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Symmetry breaking in the static strong-coupling theory*

by G. Wentzel

Enrico Fermi Institute for Nuclear Studies and

Department of Physics, The University of Chicago, Chicago, Illinois**)

(21. IX. 64)

Abstract. The question is studied how the energy spectra of the nucléon (or baryon) 'isobars'
are affected if differences in meson masses are assumed which violate either charge symmetry or
SU(3) symmetry. Scalar theories show a high sensitivity to such symmetry breaking causes. The
situation is markedly different in a pseudoscalar theory (nucléon and pions) where the charge
symmetry appears stabilized through the interdependence of spin and isospin (J — I).

1. Introduction

The mass formula of Gell-Mann1) and Okubo2) has recently stimulated much
interest in "broken symmetries". While the raison d'être both of higher symmetries
and their violations, in particle physics, remains mysterious, all theoretical implications

deserve to be explored.
The following special question will be studied here, in the framework of the static

strong-coupling approximation3) : Given certain primary symmetry violations in the
mass spectrum of the (bare) mesons, in what way and how strongly will they affect the
mass spectrum of the baryon-meson bound states or resonances ("isobars")

Compared with the more popular dispersion-theoretic methods, the static strong-
coupling theory has the virtue that it reduces such problems to clearly defined wave-
mechanical problems. In a realistic interpretation, of course, allowance must be made
for the over-idealized nature of the approximation.

Once the wave-mechanical problem is formulated, a qualitative discussion of the
solutions will often be sufficient. Also, some simplest models will already indicate
what may happen in mathematically more complicated cases.

2. Nucléon and Scalar Mesons

To introduce our first model, we write out the Hamiltonian of an "almost charge-
symmetric" scalar field theory:

H H° + H', (1)

H» | [dfixg, [nlfx) + %fx) fpt] - A) %fx)] (2)

*) Dedicated to Ernst C. G. Stueckelberg on his 60th birthday.
**) This work was supported in part by the U. S. Atomic Energy Commission, Cont. AT(ll-l)-264.
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H' gUe XQlf % / dH v(xï Ve(*) % ¦ (3)

re fç 1, 2, 3) are the Pauli matrices representing the bare-nucleon isospin (7 1/2,

Ia= + 1/2). The form-factor vfx) is normalized like a â-function:

f d3x vfx) 1

Note that we retain strict charge-symmetry (rotational invariance) in H' 4) and put
the violation entirely into H° by allowing charged and neutral mesons to have
different masses:

ft] (J-2 + pt-3 ¦

The bare-nucleon energy is omitted as a constant. (Taking the bare proton and neutron
masses different would have no effect since only 50-50 mixtures occur in the stationary
states if g > 15).

In the strong-coupling approximation, the first step is to diagonalize the 2x2
matrix H' which contains the "large" factor g (actually, g > 1 will be required). The

unitary transformation achieving this is well known :

U+H' U gt*r
2

a' sfo-?)'. W

r (Zeql)V2 (>0)- (5)

The two eigenvalues Az gr are widely separated, the matrix elements of U+ H° U
linking the two turn out to be negligible, and the low-energy eigenstates - the only
ones we are interested in - are described by a statevector with only one isospinor
component F 4= 0 (viz. the one associated with the eigenvalue — g r oi H', taking
8>0).

The second step is to reduce the Schrödinger equation for F to a problem of small
oscillations and rotations. The Hamiltonian consists of "kinetic" and "potential"
energy terms :

T [U+ A J dHE *#*) U ] (diagonal part), (6)

V \ j d3xZe%(*) (/A - à) %fx) ~gr, (7)

where r is given by (5) and (3). For a given direction eQ q jr of the isovector qQ, V
has a minimum as a functional of ipefx). The location of this minimum is

rplfx)=A>etYf1fpcl-A)^vfx), (8)

where

Ye f dH vfx) fn\ - zl)-i vfx) (9)

'° g(2>W. ao)

and the value of V at this location is

V°=~-2gr°=-±g2f2;eelYfy\ (11)
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In the strictly charge-symmetric case (all pi pt, all Yg Y), r° g Y becomes

independent of the direction e in other words, the "potential valley" has spherical
symmetry in the 3-dimensional ç^-space, and indeed, as is well known, the lowest
eigenstates correspond to rotational motions in this spherical valley, with
eigenfunctions describable in terms of ordinary spherical harmonics. All this is no longer
true if the charge-symmetry is broken such that

YX=Y2+Y3. (12)

The potential valley is now anisotropic, though still axially symmetric, of course. The
most important point is that the depth of the potential valley is strongly anisotropic,
in the sense that the deviation from the mean carries the large factor g2.

The total field tpe is now split into a part [essentially y>° (8)] which describes the
"bound" mesons, and a part orthogonal to it, corresponding to quasi-free mesons
interacting only weakly with the bound system. Then, corresponding parts must also
be isolated from the "kinetic" energy (6). Techniques for doing this are well known3)
and need not be recapitulated. Here we are concerned only with the bound meson part
of T which is expressible as a quadratic form in pe — i djdqe, with coefficients
acting as an "effective-mass" tensor. Although the construction of this tensor is

straightforward, it will suffice for the following discussion to note the result for the
isotropic case: pte pt. Introducing angular coordinates through

ex + ie2 sim? el,f, e3 cos??,

one obtains for the rotational energy :

u l F1 d ¦ i à i/o2,. q d
f~~f — p ni"n tt I ¦? r'n0 vr A)]- (13)""< 2

E [ sin* de SmP d» + sin»* \ dcp* +l C°5P
dcp

e g"2 [f d3x vfx) f/A - A)'2 vfx)]-1. (14)

In the point source limit [vfx) -> ôfx)] :

s g~2 8 71 pt. (15)

The two last terms in (13) result from the U transformation [see (6)] which also (since
U ~e±i'pl2) enforces half-integral quantization (— i djdcp I3 1/2 + integer). To
(13) might be added, beside the constant V°, the energy of the radial vibration whose

frequency, however, is much larger than e (though <^ | V° \), so only the vibrational
groundstate need be considered. If additive constants are absorbed into the nucléon

mass, the energies of the lowest stationary states are then given by the eigenvalues
oiHrot:

E=^eI(I+l), J-4-.Ì-. •••

I3=±I,±fI-l),-.- [/, + \ charge] (16)

This summarizes the case of complete charge-symmetry.
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Now let ôpi ptx — pt3 depart from zero. Even as a first order perturbation, the
anisotropic parts of the Hamiltonian cause, for 7 > 3/2, a splitting of the energy
levels according to | 73 |. But the perturbation method fails as soon as this splitting
becomes comparable with the "small" rotational excitation energies (~£ ~//g~2).
Indeed, the spectrum is changed radically if g2 | Yx — Y3 | [see (11)] becomes > e.

A simple semi-classical argument (WKB approximation for the ê motion) shows that
then the wave-function shrinks into a deep potential well located either near ê tc/2

or near ¦& 0 and n, depending on whether Yx ^ Y3. In other words, the û motion
is obstructed by a potential barrier and becomes a mere oscillation, in the lowest states.
We list the asymptotic behaviour of the energy spectra as the oscillatory frequencies

v S g (e I Yx - Y3 \A2 (17)

become > e:

if Yx > y3 (or ptx < pt3) : E 1 Ê1 [l\ + Z) + Vx (« + -\) (18)

if Yx < Y3 (or ^ > pt3):E v3[\L3\+n + ^), (19)

where « 0, 1, 2, while 73 + 1/2 again stands for the charge. In the case (18)
there is still a rotation in the plane § n/2 and accordingly a narrow-spaced
rotational spectrum, whereas in (19) the motion is reduced to two-dimensional oscillations
(alternatingly near ê 0 and ¦& Tt as n increases6), with the result that the only
"low-lying" states are 73=^ 1/2.

In the point source limit, v(x) -A»ò(x), one obtains from (9), (15), and (17):

ÒY=Y]-Y3=-^A v^(2pt\òpt\A2, (20)

and the value of the crucial parameter v/e is then

(«H-iyr (21)v_ _ _f_ j 2\Ôfi\ \V2
S 8 71

For any given value of ò/i/pt, (21) determines a critical value gc of g which makes

v/e — 1 :

- AAT- «22>

(E.g. for I opt j pt/10: gc 7.5.) Letting g (which must be > 1 anyway for our
approximation to be valid) increase through the value gc, the charge-symmetric
spectrum is drastically changed, approaching either (18) or (19). It is worth noting
that this need not require very large g values provided \opt\jpt is not too small.

3. Nucléon and Pseudoscalar Mesons

Instead of (3), the interaction is now

H' gZei re Oj qQi qei fd'x vfx) -^f - (la)
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With the gradient coupling, g now has the dimension of a length, and the strong-
coupling condition is g > a, where a source radius [Jd3x v2(x) ~ a~3] ; a must be

kept non-zero to avoid divergences, but we shall assume a A^ptg1-
How to diagonalize the 4x4 matrix 77' is well known '). Most relevant is the lowest

eigenvalue :

- gfrx + r2 + r3) (4a)

where the rn are the positive square-roots of the eigenvalues of the tensor Tßa

ZiVeiloi- Ttle corresponding eigenvectors will be called sQn [Egsgnsgm ônm].

The expressions (6) and (7) can still be used if r is replaced by En rn, and the Equations
(9), (10), (11) have to be changed as follows:

Ye Z| dH V(x) (£ _ A)-i (_ A) v(x) (9a)

^«(^inl"1. (10a)

^0 -yei>2 - Yë'ZnŒyl^/y1- (lla)

In the charge-symmetric limit (r° g Y), Hrot involves now 3 Eulerian angles
§, cp, tp [Hnt energy of a spherical top ; for — i d/dip fz =1/2 it reduces to (13)], the
eigenvalues are again given by (16), but now 7 stands for both the ordinary and the
isotopie spin fj I), and both projections /, and 73 run independently from — 7 to
+ 7 (degree of degeneracy =(27+ l)2 if pi pi). The value of e in (16) is changed as

follows :

s 3g-2 [ftPx vfx) (pi2 - A)-2 f- A) vfx)]-1 (14a)

Allowing fi] pt2 + pi3, while destroying the isotropy in charge space, we retain,
of course, the isotropy in the x{ space ; the rotational energy will become dependent on
| 73 | but not on | Jz | fz — x3). Since Jz and 73 are projections of the same "angular
momentum" on two different axes (analogous to "space-fixed" and "body-fixed"),
one might anticipate that the 73-dependence of the energy is somewhat inhibited,
compared with the scalar theory (where / 1/2 : scalar mesons are bound in S-states).
That such is indeed the case,* follows from (11a), as compared with (11) :

Let us write Y
g

Y (1 + ôe), where EQ òe 0, and expand An (10 a) in powers
of<3e:

r: gY[l+Zeoesln-Zeolsl + f2;eöesl)*+...].

Substituting this in (11a) and carrying out the «-summation, we can use the
completeness relation En s2gn 1 which makes the terms linear in ôg vanish identically9).
But these are precisely the terms which in the scalar theory (En sgn ->- e2) gave rise
to the large effects we discussed. Instead of these terms (~ | ôx — ô3 [), we now have a
much reduced anisotropy of V° (~ j <5, — ô3 \2), and of a more complicated kind.
Moreover, according to (9 a) (assuming a pig <^ 1) ôg has the order a2 ôfpt2) [as against

*) Note added in proof: More generally, this is true even if a primary symmetry violation
is admitted in the coupling constants also, as has been shown by R. Ramachandran.
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a ôfi in the scalar theory]. We find for the order of magnitude of the coupling strength
at which a strong violation of charge-symmetry sets in :

gl> \f4-f4\-A (22a)

This implies a very large value for the dimensionless coupling constant gja if | dpi \ <^.pi,

as would be the case for real jr-mesons.

4. Octet Model

We cannot discuss broken SUf3) symmetries in the same generality because even
the symmetric theories are insufficiently known at this time. We concentrate on a

special case which is comparatively simple and also similar enough to the scalar
meson-nucleon problem (section 2) to make a condensed review possible : this is the
(almost) SUf3) symmetric scalar theory with pure D coupling9).

Here we can start again from the Hamiltonian (1), (2), (3), where, however, now
the index g runs from 1 to 8, referring to an octet of scalar mesons, viz., 1, 2, 3 to an
isovector "ti", 4 7 to two isospinors "K", 8 to an isoscalar "r]". xx, T8 are 8x8
matrices; rg describes the transitions between bare baryon states fN, A, E,E) which
accompany the emission or absorption of a meson qA0)- Hence 77' is now an 8x8
matrix depending on the (real) variables qx, qs. Its lowest eigenvalue is9)11)

-gr, where r fJJQ ^)1'2 (4 b)

characteristically spherically symmetric in the 8-dimensional ^„-space. Two
comments, however, must be added here. Firstly, this spherical symmetry obtains only
for pure 73-coupling (de Swart's xp 0) ; the slightest F admixture would destroy it.
Secondly, the next higher eigenvalue of 77'becomes degenerate with (4 b) in certain
directions qjr, so that the corresponding potential valleys overlap in a small region
in 8-space ; the overlap of the corresponding wave-functions is, however, insufficient
to affect the large (~ g2) energy terms we consider here, so we will ignore this complication.

Then, the "potential" V is again given by (7), and its minimum by (8), (9), (10),
and (11), where now eQ qjr denotes a unit vector in 8-space. In the case of complete
SUf3) symmetry (all ptg pi, all Yg Y, r° g Y) the valley is spherical in the qg-

space, and even though the U transformation in (6) will introduce non-spherical
terms, the "rotational" spectrum will display at least the S (7(3) symmetry of the
model (irreducible representations 1, 8, 27, We are here concerned with the
question how this highly symmetric spectrum is altered if we allow the meson

masses/^, to violate the SUf3) symmetry (but not the charge symmetry).
Let us first choose a situation similar to "reality":

Vl /«2 M-3 P"n < t*K ~ Pr,
or

Yx y2 Ys Y„ > YK ~ Yv (23)

[see (20)]. The lowest value of the potential (11), viz. V° — 1/2g2 Y„, is then
reached for

e2x + e22 + el=l, e^... es 0. (24)
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If the coupling is strong enough, viz. gAgc [for the order of magnitude of gc, see (22)],
the wave-function shrinks into the vicinity of the region (24), and to derive the
rotational spectrum analogous to (18) [v/e -> oo, see (21)], we can neglect e4, es

(i.e. K and rj mesons) altogether. This has the simplifying consequence that the 3

bare-baryon groups of different hypercharge (N, A + E,S) are decoupled (with
K ->¦ 0, the matrix 77' reduces to one 4x4 and two 2x2 matrices), and it is easily
seen10) that the lowest eigenvalue (4b) of 77' belongs to the 4x4 submatrix involving
transitions between the four (bare) A and E states only. In other words, the bare N
and S can be ignored also. The remaining problem (interaction "A En" only) has

already been solved in the strong-coupling approximation12). The energy spectrum
has again the rotational structure (16), but with integral isospin: 7 0 f'A"),
1 f'E"), 2, Nothing remains (for g > gc) of the SUf3) symmetry, and again, it is

very "easy" to break the symmetry if | opt \/pi is not too small [see (22)].
We have also studied the case that the "if-meson" is lighter than both "n and A'

so that (24) is replaced by

<r\ + e\ + e\ + e2 1, ex e2 e3 e8 0 (25)

Then, of course, there is no decoupling between any of the bare baryon states, and the
problem is much more involved. We have derived, for v/e -> oo, the rotational
Schrödinger equation in suitable polar coordinates13). (All bare baryons are mixed in
accordance with their statistical weights.) The lowest stationary state is a physical
"yl" (7 0), next higher are "N" and "a" (7 1I2), whereas the "E" (7 1) follows
in the second higher group which also contains two isotriplets of hypercharges + 2.

Particularly simple is the case pi < pi„ and piK fe8 Azi). Then, each baryon is

eventually fg > gc) coupled only to itself, the negative self-energies are largest
(namely 1/2 g2 Yf) for the A and E, so the spectrum, asymptotically, consists only of a
'A" and a "E", degenerate.

In all this, we assumed scalar mesons and pure D coupling. For pure F (or mixed)
coupling, analogous results could presumably be derived, despite the fact that
complete SU"(3) symmetry does no longer imply spherical symmetry in the 8-di-
mensional qe space14). A more interesting question is what happens if the scalar
mesons are replaced with pseudoscalar ones. For the nucleon-pion system (sections 2

and 3) we noticed that the charge-symmetry of the rotational states is less easily
broken if the mesons are pseudoscalar, owing to the interdependence of spin and
isospin. We expect that a similar difference in sensitivity to symmetry-breaking
causes will also appear in the octet model.
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