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Representations of Canonical Anticommutation Relations*)

by Huzihiro Araki**),
Department of Physics, University of Illinois, Urbana, Illinois

and Walter Wyss,

Institut für Theoretische Physik, ETH, Zürich

(15.VIII.63)

Abstract. Cyclic Representations of canonical anticommutation relations (CARs) with,
charge conservation are studied. The algebra of zero charge polynomials of canonical variables
(called the g-algebra) is algebraically characterized by simple properties. It is proved that any
cyclic representation of the 0-algebra is uniquely extendable to a cyclic representation of CARs
with charge conservation. A cyclic representation of the 0-algebra is characterized by a certain
functional E, satisfying a positivity condition and a condition related to the Fermi statistics. The
functional E for the grand canonical ensemble of the free Fermi gas in an infinite volume is
computed and the corresponding representation of CARs is analyzed.

§ 1. Introduction

Representations of canonical commutation relations (CCRs) have been studied by
many authors and proved to be useful in the study of von Neumann algebras for the
infinite free Bose gas1). Representations of the canonical anticommutation relations
(CARs) for a finite system are completely analyzed by Jordan and Wigner2). Those
for an infinite system have been studied by some authors3) but their analyses are not
necessarily convenient for the discussion of the infinite Fermi gas. The purpose of the
present paper is to develop a formulation for representations of canonical
anticommutation relations, which can easily be applied to the infinite free Fermi gas.

We mainly consider the representations of CARs, where a total charge N can be
defined as a selfadjoint operator having integer eigenvalues, such that the canonical
field operators either increase or decrease 77 by 1 and such that there is a cyclic vector
belonging to the eigenvalue 0 of 7Y. Such representations of CARs will be called
representations of CARs with charge conservation.

The central role in our formulation will be played by the Ç-algebra, defined as the
algebra of those polynomials of the canonical field variables which commute with N.
This may be considered as the algebra of observables. We can characterize the Q-
algebra algebraically by the commutation relations of the Lie algebra of finite rank

*) Supported in part by National Science Foundation.
**) On leave from Department of Nuclear Engineering, Kyoto University Kyoto, Japan.
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operators K on a certain Hilbert space (the test function space) and by an additional
relation directly related to the Fermi statistics. The most important property of the
Q-algebra is that any of its cyclic representations is uniquely extendable to a cyclic
representation of CARs with charge conservation.

A cyclic representation of the Ç-algebra is characterized by a functional EfeK)
satisfying a positivity condition and a condition related to the Fermi statistics. We
compute the functional EfeK) for the grand cononical ensemble of the free Fermi gas
in an infinite volume. The representation of CARs for the infinite free Fermi gas
allows a particle-hole interpretation and has a great similarity to the representation
of CCRs for the infinite free Bose gas.

In section 2, we define the representations of CARs and prove that they are always
represented by bounded operators. In section 3, we define abstractly the algebra
generated by the canonical variables and call it the CAR-algebra. In section 4, we

prove properties of the zero charge part of the CAR-algebra and, using these properties,

we define the Ç-algebra abstractly in section 5. In section 6, we prove that the
Ç-algebra defined in section 5 is isomorphic to the zero charge part of the CAR-algebra.
In section 7, we obtain all representations of the Ç-algebra for a finite system and
show that they are all given by the restriction of representations of the CAR-algebra.
In section 8, using results in previous sections, we prove the main theorem that any
cyclic representation of the Ç-algebra is uniquely extendable to a cyclic representation
of the CAR-algebra with charge conservation. In section 9, we introduce an auxiliary
operator UfeK) and in section 10, we consider the functional EfeK) which is the
expectation value of UfeK) for a cyclic vector. We prove that a few simple properties of
EfeK) are equivalent to the existence of the corresponding unique cyclic representation
of the Ç-algebra. In section 11, we study a few simple examples of EfeK). Finally in
section 12, we compute the EfeK) for the grand canonical ensemble of free Fermi
particles without spin in an infinite volume. This turns out to be the example
analyzed in section 11.

§ 2. Canonical Anticommutation Relations

We first give the definition of canonical anticommutation relations in a form,
which is in line with Wightman's axioms for quantum field theory.

Definition 1 : Let Äbea (not necessarily complete) complex vector space with a

positive definite inner product. A representation of CARs over ft is the set of a pair
of linear operators (ftp) and (f+f),fin ft, satisfying the following:

(1) (ftp) and fy>+f) are defined on a dense domain D in a Hilbert space §> and

fff) D C D and ff+f) DQD.
(2) (ff) is antilinear in/and (f+f) is linear in/.
f3) fff)* A ff+f) *).

(4) For any 0 e D, f e ft, g e ft,

{(ff), fe ?)}+<£ {(V+ /), (W+ g)}+® 0 (2.1)

*) A* is the adjoint of A. A z> B means D(A) r>D(B) and A cp B 0 for 0 e D(B) where
D(A) and D(B) are domains of A and B.
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{(/>U^+g)}+0 =(/,?)# (2-2)

where {A, B}+ AB A- BA and (/, g) is the inner product*) of / and g.
The following theorem enables us to always take D § and the equality in (3).
Theorem 1. In any representation of CARs, fff) and ff+f), for any / in ft, are

bounded with the norm

Il(/V)||= Il(v+/)|| I|/Il (2-3)

and the mapping/->- fff) and/-> ff+f) can be uniquely extended to norm
preserving antilinear and linear mappings from the completion ft of ft into Bf§>) (the set
of all bounded linear operators on §).

Proof. For any/ e ft, 11 / [ | 4= 0, we define

n(f) (f,f)-Hw+f)(fw) (2-4)

By (1), nff) is defined on D and by (3) and (4)

nff)2 nff),nff)*Anff) (2.5)

Hence, for any 0 e D, we have

\\n{f)0\\*=(0,n(f)0) A\\0\\ \\n(f)0\\
i.e. || nff)0 || < \\0 ||

From this we have

|| (/y)<P||«= \\f\\2f0,nff)0) < ||/ ||2 || 0 [j«

Therefore fff) is bounded on D and can be extended to a bounded operator on the
whole §. By (3), ff+f) is also bounded with the same bound as fff). From (2.5),
|| nff) || 1 unless nff) 0. Hence, || fff) || ||/|| unless fff) 0. However,

fff) 0 contradicts (2.2) if/ 4= 0. Hence, we have (2.3) for/ #= 0. On the other hand,
(2.2) implies fff) 0 if/= 0. Therefore we have (2.3) for any/ The rest of the theorem
is obvious.

Remark. In an application, ft D © © D or ft L2 © © L2, where
D D fR3) is the set of all infinitely continuously differentiable complex-valued
functions of three real variables with compact supports, equipped with the inner
product of L2. The number of D in the direct sum may be taken to be 1 for the non-
relativistic Fermi particle without spin, and 4 for the Dirac particle. Such structure
of ft is relevant when one introduces a unitary representation of the Euclidian or the
Lorentz group.

§3. CAR-algebra

The representation of CAR can be viewed as a ^representation of a certain
*-algebra, which is constructed in the following way.

We use the physicist's convention that (/, g) is linear in g and antilinear in /.



a1 a2 -274«*
P./U

[*ÌJ-• [*i.(«J [Ä
2 1

L/J • • • [Â«,(y)^]

and the involution defined by

fa1)* =274* [*i, *1
(A)aJ • • ¦ [*iS

where

«'=274 [*LJ-¦¦ [*»i(i)J. *M«*l.1 ft*, A* / *if h- /€ ft and A!
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The notation for the dual. If ft is as in the definition 1, ft is a Hilbert space. For any

/ e ft, we define/* as the mapping from any g e ft to the complex number (/, g). (It is

the adjoint of the mapping from a complex number c to the element c.f of ft.) We
define ft* as the set of all /* with /eft.

Definition 2. The free (non-commutative) *-algebra P(ft, ft*) over ft is a free

complex vector space over monomials [AJ [hn], hj e ft u ft* and 1, which is equipped
with the vector space addition, the multiplication defined by

(3.1)

(3.2)

fiih f* eft*.

In our notation, [AJ [A„] with n 0 will always mean the element 1. The monomial
[AJ [AJ will also be written as [Alf A„], (1*= 1.)

Definition 3. Let Ic be the two-sided *-ideal of P(ft, ft*) generated by

4/] + d[g] - [cf A- dg], c[/*] + d[g*] - [cf* + dg*] (3.3)

{[/], [*]}+. {[/*]. [g*]}+. {[/], Lfe*]}+ - fe- /) 1 (3-4)

where / and g are arbitrary elements of ft and cf* (c*f)*. The CAR-algebra
31c(ft) over ft is defined by

2Ic(ft) P(ft, ft*)/Ic (3.5)

Lemma 1. For any representation fff) and ff+f) of CARs, there exists a ?-repre¬
sentation f of the CAR-algebra in Bf§>) defined by

V(2>a [ZJ • ¦ ¦ [AM)J) 27c, J7y,([A,J) (3.6)
A A i-l

where y([A]) (t/j+/) if A / e ft, V*(M) (/y) if A=/*cft. Conversely, any
?-representation f of the CAR-algebra gives a representation of CARs through
(/V)=v([/*])and(v,+/)=v([/])-

Proo/. Let ^ be defined by (3.6) for all elements of P(ft, ft*). Partly due to (3) of the
definition 1, f is obviously a *-representation of P(ft, ft*). Because of (2) and (4) of
the definition 1, the generating elements (3.3) and (3.4) of Ic are mapped to 0. Hence f
gives a *-representation of 3Ic(ft). The converse is also obvious, because the relations
given by (3.3) and (3.4) are just (2) and (4) of the definition 1.

Definition 4. If 0 e $> has the property that {ffa) 0; a e 5ïc(ft)} is dense in §,
0 is called a cyclic vector of y(?Ic(ft)) and the representation f is called a cyclic
representation.
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For a cyclic representation, we can apply Gelfand's method to a cyclic vector 0
and the expectation functional

Efa) f0, ffa) 0), a e 3tc(ft) (3.7)

Lemma 2. The functional E fa) of (3.7) is linear in a and Efa* a) 2g 0 for any
a f Wc(ft). Conversely, any functional Efa), having these properties (linearity and
positivity), can be written in the form (3.7), where the cyclic *-representation f of the
CAR-algebra is unique up to a unitary equivalence. fEfa*) Efa)* follows from the
requirement that E(a* a) is real.)

Remark. If ft is finite dimensional, it is known2) that any *-representation of CARs
is fully reducible and the irreducible representation of CARs is unique up to a unitary
equivalence. It is easy to prove (by a similar argument as the proof of the theorem 5)
that 3Ic(ft) is faithfully represented in the unique irreducible representation of CARs
for the finite dimensional ft (and hence is isomorphic to the algebra of all 2" x 2"
matrices where n dim ft). Since any element a of 3Ic(ft) for an infinite dimensional
ft can be considered as an element of 3Ic(fti) for some finite dimensional subspace ftj
of ft, any *-representation f of Stc(ft) is faithful andi/>(a) has a unique operator norm.
We can equip 3tc(ft) with this norm and obtain a C*-algebra 5Ic(ft) by the completion
of 5Ic(ft). 3tc(ft) is obviously simple, because any of its representation is faithful. We
will, however, not use the concept of C*-algebra in the following.

§ 4. The operator Qv (K)

Definition 5. Let P(ft) ft ® ft* be the set of all finite rank operators of the
n n

form K 27 fi ® g* where/, gt e ft and Kf= £/ fgt,f) for any / e ft. We define

for any such K the following operator.

n n

QvfK) f (jr-n/j [g*]) =27(v+ h) (Si f) (4-!)
t 1 i » 1

where f is any representation of the CAR-algebra.
Since (3.3) is 0 in 2tc(ft), QAK) does not depend on any particular representation

of K as Zft ® gt*.
Theorem 2. For Q Q^, the following holds :

Q (cx Kx A- c2 K2) cx Q(KX) + c2 QfK2) (4.2)

QfK*) Q(K)* (4.3)

[Q(KX), Q(K2)A Q([KV K2A) (4.4)

QU®n2=(f,f)Q(f®l*) (4.5)

where [A, B]_ AB- BA.
The proof is obvious from (2.1), (2.2), the linearity of f and the identity [ab, cd]_

a {b, c}+ d — {a, c}+b d + c a {b, d}+ — c {a, d}+ b.
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Remark. As we shall see later, the properties (4.2) ~ (4.5) completely characterize
the mapping Q^. On the other hand, a mapping Q satisfying (4.2) ~ (4.4) without
(4.5) can be constructed in the following way. Let cf> and n be a representation of CCRs.
Define

fff) mf) +»*(/))/1/2 and QvfK) 2>(/> rp(gt) for K £ /. ® g*

i-l i-l
Then Q^ so defined satisfies (4.2) ~ (4.4) but not (4.5).

If ft is finite dimensional, any Q satisfying (4.2) ~ (4.4) gives a representation of
the Lie algebra of all n x n matrices where n dim ft. Such QfK) can be obtained
as the infinitesimal generator of a *-representation of the full linear group, or, if we
restrict K to antihermitian matrix, as the infinitesimal generator of a unitary
representation of unitary group. These representations are fully known for a finite
dimensional ft. We will see in section 7 that (4.5) restricts the representation to totally
antisymmetric ones in the sense of Young tableau. The Q^ constructed from CCRs

gives totally symmetric ones.
Theorem 3. The mapping Q^ of the definition 5 has the property

\\QvfK)\\ < tr(K*KA2 (4.6)

and can be extended uniquely to a continuous mapping from the Banach space of

trace class operators on ft with the trace class norm (|| K \\lr tr(K* K)112) into the
Banach space B(§>) with the operator norm.

Proof. Any K e P(ft) can be written as

K=Xkirfi®fl
h i -1

with a suitable orthonormal set {/.},

Let 0, V e S, j | 0 | ] - 11 V 11 1 and Mu f0, <?„(/ ® f*) V)

Considering M as a n x n matrix, we have

fc, Md) f0, Qv (g ® h*) V) with h 27c /,- and g j^d, /,..
i 1 i - 1

By the theorem 1,

|| QyfgAh*) \\^\\g\\.\\h\\ \\d\\.\\c\\.
Hence, 11 M 11 sup | fc, Md) \ • \ | c \ |_1 11 d \ \ l ^ 1

Therefore || Qv (K) 11 7 sup | tr(K, M) \ tr(K* A')1'2 || K \\lr.
|| M H S 1

Because the set of finite rank operators is dense in the set of trace class operators
relative to the trace class norm, the rest of the theorem is then obvious.

Remark. If K is hermitian, i.e. if

K=jrxifi®f*
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with some orthonormal set {/,-} and real eigenvalues Xit then

| j QV(K) 11 sup | tr (K M) | max (£Xit -Zh) ¦ (4-7)
o s m s i ;.;>o ^<o

§5. 0-algebra
In this section we consider the algebra of operators Q(K) satisfying (4.2) ~ (4.5).
Lemma 3. Let Q be a mapping from F(ft) into the set of linear operators on §> such

that the domains of QfK) and QfK)*, for any K, contain a common dense set D with
the property QfK) DQD, QfK)* DQD and such that (4.2) ~ (4.5) are satisfied on
D. Then QfK) is a bounded operator.

Proof. Due to the proof of the theorem 1, (4.5) and (4.3) imply that Qff®f*) is

bounded. Since f®g* can be expressed as a linear combination of ff A- Xg) ®
ff+Xg)* with X= Azi, AA, Qff ® g*) is also bounded due to (4.2). Hence any
QfK) is bounded again due to (4.2).

The algebra of operators generated by QfK) satisfying (4.2) ~ (4.5) can be viewed
as a representation of a certain *-algebra, which is constructed in the following way.

Definition 6. The free (non-commutative) algebra P(P(ft)) over F(ft) is the free

complex vector space over monomials [Kx] [Kn], Kj e -F(ft) and 1 ([Kx] [Kn]
with n 0 will mean 1), equipped with the vector space addition, the multiplication
defined by (3.1) and the involution defined by (3.2) where A^ is now taken to be an
element of F(ft) and * on them is taken to be the hermitian conjugation of F(ft).
We sometimes denote the monomial [K~\ [K„] as [Kx Kn].

Definition 7. Let Iq be the two sided *-ideal of PfFfR)) generated by

cx[Kx\A-c2[K2\-[cxKxA-C2K2] (5.1)

[[KA [KA\_ - [[Kx, K2A] (5.2)

[(/ ® /*)]2 - (/, /) [/ ® /*] (5.3)

where Klt K2 e F (ft) and/ e ft. The Ç-algebra 2L(ft) over ft is defined by

3IQ(ft)=P(F(ft))/I0 (5.4)

Lemma 4. If Q is a mapping from F(ft) into F(§) satisfying (4.2) <~ (4.5), then
there exists a *-representation of the Ç-algebra defined by

m m

QfZc*tKu} [Knm]) =£cx QfKu) QfKnm)
A-l A=-l

(If n 0, QfKx) QfKn) is to be understood as 1.) Conversely, any *-representation
of the Ç-algebra on a Hilbert space § gives a mapping from F(ft) into F(§) satisfying
(4.2) ~ (4.5).

The proof is similar to that of the lemma 1.

Lemma 5. If Q gives a *-representation of the Ç-algebra and f is a cyclic vector
of <2(9L(ft)), then the expectation functional

E (a) (W, Qfa) W), a e 3Iç(ft) (5.5)
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is linear in a and E(a* a) ^ 0 for any a e 9L(ft). Conversely, any linear non-negative
functional Efa), a e ^„(ft) can be written in the form (5.5) where the cyclic ?-re¬

presentation Q of 9L(ft) is unique up to a unitary equivalence.
For the proof, see the ref. 4. The boundedness of the operator Qfa) follows from

the lemma 3.

We now prove a few formulas for the Ç-algebra, which will be used in the next
section.

Theorem 4. In the Ç-algebra the following holds.

[/ ® g*]2 [/ ® g*] fe, /) (5.6)

[fi ® gli [/2 ® g*] + [/1 ® g*] [/2 ® g*l - [/1 ® g*il fe., /2) + [/1 ® g*] fei. /2) (5-7)

Proof. From the relation that (5.3) is zero, we obtain for arbitrary X,

[(/ + Ag) ® (f + Xg)*f ff + Xg, f A- Xg) [ff + Xg) ®ff + Xg)*l

Using the relation that (5.1) is zero, we develop both sides of this equation into a

polynomial of X and X*. Comparing the coefficients of fX*)2, we obtain (5.6). From
(5.6), we have, for arbitrary complex X and fi,

[fk + Xf2) ® fgl + fi g2)*]2 (gx + (i g„ A + X f2) [ffx A- X /2) ® fgl + /i g2)*l

Comparing the coefficients of Xfi*, we have

{[A ® gii, [/2 ® g*]}+ + {[/1 ® g*]. [/2 ® gil}+

[{h ® gî> /2 ® g*}+] + [{A ® gl /2 ® g*AA

Using the relation that (5.2) is zero, we obtain (5.7).

Corollary

[fi ® g*] [/2 ® g*] [/1 ® g*] fe, /2) (5.8)

[/ ® gì! U ® gli [/ ® g*] fei, /) (5.9)

§ 6. The isomorphism of the 0-algebra and the zero charge part
of the CAR-algebra

Charge quantum number. The algebra P(ft, ft*) can be split into a direct sum (as a
vector space) of subsets according to the 'charge quantum number'. Namely,

+00

P(ft,ft*) 2JP(&-ft*)n i6'1)
«= —00

where P(ft, ft*)„ is the linear subset of P(ft, ft*), generated by all [hx, hNl such
that r of ht are in ft, s of A, are in ft* and r A- s N, r — s n. We also have the
following formulas,

P(ft, ft*)„ P(ft, ft*)m P(ft, ft*)m+„ (6.2)

P(ft, ft*)* P(ft, ft*)_„ (6.3)
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Since each of the generating elements (3.3) and (3.4) of Ic is in one of the subsets
P(ft, ft*)„, » 0, Az 1, Az 2, the two sided ideal Ir has the direct sum decomposition

Tc 27 Z„ (6.4)
n co

where ICn C P($tf ft*)„- Therefore, we have

— CO

9Ic(ft) 27«c(Ä)»' «c(Ä)„=P(ft.ft*),/Ic. (6-5)
M- -OO

From (6.2), we have

9lr(ft)„.3lc(ftL 2tr(ft)M)„ (6.6)

3Ic(ft)„* 5tc(ft)_„ (6.7)

Therefore 3Ic(ft)0 is a *-subalgebra of 3lc(ft) and will be called the zero charge part of

We now consider the mappings' from PfFfSi)) into 3Ir(ft), defined by

jfjjc, [Ku,..., KnWA) £ 27 7. [fi\,t ÄÄ i (6-8)
A-l A 1 n...jn(>.)

where Ka £ fil ® ë'n*- Because of the relation that (3.3) is zero, j is well defined
it

(i.e. does not depend on the various ways of expressing Ka as a sum of tensor
products of f's and g's). By the same calculation as in the theorem 2, we see that

j y C Ic- Hence j induces a *-homomorphism of 317ft) into 3Ic(ft), which will be
denoted by the same letter /. We now prove

Theorem 5. The mapping j defined by (6.8) is a *-isomorphism of 317ft) into
5lc(ft)o (the zero charge part of 3Ic(ft)).

Proof. We already know that j is a *-homomorphism of $L(ft) into 3tc(ft)0. We
have to prove that it is onto 3tc(ft)0 and that j a 0 implies a 0.

Any element of 31c(ft) or ÏL(ft) can be considered as an element of 3tc(fti) or
^Liftj) for a finite dimensional subspace ftj of ft. Hence, if we prove for a finite
dimensional ft that y is onto 3lr(ft)0 and that j a 0 implies a 0, we have the same
for an arbitrary ft.

Let/ ./„ be an orthonormal basis of a finite dimensional ft and let al [/] and

Iti [ft ®fj*l- Due to the anticommutation relation that (3.4) is zero, any monomial
of 3Ic(ft) is equivalent to a monomial with at most one at and one «;* for each i.
Again using the anticommutation relation, we see that $lr(ft)0 is linearly spanned by
elements

a, ¦ a* ...a, • a* ¦ a,. ¦ aA ...a,. ¦ aA (6.9)
'1 H 'm Jm *1 *1 kn "n v '

where all i, j, k are distinct and we impose the restriction

h < •• < hn, h< — < In,, *1 < ••• < K (6.10)

Hence j is onto 3lc(ft)0.



Vol. 37, 1964 Representations of Canonical Anticommutation Relations 145

The element (6.9) can be characterized by two index sets

I {ix... im kx... k,A J={]\... jm kx...kn}
because I and J determines

{kx...kn} inj, {ix...im} i-finf), {/!.../„} =/-(/n/)
and (6.10) will determine individual iv, jv and kv. We denote (6.9) by afl, J). We now
prove that afl, J) are linearly independent. Let

£c(I, f) afl, /) 0 (6.11)

Let us consider the partial ordering of the pair (J, /) defined by flx, /,) C (-^2- /2) if
Fx C 1\ and Jx C J2- (C and D together implies We prove that (6.11) implies
cfl, J) 0 for those (I, /) which are maximal in this ordering among fl, J) appearing
in (6.11). This is, of course, sufficient to prove c(I, J) 0 for all (I, /). If we define
an operator L±(b) acting on 3lc(ft) for any element b of 3Ic(ft) by

LA0) a- [b, a]_ LAb) a {b, a}+

then we have, for a maximal (/, /)
77 L+(« L_(a *) n LA\) £_(0 a c(I, f) 1

ß v

for a Z c(I, J) a(I, J). Hence, a(I, J) are linearly independent.
Finally we prove that %q(R) is linearly spanned by

qfi, f) q,lh ,-¦¦ q,mJm, Vi • • ¦ • • V„ (6-12)

where i, j, k are restricted by (6.10) and I, J are defined as before. Since/ qfi, J)
afl, J) and since afl, J) are linearly independent, this will guarantee that j a 0

always implies a 0.
Consider a monomial qf{fi], {v}) q v q If some of ^a's or v's are the same,

then we permute q's, using the commutation relations that (4.2) is zero, so that the
q's with the same As or v's come next to each other and subsequently use (5.8) or
(5.9) so that we obtain a polynomial of lower order. Furthermore, if r and s are
permutation of 1 p, with signatures efr) and efs), then, due to the theorem 4, qf{fi}, {v})
and efr) ¦ efs) qf{(i'}, {»'}) with Ai /Wr(i)> Z vs{i) differs by a polynomial of lower
degree. Hence, by mathematical induction on the degree of polynomials, we see

that qfi, J) linearly spans 3f0(ft). This completes the proof of the theorem 5.

§7. Representation of the Q-algebra for a finite dimensional K

In this section we obtain all the *-representation of the Ç-algebra for a finite
dimensional ft. A corollary of the results in this section will be used in the next section.

Lemma 6. If ft is finite dimensional, $L(ft) is finite dimensional.
Proof. We have already seen that (6.12) with the restriction (6.10) span the whole

algebra, which proves the lemma.

10 H. P. A. 37, 2 (1963)
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Lemma 7. Let ft be finite dimensional and let Q be an irreducible *-representation
of 3I0(ft) on §. Then the operator

n

p=ZQ(i,i) (7-1)
i-l

must be a constant p on § and any two such Q with the same / are unitarily equivalent.
Here {/{; i 1 n} is an orthonormal basis of ft and qt, [/• ® /.*].

Proof. Let Qtj Qfqi}). Since P commute with all Qu due to

ZtQn.Qtkl^Z&'Q'k-^iQ'^0-
t i

P must be a constant in an irreducible representation. The uniqueness for the case

p 0is trivial. Namely, EQti 0 implies QH 0 and, due to (5.8), QtJ Qtj Qjj 0.

That is Qfa) 0 for any a e 9Iç(ft).
Now we consider the case p A= 0. Since {Q{{; i 1 n} is a commuting set of

projections, they have a simultaneous eigenvector, say'Fo, such that

<?iin !¥/° iiieI° <7-2)V" ° \ o if i$I0

for some subset 70 of {1 «} consisting of ^ indices. Let I0 {kx... kp}, kx < <
kr ^ p < kr+x A < kp and {1 p) {kx... kr k\ kp^}. Define

Wo n^Ar+u W° ¦

Due to (4.3) and (5.7)

Qj:Qjì QìjQjì=QhA-Qjj), if * * i (7-3)

By using (7.2), (7.3) and (4.4), we have

(V0',W0') (Wt),W0)+0 (7.4)

Due to (5.8) and (5.9)

QuQki 0 if k + i (7.5)

QuQik= Qik (7-6)

Hence

Quv;-\* V-ii (7-7)
{ 0 lf I > p

Now let I {ix... im}, J {jx... jj, {j. < < im < P < h < j,„ and define

m

W(I,f)=nQjiW0' (7.8)
ß-i ß ß

We shall show that the inner product of vectors Wfl, J) as well as the behavior of Qtj
on Wfl, J) is uniquely determined by (4.2) ~ (4.5).
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Due to (7.5) ~(7.8),

[ 0 if l € I (J / V '

where

I'={l...f}-I f' {p+l...n}- f (7.10)

From (7.9), it obviously follows that

{Wv fi), Wz, /2)) 0 unless Ix I2, fx /2 (7.11)

Due to (7.3),

11 W(I, f)\\2= (W0', n (1 - Qjj) Q{{ W0) [W', W0) (7.12)
HI* f-1 tl

Since Çi;. Ç,, Ç„ Qjt (1 - Ç„), we have from (7.9)

Qj i W fl, /) 0 unless j e I u /' and i e F u / ¦ (7-13)

Now if i e I', j e J', then ik < i < ik+1, jl < j < ;'(+1 for some A and Z. (If k-= m,
< tA+1 should be omitted and if k 0, tt < should be omitted. The same for j.)

Because

wi'i v;'2!'2 ~ — w'i<2 w'2'1 ~~ — w'2'1 *-h*2

if all _/',, j2, ix, i2 are different, we have

QJt Wfl, J) (- 1)*-' Wfl u {»}. / u {/}) (7.14)

If *"=;*€ /> ; e y and ;', < 7* < jl+1, then we use

as well as the equality used for (7.14) and we have

QjiW, f) (- l)*-<+9<*^ Wfl, f u {/} - {i}) (7-15)

where 0(*) 1, if x > 0 and 0, if x ^ 0.

If j z'A e I, i e I' and *', < 2 < il+x, we use

^¦V Vj'ek ~~ vV ^V*

as well as the equality used for (7.14) and we have

QjiW. f) (- l)*-^8«*-^1 !F(/u {»} - {/}, /) (7.16)

Finally, if 7 jft e I, i jt e J, we use all equalities used above and we have

Qj t W, /) (-!)*-' W - iû, f - {»'}) (7.17)

Since {Qjj} is assumed to be irreducible, any vector is cyclic and hence Wfl, J) span
the whole space. Therefore (7.9) ~ (7.17) shows the required uniqueness.
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Theorem 6. Any representation Q of the Ç-algebra over a finite dimensional ft is

fully reducible. Its irreducible representation is uniquely characterized by the value
of the operator P defined by (7.1).

Proof. Let 51 be any *-algebra of finite dimension. By the transfinite induction,
the Hilbert space is a direct sum of subspaces, in each of which 31 is cyclic*). These

cyclic spaces are finite dimensional if 31 is finite dimensional. Furthermore the orthogonal

complement of any invariant subspace of *-algebra is also invariant. Therefore

any *-algebra of finite dimension is fully reducible and, due to the lemma 6, Ç(3L(ft))
is fully reducible. The rest of the theorem is due to the lemma 7.

Remark. If we consider the Q^ defined through the definition 5 with the unique
irreducible representation2) f of the CARs for a finite dimensional ft, and if we restrict
the Hilbert space to the eigenspace of P belonging to the eigenvalue p, then we obtain
a representation of the Ç-algebra with P p. This representation is irreducible as will
be shown below. The above theorem asserts that this exhausts all possible representations

of the Ç-algebra.
The proof of the irreducibility : Take any vector W in the eigenspace of P. W is a

cyclic vector of y>(3Ic(ft)). Moreover, any monomials of fff) and ffg*) except those in
3Ic(ft)0 brings W into a different eigenspace of P and the monomials in 3If(ft)0 are
mapped by f into polynomials of QAK) due to the theorem 5. Hence restricted to one
eigenspace of P, any W is a cyclic vector of (Z(3L(ft)), which proves the desired

irreducibility.
Corollary 1. Let Q be a representation of the Ç-algebra over a finite dimensional ft.

There always exists a larger Hilbert space §' D 9) and a representation f of CARs
defined on §>' such that Q^ defined through the definition 5 coincides with the given
Çon§.

Proof. Any representation of the Ç-algebra is fully reducible and each irreducible
representation can be embedded in an irreducible representation of CARs according
to the above remark. Hence the entire representation can be embedded in the direct
sum of the irreducible representations of CARs.

Definition 8. An element a of a *-algebra 31 which can be written as a b*-b for
some b e 31 will be called positive. If a e 3Ic(ft)0 is a positive element of 3Ic(ft), then
j-1 a will be called a ^-positive element of 3L(ft).

Corollary 2. Let Q be a representation of the Ç-algebra over ft, where ft need not
be finite dimensional. Any ^-positive element of 3L,(ft) is represented by a positive
semidefinite operator.

Proof. Any element of 3If (ft) can be considered as an element of 3lr(ft1) for a
suitable finite dimensional subspace ftj of ft and hence any ^-positive element of

310(ft) can be considered as that of 2L(fti) for some finite dimensional subspace

ftj of ft. Then we can apply corollary 1 and corollary 2 follows.

§8. Cyclic representations of CARs with charge conservation

In this section, we introduce the definition of a cyclic representation of CARs with
charge conservation and prove that they are determined already by a cyclic
representation of the Ç-algebra.

*) See the ref. 4 page 253.



Vol. 37, 1964 Representations of Canonical Anticommutation Relations 149

Definition 9. A cyclic representation of the CAR-algebra with charge conservation

is a representation f of 3lc(ft) with a cyclic vector W, such that

& V(*c (ft)„) W

are orthogonal to each other for different n. (The total Hilbert space § is decomposed
oo

§ 27 sz
« -— oo

Theorem 7. If Ç is any representation of the Ç-algebra on a Hilbert space irJQ with a

cyclic vector Wq, then there exists a cyclic representation f of the CAR-algebra with
charge conservation on a Hilbert space § such that
(1) there exists a unitary operator S from £j0 onto §>Q, satisfying S Q^fa) S"1 Qfa)

for any a e3le(ft).
(2) and S-1 Wq W is a cyclic vector of 31c(ft) in §.
Such y is unique up to a unitary equivalence.

Proof. The uniqueness of f is seen in the following way. Since W is cyclic, the
expectation functional Efa) (W, ffa) W), a e 3Ic(ft) will determine f up to a unitary
equivalence. However, by (6.5) any a can be written as

+-00

a 27««- «.««cM. (8-1)
n -¦ - oo

and by the orthogonality of §„ for different n, we have

Efa) fWQ, Qfj-1 «„) yfl) (8.2)

Hence y is unique up to a unitary equivalence.
The existence of f is proved just as easily. We define Efa) by (8.1) and (8.2).

Note that, ii a e 31c(ft)„, «*0, then Efa) 0. Since Q, jr1 and a -> «0 are all linear,
£(«) is linear in a. Furthermore, due to corollary 2 to the theorem 6 for yj-positive
elements, we have

oo

Efa* a) X (Vç, Q(rA<K)) WQ)A0
M— -OO

Hence, due to the lemma 2, we have a Hilbert space §, a representation f of 3tc(ft)
and a cyclic vector W in §, satisfying Efa) fW,ffa) W). By definition, §„_L$m
for n A= m. Furthermore, by construction, (W, Q^fa) W) (WQ, Qfa) Wq) for any
a e 3Iç(ft), which implies the existence of the unitary operator S satisfying (2) due to
the lemma 5. This completes the proof of the theorem.

§9. The operator U(K)

By the theorem 7 and the lemma 4, the mapping Q from F (ft) into BffyA with a

cyclic vector WQ will uniquely define a cyclic representation of the CAR-algebra with
charge conservation. We now consider another mapping U into F(§ç), which
can replace Q.



150 Huzikiro Araki and Walter Wyss H. P. A.

We first consider the element
oo

exp[F] 27 n!-1 [Kf (9.1)

for any K e F(ft). When one discusses an equation in 3L(ft) involving a finite number
of Ki e F(ft), there always exists a finite dimensional subspace ftx of ft such that all
K; are in ftj ® K*, and one can consider the equation in the finite dimensional sub-
algebra îfçfftj) of 3L(ft). In particular, (9.1) converges in the unique topology of the
finite dimensional vector space.

We now prove
Lemma 8. (1) exp [K], K e F(ft) linearly span 3lQ(ft).

(2) exp [K] depends only on exp K.
(3) (exp[F])* exp[F*].
(4) exp [Kx] exp [K2] exp [Kx o K2] where Kx o K2 is any operator

in F(ft) satisfying exp Kx exp K2 exp Kx o K2.

(5) exp [f®g*] lA- tp(g,f) [f® g*l where cp(x) x~l (ex - 1).

Proof. It is sufficient to prove (1) ~ (5) for a finite dimensional ft. As is shown
before, the infinite dimensional case follows from this.

(1) Clearly [f ® g*] algebraically generates 3lQ(ft). Hence, by (5), exp [K] algebraically
generates 3IQ(ft). By (4), (1) follows.
(3) and (5) are obvious from the definition (9.1) and the relation (5.6).
(4) for commuting K's follows from the definition (9.1) where Kxo K2 is taken
as Kx A- K2. (4) for commuting K's with Kx o K2 different from Kx A- K2 follows
from (2). (4) for noncommuting K's is proved at the end.

(2) Any Kt can be written in the Jordan normal form

K^ZElfXiA-N'i
i

where E\ E{ òl} E?, Z E,' L K * % for i * j, E{ N} N,' EJ oy N{, (N{) A

0 for a finite d'. E\, X\ and N^ are uniquely defined by this equation and the stated
conditions, apart from their order. If exp Kx exp K2, then we have

27 E\ (expAj + Ml) =2JE2 (exp X) + M2)

where M\ (exp A,-) 2J (A!)-1 fNf)k. Since a sufficiently high power of M\ vanishes,
A-l

we have E\ E2, exp X\ exp X2 and M\ M2 after a suitable rearrangement of
suffices j. Now log (1 + (exp —X\) M[) N\ where log is defined by a power series which
terminates at finite term in this case. Hence N] N{. On the other hand, exp x
exp y implies x y A- 2 m i n. Thus we see that K2 Kx -A- 2 n i L where L ='EmiEi,
the mt are integers, Ei Ej <5£. Et and E{ commutes with Kx. Et can be written as

Ei Efik®gi* where {gih,fj,) dt, dkl. Hence, using (4) for commuting F's with
K

Kxo K2 K^A- K2 repeatedly and using (5), we have (2).
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(4) We use the formula
z

1 A-zA exp I fl A-X A)-1 A dX (9.3)
b

where the integration is over any path F from 0 to z in the complex 2-plane, on which
(1 4- X A) is non-singular, and is well defined (for a fixed F) if 1 + z A is non-singular.
Both sides of (9.3) are (operator-valued) analytic function of z and they coincide for
small z as can be seen by the power series expansion. If A A, Et (Xi A- Nt) is the
Jorgan normal form oi A, 1 + z A becomes singular only at finite number of points
z — Xr1. Hence we have (9.3).

We define

faKx)ofxK2)= fl+XA fa x) J-1 A fa r) dl (9.4)

where Afar) e" l e 2 — 1 and the integration is over a path F from 0 to 1 in the
complex A-plane, on which 1 + X A is non-singular. Since 1 + A (a r) is non-singular,
(9.4) is well defined for each F. Since singular points X — Xr1 of (1 + X ^4(<tt))_1
depend on a and t continuously, (9.4) is locally analytic in a and r for a suitable choice
of F. Furthermore, by (9.3),

oKx xK2 £aKx)0(-iK2) ,g 5-

We now investigate the equation

a[Kx] *[K2] _ [(aKx)0KrK2)} .- g.

By the Baker-Hausdorf formula5), C, satisfying eA eB ec, can for sufficiently small
A and B be given by a converging series, in which each term is a multiple commutator
of A and B. Because of the relations that (5.1) and (5.2) are zero, we see that (9.6)
follows from (9.5) for small a and x. Since the right hand side of (9.6) does not depend
on F due to (2), it is analytic for any a, r and so is the left hand side. Therefore, (9.6)
holds for any a and t.

We now want to prove that the properties (1) ~ (5) of exp [K] is essentially
equivalent to the properties of [K].

Theorem 8. Let e(ft) be the multiplicative group of operators eK, FeF(ft),
equipped with an involution feK)* eK*. Let U be the mapping from «(ft) into linear
operators on Hilbert space §, satisfying
(1) The UfL),L e e(ft) are defined on a common dense domain D such that UfL)DÇ_D.
(2) U is a *-homomorphism, i.e.

UfL)* D UfL*) (9.7)

U(LX L2) U(LX) U(L2) (9.8)

(3) (exp X fff) - l)-1 fUfexp Xf®f*) - 1) is independent of X.
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Then U(L), L e e(ft) is bounded and there exists a unique representation Q of the
Ç-algebra on § such that

U(eK) Ç(exp [FJ) e^>[Ki (9.9)

Conversely, if Q is a representation of the Ç-algebra on §, U defined by (9.9) is a

^representation of e(ft) satisfying (1) ~ (3).
Proof. The converse part is obvious from lemma 8. Now let U be given. We

define

nff) - (/"•" - l)-1 (C/(exp Xf ® /*) - 1)

which is independent of X. Solving for Ufexp Xf ® /*) and substituting it for L's in
(9.7) and (9.8) we see that nff)*A nff) and nff)2 nff). By the proof of the theorem 1,

nff) is bounded and so is Ufexp Xf ®f*). U(expXf ® /*) is obviously continuous

ini
For a moment, let us consider a finite dimensional subspace ftj of ft. e(ftx) is a

Lie group and a finite number of / ® f* and i f®f* linearly span its Lie algebra
F(ftj). Hence the product of e11®1* covers at least a certain neighbourhood of 1.

Furthermore, since «(ft,) is connected, it is multiplicatively generated by a
neighbourhood of 1. Hence U(L) for any L e e(ft) is bounded and it is a continuous
representation.

According to Gârding6) the Lie algebra F(ft) is then represented by linear
operators on a common dense domain. Namely, Q(K) lim fUfeXK) — V)jX satisfies

k—»-0

(4.2) ~ (4.4) on a dense domain. In addition, due to (3), it satisfies (4.5). Hence all
QfK) are bounded due to the lemma 3 and we have a *-representation Q of the Q-

algebra 3Iç>(ft1) due to the lemma 4. Furthermore, by definition, (9.9) is satisfied. The
uniqueness of Q is obvious from the equation (9.9).

Since e(ft) and 3lQ(ft) are the unions of e(Rx) and of 3lQ(ft1), respectively, for all
possible ft1, we have the theorem for any ft.

§10. The functional E(L)

We again follow Gelfand and consider the functional

EfL) fW, UfL) W) flOA)

Theorem 9. If U is as in the theorem 8, EfL) defined by (10.1) satisfies

27 cr* Cj EfL* Lf) ^ 0, (10.2)
hi-1

feX[l'n - i) 1 (E(LX emi* L2) - EfLx L2)) constant of X, (10.3)

where L, Lx, L2 e e(ft),/ e ft and c( and X are arbitrary complex numbers. Conversely,
if E(L) is a functional of L e e(ft) and satisfies (10.2) and (10.3), there exists a Hilbert
space $>, a *-representation U of e(ft), satisfying (3) of the theorem 8, and a vector y
in § which is cyclic with respect to {UfL) ; L e e(ft)}.
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The proof is similar to those of lemma 2 and lemma 5. The boundedness of UfL)
comes from the theorem 8 in this case. fEfL*) EfL)* follows from the reality of the
left hand side of (10.2).)

Remark 1. We can prove theorems similar to the theorem 8 and 9 even if we restrict
L to unitary operators. In this case UfL) will also be unitary. We can also prove
similar theorems for the set of L eK where K is an operator of the trace class on ft,
due to the theorems 3 and 7.

Remark 2. In the example of CCRs in the remark after the theorem 2, we can
construct*) a unitary operator UfeiK) eiQ{K) for a hermitian K and the functional
E(eiK). The operator UfL) satisfies (9.7) and (9.8) but it does not satisfy (3) of the
theorem 8. Although UfL) for a unitary L is bounded, QfK) is not bounded, in this case.

§ 11. Examples

A simple and yet nontrivial (though well-known) example is given by

EJwfL) 1 (11.1)

The representations of 31r(ft) and 3L(ft) associated with this functional will be
denoted by fJW and QjW. The subspaces 9)n for fJW will be 0 for negative n. §0 is
1-dimensional and a vector in §0 will be denoted by^y^ft). fjW(g*) will annihilate
WJW(${) for any g e ft. The Efa) for a e 31c(ft) can be calculated by the formula

(«V(ft), VjwU\ ¦ ¦ ¦ fl gm ¦ ¦ ¦ gli Vjw(Z) àrnn &et ((/,. gj) (11.2)

It is easy to see fhatWjWfSi) is a cyclic vector of the subalgebra generated by fJwff),
/eft. Furthermore, we have

Lemma 9. The representation fJW is irreducible.
Proof. We know that WjW(R) is a cyclic vector. Hence it is enough to prove that

the projector on ^^(ft) is in the algebra. Let {/J be an orthonormal basis of ft and
let Pa be the spectral projector oifjwffa. ® /«*) belonging to zero. They commute
with each other we can define P0 ]TJ Pa. It is easy to see that WjWfR) is the unique

a
simultanious eigenvector of fjwffa*) belonging to zero. Hence P0 is the projector on
WjwfR) and fJW is irreducible.

We denote by 6JW the operator which is (— 1)" on §/H/(ft)„ where §/jy(ft) is the
representation space of fJw.

Another example is easily obtained from the above example by

Wjw (f) Wjw ((T f)*) (11.3)

fTjw(1*)=fjw(Tf) ("-4)

where T is any conjugation in ft, i.e., T2 1, T i — i T and (F/, Tg) fg,f).
If we write the Qf for f]w by Qjw, we have Q]w(f 0 g*) tr (/ ® g*) - QJwfT g ®
fTf)*) and

F]w(eK)=AK (11.5)

*) See the footnote 23 of the ref. 1.
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Contrary to fJW, fjwff) annihilate WJW(R).

Next we consider the space §> §/w,(ft) 0 §/H,(ft), the vector W0 fjj^ft) 0
WJW(K) and

%t (h) fjw(A - e)è A) ® + Ojw ® VyV fe* h) (n-6)

where g is an operator on ft, satisfying p>0,1 — g>0, Aeftor ft*, p1'2/* fe1'2/)*
and (1 — o)ll2f* ((1 — <?)1/2/)*. Since Ö/Iy anticommute with all y>/w,(Â), i//7" defined
by (11.6) satisfy the Definition 1. Furthermore, since q and 1 — q is assumed to be

positive definite, g1'2 ft and (1—)qV2 ft will be dense in ft. Hence the repeated
application of fgTff),f e ft on W0 will give a dense set in §>jWfR) 0 WJwfR). Then, as can

oo

be seen by mathematical induction on n of § JT %>jwffy ® S/wWn« the
n-0

repeated application of %Tff*), / e ft, on vectors in §/Py(ft) 0¥//H,(ft) will give a

total set in §>JW(R) 0 §/w(ft). Hence ?F0 is a cyclic vector of yg7-(3Ic(ft)). Thus yeT
gives a cyclic representation of the CAR-algebra with charge conservation, where
§>„ is given by

& Z%jw (AU ® S/«' Wr (11-7)

If we define another representation of the CAR-algebra by

f'eT (/) Ojw Vjw feè /) ® Ojw + 1 ® vJw ((x - ?)* /) V (n-8)

where/e ft and f'QAf*) W'eAf)*> then f'ojfh) commutes with any fQAh') and hence

fqT is not irreducible.
The functional EfL) for foT is calculated in the appendix A and is given by

EfeK) (W0, QQT (eW) W0) exp tr log (1 + (eK - 1) e) (11.9)

The case where q becomes a projection operator can be constructed in the following
way. Let ft ftt + ft2, ftx J_ ft2 and let Pt be the projection operator on the subspace
ft;, in ft. We consider*) the decomposition §y^(ft) §>jw(&i) 0 $bjw(&z) discussed
in the appendix B and we define

V>p2t (h) Wjw (pi h) ®\+dJW® f]w (P2 h) (11.10)

It is obious, from the lemma 9, that fp T is an irreducible representation of the

CAR-algebra with charge conservation. The calculation in the appendix A shows
that EfL) for fp T is given by

EfeK) OrV(ft), Qp2t fe[K]) WJwf&)) - exp tr 1. g (1 + («* - 1) P2) (11.11)

where WJwfR) - W^f^) 0 WJW(R2).

*) In this decomposition, y>jw for $ can be defined as

VJW (A) yijw (hx) 0 1+ 6jw 0 VJW (>>t)

where h hxA h2, hi G K{ or K{*.
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§ 12. Infinite free Fermi gas

The gas of non-relativistic Fermi particles without spin in a finite cubic volume V
can be described by fJW where ft is taken to be the Hilbert space ftF of L2-functions
over V. Let {/¦} be the complete orthonormal set of periodic functions F~1/2 eikix where
kj takes discrete values. We define the operator Hv acting on ftF by

Kv=£fk)j2m)fs®f* (12.1)
i

By the appendix B, Ufexp ß f/u — Hv)) is a traceable operator and the grand canonical
ensemble of free Fermi particles without spin in a volume V is defined by the state
(i.e. linear continuous functional over observables 317ft,/)) characterized, according
to the theorem 9, by

EfL) tr (UfL) Ufeß"~ßHv))jtr fUfeßß~ß"v)) (12.2)

eXptrlog(l + (L-l)e(p») (12.3)

where (12.3) is calculated from (12.2) in the appendix C and

e(p» /"~^F lfl + eß"-ßHv) (12.4)

By taking the limit V -> oo, we obtain the grand canonical ensemble for the infinite
free Fermi gas. It is given by (12.3) where q fß, /n) is given by the same equation as

(12.4) except that Hv is replaced by the non-relativistic free Hamiltonian H A2/2 m.
(ft is taken to be L2fR3) and k is the multiplication by k of the Fourier transform of
the function ffx) e L2fR3).)

Obviously, q > 0, 1 — q > 0 for ß 4= oo. Such representation has already been
discussed in the section 11. The formula (11.6) is very similar to the case of the infinite
free Bose gas1). The formula (11.6) allows a particle-hole interpretation in an obvious
way.

For the limit ß -> oo of zero temperature, we obtain

EfL) exp tr log (1 + (I - 1) Pffi) (12.5)

where the projection operator Pfn) is for the subspace k2/2m <; fi. This representation

is also obtained in the section 11. In particular fPMT (^cW) is irreducible
in the space .§„.
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Appendix A

We calculate*) EfeK) for fgT given by (11.6). For this calculation we only assume

g y 0, 1 — q y 0 and hence the case for fPT is included.

From (11.2) and fJwff*) WJwfS<) 0, we have

(Vo- %t Ui ....,/.. g*n g*il Vo) - det ffg,, e ff)). (A.l)

If {/;} is an orthonormal set, then we have

PP.. Qer [fi®fÌ, •••./„ ®fll V.) det ((/,-,(?/)).

v
Let K be hermitian and sufficiently small. We can write K £ X{f{ ® f* where

i i

{/,.} is an orthonormal set and Xt is small. Hence we have

N
elKi - /7(1-f-t7 (/) [fi ® /*]), where a (i) — el — 1 is small and therefore

1

(V„, Qer (e[K]) W0)=£ 27 na fk()) det ((/,., /,.)
n 0 {A, -hn) Ì -1

- det (1 4- A) exp tr log (1 + A)

where**) A fafi) (/, Qfj))ij-X... v and log(l + A) can be defined by a power series

expansion for small K. Since tr A" tr f(eK — 1) q)", we have

E(eK) - exp tr log (1 -(- (eK - 1) q) det (1 + feK - 1) q) (A.2)

*) It is also possible to prove (11.9) by ordering creation and annihilation operators in eQ(KK

**) The formula det B exp tr logB can easily be proved for a hermitian B by the spectral
decomposition of B. Considering B BXAz B2 with hermitian B's and using the analytic
continuation in z from the real axis to i we obtain the formula for the general case. Here logiJ is
defined as in the section 9 and if B is singular i.e. det B — 0 then tr logB should be taken to
be — oo.
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for a sufficiently small and hermitian K. We now set K zx Kx A- z2 K2 where Kx and
K2 are hermitian. The two extreme sides of (A.2) are clearly analytic for all value of
zx and z2 and hence (A.2) holds for all zx and z2. Thus we have (11.9). (Note that (e*—1) Q

can be considered as a finite matrix on the finite dimensional space spanned by/ and

Qfi,i=l...N.)

Appendix B

In this appendix, we introduce two different ways of obtaining fJW by using the
tensor product of Hilbert spaces. As an application we generalize the definition of

UjWfL) for a wider class of operators L and calculate tr UjWfL) for a certain class of
operators L.

Let {a} be an index set of ordinary numbers, fta be subspaces of ft, ft^+ft^ if
a 4= ß and ft £ ftœ. We consider the incomplete infinite (or finite) direct product7)

a

§ 77® Ôrw(ftœ) containing n®WjWfStx). As is easily seen, there exists a unitary
a a

operator S mapping § onto §/iy(ft) satisfying

WJW(*) Sn®WJwfRa) (B.l)
a

fjw (*) 5 (27 H® 0
Jwß ® fJW (K) ® 77® 1,) S-> (B.2)

a p-^tj. /3>a

where Â Eha,ha eftaorfta*, QJWßisthe dJW for &jW(Rß), defined in the section 11.

(The inside of the parenthesis in (B.2) clearly gives an irreducible representation of
the CARs with charge conservation and the expectation functional EfL) in the
vector 77® WjWfRa) is 1. Hence S exists.) Since fJW is irreducible, 5 is unique (up to a

a

number). In particular, if {/J is a complete orthonormal set and fta {c/J, then

§yn/(ftj is 2-dimensional, WJW($ta) is, for example, Lj

Wjw (fa) and fJW (fl) are (îo) and (oo)

respectively, and (B.l) and (B.2) are familiar formulas.

Another method to construct !$)jw(fy is the one by Fock8). Let ft ®" be the tensor

product of n copies of ft and Asym ft®" be its totally anti-symmetric part9).
Consider

§/Ty(ft) 27®AsymÄ®M (R3>
n-0

where ft®0 is one-dimensional and avectorinft®°istobeidentifiedwith'F/H,(ft). If F

maps ft®" into ft®" then I,® B maps ft®i»+') intoft®(M+(). Let E^ be the projection
on Asym ft®" and let As (1, 0 B) be the operator on §^(ft), being 0 on all Asym
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ft®', 1+ m + t and being E?+l (1, © B) EM+t on Asym ft®<»+'). The generalized
creation and annihilation operator is then defined

oo

fb + mBb«) JJAs flt ® B)ffn+ t) lfm+ t)ìjt\2yi2 (B.4)
t o

In particular, if B f e ft or/* eft* (which should be considered as a mapping from
ft®0 to ft®1 and from ft®1 to ft®0 respectively), then we identify (b+1fb°) asfJW(f)
and (6+°/* b1) as fjWff*). It is easy to prove that fJW so defined is a representation

of CARs with charge conservation, fjwff*) annihilate WJwfR) (defined as any
fixed vector in ft®0) andWjW(!A) is a cyclic vector with the charge 0. Hence §j^(ft),
WjWf<A) and fJW defined here are unitarily equivalent to our earlier definitions. In
this formulation, QJW(K) (&+1 K b1).

We now define UfL) for a wider class of L. Let L be an operator in ft with \\L\\ 5S 1.

We define

UfL) 27® L®n (B.5)
»- o

where I®" acts on Asym ft®". Since || L®" || ^ L ||", || UfL) || g 1. If L,- -> Z.

strongly with || L- ] ^ 1, then f7(F,-) -> C/(F) on each Asym ft®" strongly. Since
|| UfLf) || is bounded by 1 independent of j, this implies UfLf) -> £/(L) strongly.
Namely UfL) is strongly continuous in L. Obviously UfLx) U(L2) U(LXL2). If F
is positive semidefinite and X A 0, we may consider one-parameter semigroups
Ufe~XK) and Ufe'XK) and we easily can prove that their infinitesimal generators are

Qjwf— F) and Ç/Ir(î F). Since K and * F for F € F(ft), F > 0 linearly generate the
Lie algebra F(ft), we see that UfL) coincides with the previously defined UfL) for
L e e(ft). If L La L„, La e e(ft), \\Lb\\<l, then we define [7(1) UfLa) U fLb).
As is easily seen, (B.5) and other properties hold also for such UfL).

Finally, let us assume that L is a positive definite hermitian operator of the trace
oo

class. We have L e~K, K JJ Xifi ®f*, £ e~Xl < oo and {/,-} is a complete ortho-
j-i

_ N
normal set in ft. Let A, A 0 for » > A. Then U =UaUb, Ua=TI®Ui®TI 1,.,

l-l »>v
N

Ub 77® I,- 0 77® Ut, Ut e-WuyU*) where the tensor product is in the tensor
t-l i)N

product decomposition §>jWfR) 77® $>JW(S{j) with ft^. {cf}. Since tr U{
i

1 A- exp — Xf, we have

tr UfL) 77 tr UfLf) 77 (1 + exp - Xf) exp tr log (1 + L) (B.6)
i j

where the product 77 (1 + exp — Xf) is absolutely convergent due to Ee~xi < a.
i

Appendix C. The calculation of (12.3)

Since eßl*~ßHv is positive definite operator in the trace class, Ufeßfl~^Hv) is also an

operator in the trace class. First we consider a Hermitian F. We have
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trUfeK) Ufeß"-ß"v) trUfLK)

where K e F (ft) and LK eK/2 (A:'~ßHv) eKl2 is a positive definite operator of the
trace class. By (B.6) we have

tr Ufeß"'ß"v) exp tr log (1 + eßfl~ß"v)

tr UfLK) exp tr log (1 + LK)

From the integral expression for log, we easily see

tr log (1 + LK) tr eKIZ (log (1 + LK)) <r */2 tr log (1 + eK>2 LK e~KI2)

triogflA-eKeßf,-ß"v)

For any operators A and B of finite rank, we have

exp tr (log (1 + B) - log (1 + A)) det (1 A- B) (1 A- A)-1

exp tr log (1 + (B - A) (1 + ^)-1)

By continuity, the same equation is true for any operators A and B in the trace class.
Hence

<eK> tr {U(eK) Ufeß"~ß"v)} j tr U(/"~ßHv)

exptrlog(l + (eK - 1) q)

where
ßf-ßHy i ,-, ft« ßHV\

Q e vlfl + e A-

Finally, we set K KXA- z K2 where Kx and K2 are Hermitian. By analytic
continuation from a real z to z i, we obtain the same formula for a general F.
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