z,E‘”(SEWZ,E—M,EHU- (4.13)
The inverse of Qn £ —i0 Obeys the following equations:
(2 £_s0) == (]} B) T Lo W b e ki (82 g _i0) T
=1+ (& g_i0) ' TOW,, ks, 51i0] (Jn )"

One verifies (4.14) by developing £2) . ;o in powers of 7w o W, r_jo5+i0- E=¢
represents an important particular case for 2% _;, (% ®). Let us therefore introduce
for it a new symbol L.

(4.14)

Q (g o) = £ (g ) - (4.15)
Together with
Wi (aga) = mwo(eg — &) Wi _s0,e1i0 (20 ) (4.16)
and
1(e) :/ dot, 174 (0t o) (4.17)
we have
Q=I-Ww (4.18)

so that its inverse obeys the relations:
Q=114+ WO-)=(1+ QW) I, (4.19)
The following properties have to be noted:
Jedp =105 (Jo) 1 opg=1"10g, (4.20)

T OeWe_so E+i0 O = W g,

D100 — R0y,
(25 _s0) 10 =271 05. (4.21)
This last relation (4.21) together with (4.14) allows us to write:
(Qg—io) =142 "7 Wg_iop+idl Jp) - (4.22)

Relations (4.15) to (4.22) are of course also true for the respective A"-component.

5. Zeroth order contributions to the kernel Z

We consider separately the diagonal contributions X and the non-diagonal ones

Y to Z The first contributions up to the order 1%, the second ones up to A~ only.
In the followmg we omit the explicit indication that our considerations are restricted
to positive time.

55 H.P.A. 36, 7 (1963)



366 Aloysio Janner H.P. A.

(a) Diagonal contributions
(3.24) yields:

+ 00
~ 1 il _
X=,pn | EEQN4;. (5.1)

The lowest order of (5.1) is in A—2. Using (4.21) we get for it:

~ 1 o
X _ o= S 32 %0 ! (3:2)
The next term X _, is readily obtained as:

212
The evaluation of X is a more elaborate one. The zeroth order termsof X ;¢ z, ;oare:
" 2 v -1
Xo gio,grio=7A 2 {— po E-io £2%, Ein‘Qo,Efio
-1 -1 v -1
+ -Qo E-i0 [‘Ql E—i0 pu E- m - Qo,E—io 2,12‘90,5‘40
o, -1
P 31:!)0 £_io 2 I:.W‘QO E 10} AO,E +ma 'QO,EinA&E'

(5.4)

For clarity, the various contributions to X o obtained from (5.4) by integration over E
are indicated already in their a-representation. They are:

~

1
Xo,1 (g &) = — 22 fdocl doty 'Qo_l (g 1) 825 (07 o) 'Q (g ) , {5.9)

~

X 0,2 (g ) = f doy doy dowy doty Q (oo o) £2, (o &)

» » (5.6)
X 82577 (ot otg) L2y (o o) 25 (g ) ,

Xoa (@gor) = — g fdocl doty doty 51 (o0 otq) 25 (ot )
5.7
) Mo g (1) ] s |
Xos(o0) = 57 | oy darg 57040 (ot o) Ag (o) W (g o) 257 (ot )
" Z* f dety dig Bley — &) 0‘; (250 (g o) Ko lot)) Wiay ) 257 (g )
(5.8)

o R [ AT BBt 0 Re | day day day 257 (2 )

(eg—&1—1 0)

7t O(eg— &) Wl o) W oy at) L2570 (25 1)
(eg—e3—1 0)? )

This last result was obtained by using (3.14) and (4.22). Analogously we evaluate the
last contribution:
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4+ o0
~ 1 .
X0,5 (otg ) == 2 f dE 'Qo,}sﬂ'o (oo “—)Az,E(“) l
- (5.9)
1 0 - doy 2571 (ot 0tg) W (a oc)
= _?{@E'(Qﬂ,i‘-m (otg ) KO,E(“))} [ = Ob__e(:_lto) — ]
Now:
002,54 (g )
iz f day doy 70 8(ey — E) 5 O (2% s0 (o) W (o ) -
_ - i} W OW (otgary) '
X 'Qo,};uio (otg ) —j do& d“2!~)0,11540 (0t 0ty) -Qo,}z—;:o (& ) wd(ey, — E) —(')%:q_l
and
0K, (o) * doy W (ot )
—pE  — Re / (e~ E +1¢0)2 11}
so that for (5.9) we get:
i 3 _ " ow )
Xo,5 (g o) = Z‘j doty does £, ! (g 0ty) 2, ! (o @) O(ep — &) "'%
; 2
Lo loas) % [ty doydley — o D (@5 g (o) W (o 2)
! (5.12)
X Q5 (ay0) Ko (@) — ~ 25" (woor) Re [ 222V la).
9 2 O:e 2 =0 % j (6,— & +40)%
doy Lq7 (g 051) w (’11 GC)
+ R / (s —_sl +10)2 )
(b) Non-diagonal contributions
The lowest order contribution is already of order A-1:
S}—1 (otg ¢ ') (5.13)
1 _ _ ; 1 5 i )
= 57 V @) {195 (o) — 257 (o @)] [(257) ,— imdle—o)]}.

The results obtained so far can be applied to a large number of physical cases. We
show how this can be done by using these results for the evaluation of the electrical
conductivity in metals.

6. Electrical conductivity tensor for spherically symmetric
elastic scattering by impurities

The electrical conductivity tensor of metals has already been calculated by
CHEsTER and THELLUNG!) to the lowest order in the perturbation, and by VERBOVEN?)
to the zeroth one. In both papers time-dependent perturbation has been used. To
illustrate the alternative approach represented by the resolvent method, we apply to
the same problem the formalism developed here, which is better suited for further
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calculations to higher order corrections. Comparison between the results already
published and the present ones is made only in the next section, as it requires some
supplementary calculations.

We start by considering the symmetrized Kubo formula for the conductivity
((2.4 of CHESTER and THELLUNG's!) and (2.24) of VERBOVEN’s?) papers), which is
already reduced to the one-electron approximation.

T
» of
Cf.u mm— l{?’e { llm ; dt J—:]t ;’() () thl 0[_[} . (6'])
0
The trace is taken over a complete set of one-electron wave functions. Considered here
are the eigenfunctions | k> of H,, where k is the electron wave vector with energy
&(k). For contributions restricted to a single band, jj is diagonal with respect to | k).

In this representation, (6.1) becomes:

o= [ dkodk i {ialky) i3 + ja(k) ok} Z (ko R B) Sl (€ R),  (6:2)

where Z represents the dynamical and of/dH = S the statistical factor.

Clearly the expression (6.2) contains a factor <k | k> which diverges in the limit
of an infinite system. This is however not a significant difficulty, and it can be
eliminated by an appropriate definition of the trace®) or by using reduced expres-
sions”)?). In the one-electron case it is sufficient to divide by <k | k> on the right-
hand side of (6.2).

We consider ¢#” developed in powers of 4:

o' =" +a"y+ )" + . (6.3)

1.e. we expand the dynamical and the statistical factors respectively. Observing that
to the lowest order two factors are diagonal, whereas to the first order the statistical
factor is non~diagona1, we obtain:

o= — /dk dk dk’ {7 (ko) 15(k") + 75(k) 15(ko)}

% {[X_y (ko k) + X_, (o k) + X, (ky k)] S, (k k) Ok — F) (6.4)

X (koK) Sy (kR) Ok — k) + Y, (kyk k) S, (K k) + ..} <k | B> .

With the formula derived in section 5, (6.4) already gives the conductivity tensor
to the zeroth order for the general case of elastic scattering by impurities. For the
particularly simple case of spherically symmetric scattering centres, (6.4) can be
further simplified. From now on we therefore restrict our considerations to this case,
for which we derive first some general relations.

One sees from (4.17) that I'(k) becomes a function of the energy ¢ only and does
not depend more on the direction of k; the same is true for /™'(k) which is defined by
the relation:

~

[ty i) T (kg k) — [ diey W (ke Ry f5lhe) — T {R) i) = I"e) F5(k) . (6.5)
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Introducing a general relaxation time 7(g) by:

1
together with (6.5) we get:
. 1,
[tk st @ (kg ) = [ty @ (1 Ro) istke) = 5 7418 (6.7)
and also: '
fdk(,yo ) Q-1 (k, k) fdk!)l(kk)yu( O = 2227(e) jik) . (6.8)

This last equation can be verified, according to (4.18), by expansion of £2- in powers

of W and integration over k, of its (k, k)-matrix elements. The relations given above
are of course also valid between corresponding A*-terms.
Finally, we note that:
jo (— k) = — 74(R) (6.9)
and therefore:

f dk (k) jle) = 0 (6.10)

for every function f(e) independent of the direction of k. This property, together with
Ag(k) = Ag(e), ensures that

+ 00
; - kE
lim i (kk) = [ M%LMMM%ﬂ%wajiﬁ;ﬂ;f%) (6.11)

which is a necessary condition for the existence of (3.1) for 4, = j57".
It is now very easy to write down the various contributions to the conductibility
tensor. To the lowest order, using (5.2) and (6.6), we get the known result:

” o ) » of
0"y = — | dlenofe) f3(k) (k) - (6.12)
where )
of ()f

In (6.12), and in the following corrections as well, 7,(¢) is defined by (6.6) if one
replaces [ (e) and I"(g) by the corresponding A*-terms. In the same manner, (5.3) gives
us the first order correction.

v [ s g e ]

oty = [k 33(e) T e) o) otk o (6.13)

A number of zero order corrections arises from the various X o,, terms. The first three

are directly obtained by putting (5.5), (5.6) and (5.7) in (6.4), and by making use of the
symmetry properties indicated above. We get:

amffﬁﬁ@g%ammnwof

(6.14)

, g O
oty = — [ dle e) 77%e) 75k) T3lk) 5! (6.15)
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i ‘ 0 0
ot — 270 [ ko) il k) 2L

Xf(ik(] dky [(éll—'s)p” d(gg — &) + mO(eg; — &) (_%__)P] OW (ky ky) W (R k)

g—& ey

(6.16)

For the next group of terms it is worthwhile to take X 0,4 and X 0,5 together, i.e. (5.8)
and (5.12). Before indicating the result, we consider the partial contribution:

() -
0g,

X {0, o (ko b)) W (y k) 257" (ky k) (K, (k) — K, (R)]}

I= nf dky dk, dky J!(ky) (e, — ¢

giving, after Taylor-expansion of K, ,(¢;) in the neighbourhood of K .(¢), the result

1:2’14f ey  OW (ky )

7o(e) I'o(e) 75(k) - (6.17)

(&, — &)p ¢

Making use of (6.17) and regrouping the terms in such a way as to facilitate a com-
parison with Verboven’s result, we obtain for

Hv _ v [ 1785
00, (a,5) — 0'04+0'05“’"0' + 0g,7

the following contributions:

dky dle W (k, k) e s i e O
R /—(SD_F_L ();2 ~ [To(e) + Tolea)] [ (ko) 7o(k) + 75(k) 75(ko)] ()5 (6.18)

W (ky k) W (I, B)

ol% — — 224 Re f Ay dk dk, T2(eq) k) falk) -0 Sy — ) g, (6.19)
oy = — 224 [ dky dle 13(e) f3(R) ) ) mOle — e) Ty

6.20

x [T 22 Re [ iy dkeny(e) jo(R) sl . o

oty = — 224 [ A7) Ti(e) fik) falk) o7 [ 2o ST (6.21)

The remaining two zero-order corrections are those related to the higher order terms
of the statistical factor. They have already been indicated by CHESTER and THEL-
LUNG!):

S, (k' k) =iV (k' k) f,',(ﬁ;),gi‘,’ € (6.22)
S, (k k) = ,12/ dky <k | k> W (ko k) { ) 16— /'te) } (6.23)
— & (e—2)

(6.22) together with (5.13) yield the next correction: only the principal value term
in (5.13) gives a non-vanishing contribution:

T —P/dknde(k g LE=FE (2 ) ]

g— & &g —&

(6.24)
X {7o(R) [jo(R) + fo(Ro)] Tole) — 7o(Ro) [75(R) + 76(Ro)] TolEo) } - I
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The last correction is essentially the same as (6.12) with the only difference that now
S, (k k) replaces S, (k k):

oiy = — A2 [ dky dk Tole) j4(R) f3R) W (g ) {21 — LOZT)) - (6.2)

le—g (e—ep)? |

7. Comparison with Verboven’s result

We here consider VERBOVEN’s?) calculation of the conductivity tensor as in his
paper he already discussed that of CHESTER and THELLUNG. The present comparison
requires some small changes in the notation and a few additional calculations. To
avoid confusion, we label VERBOVEN’s equations as in his paper, but with the numbers
in square brackets, and we keep to his notation at least partially.

One immediately verifies that [3.24] and (6.12) represent the same result

[3.24] o8 = oy, (6.12)
Also [4.6] and (6.13) give the same result:

[4.6] dol Y = o (6.13)

and

T {g) — Flr(s) = I'y(e) — ]_'i(s) = (2 A2 '51(5))H1 .

Inspection of [4.8] shows that in fact 6 ¢!0,!) has the wrong sign. With the correct one
it gives the same result as (6.24):

[4.8] — o) = oy (6.24)

uv

There are a number of zero order corrections which are evidently equal and need
no further comments. Let us only indicate the correspondance:

[4.10] ol = o, (6.25)
[4.12] 0ol = aff%, (6.15)
[4.15] Bt — " (6.14)
[4.24] do'n® = ol . (6.16)

For the check of this last relation one simply verifies that:

[4.22] R2I(e) = J; (k). (4.11)
Further
[5.20] ol = af’, (6.18)

[5.21] 8ol = ol . (6.19)
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Comparison between the remaining corrections requires some simplifications. We may
write VERBOVEN’s definitions of A4, 1" and I" in our notation as follows:

dk, W (k k)
[5-6] A(e) ‘f (ey—e—10)2 ’
. dk, W (R, Rk
[3.12], [3.13] I'(e) + 1 Ale) = — @f (811_8:0))
and therefore
" dk, W (kR ky) [ dk, W (k, k) .
[5.7] D(e) + 1 A(e) = / s I0 | i (7.1)
so that
- S dley Wk k) [ dky W (k k)
F(S) -+ F(E) (A -+ A*) = Im l/ Tl:”;:_z 0) f ( —8+ZA0)2
where Im means imaginary part. In this way we obtain for é¢(%%:
iy iy O W (kky)
ooi%¥ = 72 [ ak 4tk (k) 5 ole) {Re (it
ak, W (k, k) oW (k k,
— 2227,(6) f 151_8 f dks 7 Bl O(F ) (7.2)
dly W (R Ry) |
+ 2 A2 74(e) I'y(¢) Re / ezés+zO)2J'
Observing that:
- - dk W (k R
[3.13] Afe) = — Re /ﬁ B m)’

for VERBOVEN’s A ,(E) we get:

(e) dk, W dk,  OW (k, k)
_ﬁRf a;—e—zO f(&l—E)p Oe ’ (7.3)

Keeping this result in mind, and adding é¢'’;® and d6!%" together, we obtain:

v of W (k ky)
oo'l% + dal)y” m]dky ) folR) 57 {12 7o(¢) Re j _8+ o 224 75(e)
Vil ky) . dky,  OW (kB
Tz ke T 2 el I [
giving:
[5.9], [5.16] 5608 4 5607 — gt + gl (6.20), (6.21)

The comparison shows that the only term missing is the non-Markoffian & ¢{%'?

one, of [5.23]. This is due to the fact that actually only the real part [4.1] goes into the
Kubo formula, and therefore 6 ¢{%1% has to be omitted?).



Vol. 36,1963  On the Electrical Conductivity of Metals by the Resolvent Method 873

8. Concluding remarks

By the present calculation we have checked the zeroth-order expression for the
conductivity tensor, previously derived by VERBOVENY). It is also possible to evaluate
further higher order corrections with the same formalism. This implies, however, a
non-negligible amount of calculation. In particular, we have not yet been able to
obtain explicit expressions for the general n-th order contributions, because of the
non-trivial integration over E, which is needed for it. Even so, we can discuss the
general nature of such contributions simply by looking at (3.5), (3.23) and (6.2),
respectively. What we found is in agreement with the Balescu theorem, which states
that transport coefficients can always be calculated from a Markoffian Boltzmann-like
equation??). In order to show this in our particular case, we follow a suggestion made
to us by SwENsoN!): performing the calculation on the basis of the Markoffian
approximation of the general master equation, one obtains the same result as that
(3.5) which is derived above without such an approximation.

We start by considering the general master equation in the following form:

¢
Zey (o) =y, (toua) + 222 [ty [ dwyw,_, (ta) Zgy, (o) (1)
0

where
_ ’ ’ )
hE,t (g &) = 25(51)2_ /dl ghett Dy, i(otg) D _ (o) l 8 2)
g L
X [0og —a) O — &) + Vi poy (2o )], I
_ 1 .
We, (og ) = T fdl et Dy y(ag) Dp— j(exg) WE+l,E—l (otg ) , (8.3)
7
7 N S() dl it 7 p
B (oo a’) = 2 & E+1E—1 (%o o)
y
and (8.4)
4 0o
Z, (o ') = f dE Zp, (ap oo’ .

One obtains (8.1) for ¢ # 0, directly from (2.8) by standard calculation?)3).
The Markoffian approximation of the non-Markoffian master equation (8.1) is
given by:

Zﬁ?{t (otg ot o)

I

;LE,t (goa’) + 2 nﬂ-2fda1 [f dt, E&E,ll (et O‘1)] Zﬁt (o ')
0

= 8.5
= hE,t (g ') A2 DEHO(%) Dy _ ;o) 8.3)

deocl WE:{:iO.EiiO (g 0t1) th (ot o e’} .
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In (8.5) the upper signs stand for £ > 0, the lower ones for £ < 0. The evaluation of
(3.1) in the Markoffian approximation gives*):

+ 00 T
AM — 1lim ]da,,A(%) f dEfdt M, (gpoe) = lim hleciaoA(aD)
T—-+ 0 ! T—+ co 2n
-0 0
+ 00

X / dE Dy _;o(ot0) D _ (o) {j: Ootg — &) Bl — ') £ Vg Ti0E 1 i0 (ocg 0c o) (8.6)

7
+ zﬂzzfdal Wy o5 110 (cxoal)fdt 2 oy oc’)l.
o |
Looking at (2.8) one easily recognizes that for large 7, (S 0), and after integration
.
over oy, 2 :zfdt ZY | (mg ') obeys the same equation as + Zp—;, g4y, (goaa) for
0

small 7. Therefore, considering (3.5) we obtain:

~

AY =4, (8.7)

which represents the desired result.
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