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Phonon-Helicon Interaction in Piezoelectric Semiconductors*)

by M. E. Browne

Lockheed Research Laboratories, Palo Alto, California

(22.IV.64)

A bstract. The interaction between elastic waves propagating in a piezoelectric semiconductor
and the cyclotron mode waves (helicons) on drifting carriers in the material is considered. The
coupling between the waves has been calculated for cases where the acoustic propagation is
parallel to an applied constant magnetic field and in a crystalline direction such that a transverse
electric field is generated. In this case a strong interaction takes place when the phase velocities of
the two waves are comparable. Coupled mode analysis has been used to calculate expressions for
the exponential rate of growth or decay. The magnitude of the attenuation constants found are
smaller than for the case of acoustic i nteraction with the longitudinal space charge waves because
the transverse piezoelectric fields are much weaker than the longitudinal ones, but the effect should
still be observable. Because the phase velocity of the fast cyclotron wave can be much greater than
the carrier drift velocity, smaller D C electric drift fields are required than in the longitudinal case.
Wave propagation along the c-axis of a hexanonal crystal is treated as a particular example, and
possible applications for phonon amplification are considered.

I. Introduction

The discovery by Hutson, McFee, and White x) of large amplification of ultrasonic

waves by means of a DC current in a piezoelectric crystal has given rise to
widespread interest in techniques for phonon amphfication. In the work of Hutson
et al. the interaction between the longitudinal space charge waves and the electric
field associated with the acoustic wave provided the mechanism for amplification.
The theory of the effect was developed by White2), and Quate3) has given an
illuminating coupled mode analysis of the problem. An interaction with other phonon
modes is also feasible, and Woodruff4) has suggested that conditions for growing
waves can be found in the coupled longitudinal space charge waves on drifting carriers
and optical phonons in a compound semiconductor. In the present discussion the
interaction of elastic waves with a different normal mode on carriers in a solid, the
cyclotron or helicon waves, is considered and the nature of the coupling prividing gain
or loss is investigated. The problem is formulated in terms of coupled traveling
waves 5), and it is found that conditions for active coupling, resulting in exponentially
growing or decaying waves, can be obtained. The effect is much smaller than in the
case of the longitudinal space charge waves because the transverse piezoelectric fields
are significantly weaker than the longitudinal ones.

Consider the propagation of elastic waves through a piezoelectric crystal in a

direction such that a transverse electric field accompanies the wave. For simplicity

*) This work was supported by the Lockheed Independent Research Fund and was partly
carried out at the Physik-Institut der Universität Zürich.
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the calculation is carried out for only one type of carrier, uniformly distributed over a

large sample. The background medium dielectric properties are represented by an
isotropic static dielectric constant, e. We restrict the treatment to cases where the
space charge density is sufficiently low so that magnetic transverse forces are large
compared to space charge forces. Note that non-zero space charge arises only from
departures of fluctuations from the equilibrium charge distribution.

In order to linearize the equations we assume that any quantity 0t fr, t) may be
written

0t fr, t) 0ofr) A- 0fr) eimt. (1)

Here 0ofr) is the time average of 0t fr, t), and we assume 0 <^.0O; thus the following
is a small signal analysis. (We treat the case of a plane wave traveling along the
z-axis, so that djdx djdy 0.) We first calculate the normal modes on the drifting
carriers and for the elastic waves, and then consider the coupled system.

II. Interaction Between Cyclotron Modes and Acoustic Waves

A. Cyclotron Mode Waves on Drifting Carriers

In describing the carriers, which are assumed to be giving rise to a DC current, we
shall replace the combined effect of the applied electric field and external scattering
processes by a constant drift velocity. This approximation is justifiable if the
scattering time, T, is long compared to the characteristic time scales of the oscillatory
phenomena to be investigated. We shall further be interested in the region oo t ^> 1.

We shall carry out the calculation for the simplest case, a cold, collision-less plasma,
and consider the effects of collisions and thermal velocities in section III.

The classical equation of motion for carriers of charge q and effective mass m is

^t ^-+fvtV)Vt A_(Et + vtxBt). (2)

If we assume a constant drift velocity v0 in the ^-direction and let Et E0 + E e'mt,

Bt B0+ B eia" Equation (2) yields

'mv + v° ¦ yy) eÌmt ir (E0 + v0x B0) + A^ (E A- v0x B A- v x B0) e""

A-A-fvxB) ei2mt. (3)

Since the only magnetic field present is applied parallel to v0, and since the carriers
are drifting (equivalent to E0 0) the time independent term in Equation (3) vanishes.
The term in e,2mt is of second order in the small AC amplitudes and is neglected. It is
convenient to write (3) in terms of the circularly polarized amplitudes a± A± fvx Az

i vy). Combining the components of (3) then yields

[i + zÂ±z)]«±=4x(£±±^°B±)- ' (4)

Here E± Ex±i Ey, B±= Bx± i By, ße (a>/i>0), ßc cajv0 (q BJm v0), and A± is

a normalizing constant. Note that the cyclotron angular frequency, coc, is negative for
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electrons and positive for holes. E± and 7>± are 'applied' fields which in the case of
interest here are generated by elastic waves via the piezoelectric effect. For E±
7?± 0 Equation (4) is the normal mode equation for the cyclotron modes. Aigrain 6)

has proposed the term 'helicons' for these excitations which have been observed by
Bowers7) et al. in metals. This is also the mode of 'whistler' propagation through the
ionosphere8). The two normal mode solutions a± have opposite circular polarizations
and travel with phase velocities

v * A (5)
* i± »x • [ '

Thus one mode propagates faster than the drift velocity, and the other mode slower
than the drift velocity.

The terms on the right hand side of (4) provide the coupling with the elastic waves.

B. Acoustic Wave Propagation in a Piezoelectric Medium

The equation of motion for an element of volume dx dy dz and density q is

fq dx dy dz) —A- Fi - dx dy dz (6)

Here h, is the particle displacement along the 7th axis and Ttj is an element of the
stress tensor. In a piezoelectric material the stress is given by

ij Cijkl Z« ~ emij Em f')

where cijkl and emij are elements of the elastic and piezoelectric tensors respectively.
The strain S is defined as

„ 1 / dh, dh,
-51'J 2 \ dxj X

Equations (6) and (7) may be expressed in terms of the particle velocities, ui dhjdt,
as follows :

duL dT^
y dt dxi ' K '

ÒJA 1 / duk du,. \ dEm

dt
A (AAA JAl\ - e ZZl (m
2 Ukl \ X ^ dxk) mi-> dt - y '

Equations (9) and (10) must be combined in order to express the problem in normal
mode form. Rather than continue with a general treatment it is more illustrative to
restrict the discussion at this point to a particular case.

Consider a circularly polarized plane shear wave propagating along the axis of
symmetry of a hexagonal crystal (such as cadmium sulfide) with symmetry 6 mm.
For this class of crystal the non-zero elements of the elastic tensor c and the
piezoelectric tensor, e, axe, using Voigt notation, cxx c22, c3S, c44 c6B, c66 1/2 fcxx — c12),

C12 C21> C13 C31 C23 C32 an0- ß15 ê24> e31 ^32> ^33-



'ß}jb±=-iB±e15ßtE±, (13)
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For a plane shear wave propagated in the z-direction òjdx d/dy 0 and

uz 0. In this case Equations (8) and (9) take on a simple form. In the absence of the
piezoelectric effect the normal modes will be linear combinations of u± ux Az i uy
and T± Th Az i X The appropriate combinations are

/± x(x-i/^7ëx)> (io)

6±=ß±(r± + /c^e«±). (ii)
F± and B± are normalizing constants. In terms of /± and b± Equations (8) and (9)
beCOme /l + iß)f^~iF±elißtE±, (12)

d

dz

when exb 0 (no piezoelectric effect) the solutions f± and b± correspond to circularly
polarized traveling waves traveling in the forward (positive z) and backward directions
respectively. The phase velocity of these transverse waves is ut, and the propagation
constant is ßt, where

__
m _ m

C. Interaction Between Cyclotron Mode Waves on Drifting Carriers and Elastic Waves

The terms in E±, B± in Equation (4) and in E± in Equations (12) and (13) provide
the coupling between the drifting carriers and the lattice waves. In order to formulate
the coupled mode theory of the interaction each of these terms must be expressed in
terms of the uncoupled normal mode amplitudes a±, f±, and b±. Thus the effect of the
coupling between the carriers and the lattice may be viewed as a perturbation on the
motion of the two isolated systems considered separately. For the present consider

only the forward traveling acoustic wave f± and its interaction with the cyclotron
modes a±. Since only E+ or B+ appear in the equations for/+ and a4, and only 77 or
77 appear in equations for /_ and a_, it is clear that a+ couples to /+ and a_ couples
to /_, as one would expect intuitively.

Consider first Equation (4). We must calculate E± and B±, which are generated
by an elastic wave in a piezoelectric crystal. From Maxwell's equation, V X E

- dB/dt we obtain l dE±
B± TAi^y- (l5>

This relation can be used to eliminate B± from Equation (4). However, it is necessary
to express E± in terms of /±, the uncoupled acoustic wave amplitude. To do this use

can be made of the piezoelectric equation of state, Equation (7). Strictly speaking
this equation is valid only for an insulator, but for low conductivities it may be used

as an approximation. The electric displacement D is given by

P>» e«ijSijA-em„E„. (16)

Combining Maxwell's equations VXE — dBjdtand PxB /<0 fdDjdt) neglecting
conduction currents, gives d2E±

dz* ti0oj*D±. (17)
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For the case of symmetry 6 mm Equation (16) becomes

At «is 5± + e E± (18)

Here s is the transverse dielectric constant. S± may be eliminated from this equation
by use of (7), which takes the form

T± c44 S± - eXh E± (19)

where S± S& Az i St. Combining Equations (17), (18), and (19) gives the relationship
between T± and E±:

_ VE^ JHAAAA^ (T± + eX5 EA + fi0 co*eE±. (20)

If we anticipate a traveling wave solution, e~iYZ, lor E± Equation (20) can be simplified,

and one obtains
T-'o "2 eu

(21)
y2-^0cu2£ (1+ -^5-'

Equations (15) and (21) can be used to write Equation (4) in terms of /± by requiring,
as an initial condition, that the backward elastic wave, b±, is not excited.

Then /
b±=B±(T±A-yciiQu±) =0 (22)

and / %

/± X T± - )Z41 qu±)=2 F± T± (23)

Equations (15), (21), and (23) can now be substituted in (4) to give the desired form,
an equation in only a± and f± :

l-Av
t+ • w- ± «Ja± - x-^ x |Zjx (1+2A2)

• (24)

where 2

2^ 7^, ^ ftS^,£C44

Next it is necessary to express E± in Equation (12) in terms of a±. This electric field is
that acting on the elastic medium due to the carriers. If E'± is the field that would give
rise to the current density J±, the field exerted on the lattice is E± — E'±. From
Maxwell's equations, V X H J A- dDjdt and V X E - ^0 dff/dtf we obtain a
relation between J± and E'±. In these equations the conduction current is retained,
even though small, since it is the quantity in terms of which E± must be expressed.
Combining Maxwell's equations gives

à*E'±
—^— ici)/j,0f±- m2n0eE± (25)
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Again anticipating a traveling wave solution, e~'rz for E±, yields

0)' fl03 — yl h m'A ca e A±
a+

H. P. A.

(26)

Since J± q0u± ß0 a±/A± where q0 is the carrier charge density. Upon substitution
of (26) into (12) now one obtains

(4+ *'&)/* F± «is eo ßt

m-
a± (27)

Equations (15) and (30) are now in the desired coupled mode form :

[~ + ifße±ßc)]«±=hf±,

[i + iß]f± h*±,

(28)

(29)

where

and

z A± qk2
F+ m vn e15 &)'-*+'

F± em Qo ßt

[(AAj- co e -1

We look for solutions of (28) and (29) of the form e~lyz. Since all of the amplitude
functions are multiplied by a time factor e"°' the solutions are waves traveling in the
positive ^-direction. An equation for y is obtained from (28) and (29)

A - fße ± ß,)i A - ßt] - K(y) Uy) ¦ (30)

In general y will be complex, y Q — i a. We shall consider cases where the attenuation

constant is small compared to the wave number Q. Thus | a [ X Q> and Q — <X>
where v is the phase velocity of the composite wave. In this approximation

j\xX2
m e v0ut m (31)

As a first approximation let y mjv on the right hand side of Equation (33) and solve
the resulting quadratic expression for y. The two roots yx and y2 are found to be

7i

y*

ßt + ße±ßc ¦

- "T *2

ßt + ße ±

]/r\Xi ßt-(ße±ßc)A

i]JhK- I1 -±.

(32)

(33)
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when the square root in these expressions is real yx corresponds to an exponentially
growing wave and y2 to an exponentially damped wave. If Xx A2 is positive the square
root will always be real when ßt ße ± ßc. This condition may be written

«0

1±
0̂)

(34)

This is what one would expect intuitively, since v0/l Az K/ca) is just the phase
velocity of the fast (+ sign) or slow (— sign) cyclotron wave. When this phase
velocity is equal to the elastic wave velocity conditions are favorable for a strong
interaction.

Consider the case when Equation (34) is satisfied. From Equation (31) it is seen
that lx A2 > 0 when y\ße < 1, or v0 < v ut. This condition is satisfied by the fast
cyclotron wave, where vp vjl + fcoJco) for negative carriers from Equation (5). In
this case the gain, or negative attenuation constant, is

-XZ'ZZ(X)' <35>

where co2 q0 qjm e and c' is the velocity of light in the medium.

III. Discussion

The negative attenuation constant calculated in Equation (38) is seen to involve
a factor fujc')2 which reduces its magnitude appreciably below the values calculated
for interactions involving longitudinal effects. This reduction is characteristic of
transverse waves. For example, for values of the constants in Equation (38) of

ut 2x IO3 m/sec, c' 10s m/sec, k2 0.01, v0 2 x IO2 m/sec, cop 1014/sec

one finds —tx. ~ 6/meter. The frequency enters only by virtue of the fact that Equation

(37) must be satisfied. Hence for a given drift velocity higher frequencies require
higher cyclotron frequencies, and hence larger magnetic fields. The variation of —a
as a function of drift velocity at a fixed frequency is indicated in Figure 1. If the
frequency is varied and v0 is continuously adjusted to satisfy (37) the behavior shown
in Figure 2 is obtained.

The carrier-lattice interaction can be included in the analysis by means of a
collision time approximation. The effect of this is to replace co by fco + ijr) in the equations

of motion. In the region of long scattering times this will not qualitatively alter
the resultant behavior.

In order to take account of the thermal motion it is necessary to average
Equation (35) over the appropriate velocity distribution. At low carrier concentrations

and not too low temperatures the distribution may be taken as a Maxwellian,
displaced corresponding to the drift velocity in the ^-direction. The thermal velo-
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city in the direction of the magnetic field will have the effect of limiting the
magnitude of the interaction at low drift velocities or as thereby removing the asymptotic

divergencies indicated in Figures 1 and 2.

î 1.0

Drift velocity

5 ,0
Frequency /wc

Figure 1

Negative attenuation, — a, as a function of
drift velocity, v0, for fixed frequency (vt is

the sound velocity for transverse waves).

Figure 2

Negative attenuation, —a, as a function of
frequency with optimum drift velocity (cov

is the cyclotron frequency).

The external electric field which gives rise to the carrier drift velocity can have a
direct effect on the helicon dispersion relations. However, this effect will not be large
provided the fractional energy gained by the particles from the external field in
one wavelength is not large.

In the linearized theory used here the transverse fields do not, in the first
approximation, alter the parallel drift velocity, and hence spatial bunching does

not occur. Thus the effects of carrier diffusion, which are so important in the case
of the longitudinal space charge waves, do not enter in the same sense here.
Thermal motion is, of course, still important, but the interaction is dependent
primarily on a bunching of carriers in phase, rather than in space.

Because of the reduction of the piezoelectric effects by a factor of fujc')2 with
respect to the longitudinal effects, the helicon-phonon may not prove promising as a

practical way of achieving phonon amplification. One of the major problems in work
with microwave ultrasonics has been the very high transduction losses encountered
with conventional piezoelectric or magnetostrictive techniques at high frequencies.
It is possible that the phenomena discussed here may be useful as a means of phonon
generation at ultramicrowave frequencies. As is the case for waves interacting with
the longitudinal space-charge waves, the gain and loss here for forward and backward
traveling waves is not reciprocal, and oscillations can build up when the background
losses are not too large.

The present discussion has been limited to an interaction between the carriers and
the lattice via the piezoelectric effect. However, in non-piezoelectric materials, such

as the semi-metals, similar interactions with cyclotron modes may occur via the
deformation potential. Dumke and Haering10) have considered the case of crossed E
and 77 fields in semi-metals and find that significant amplification should be obtainable
by phonon interaction with the space-charge waves via the deformation potential.
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Similarly, in the case of optical phonons in a compound semiconductor a strong
interaction with the cyclotron waves may exist.

As a means of studying basic crystal properties the process described may make it
possible to observe phenomena such as acoustic cyclotron resonance under circumstances

which would not be favorable for conventional techniques. Experimentally it
may be much easier to detect the increase in ampltitude of a low level elastic wave
which occurs when the cyclotron resonance conditions are satisfied and the carriers
give up energy to the lattice, rather than look for the small fractional increase in
attenuation at cyclotron resonance that occurs in the conventional arrangement with
no DC electric field applied.
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