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Branching Rules
and Clebsch-Gordan Series of Semi-Simple Lie Algebras

by N. Straumann
CERN - Geneva

(6. V. 1965)

Abstract. We derive explicit formulae (branching rules) for the decomposition of an irreducible
representation of a semi-simple Lie algebra L relative to semi-simple subalgebras L'. These
formulae are valid for a large class of subalgebras L'. As an special case, we obtain an explicit
formula for the Clebsch-Gordan series of semi-simple Lie algebras.

Introduction
Since the success of the octet model of Gell-Mann and Ne'eman fSU3/Z3) higher

symmetry groups have come to play an increasingly important role in particle physics.
Like the isospin invariance these higher symmetries are broken symmetries. This means
that only some dominant part of the strong interactions is invariant under such a
higher symmetry group while some weaker part is not. (In the case of isospin the
electromagnetic interaction breaks the isospin symmetry but still leaves invariant
the subgroup Ux oi "rotations around the third axis" in isospin space.)

Let H H0 + H' be the corresponding splitting of the Hamilton operator, where
H0 is invariant with respect to some higher symmetry group G. This means that there
exists a unitary representation of G in the Hilbert space of states which commutes
with H0. The Hilbert space can now be decomposed into a direct sum of irreducible
(finite dimensional for compact G) subspaces in which the energy H0 is constant
(supermultiplets). The symmetry breaking interaction H' which is only invariant
with respect to a subgroup G' QG splits the supermultiplets up into multiplets of G'

corresponding to the decomposition into irreducible constituents for G'. For instance
in the octet model the spin 1/2 octet of baryons splits under the medium strong
interactions into the charge multiplets N, A, 27, S.

This is typical of broken symmetry schemes: one always has to decompose the
irreducible representations of some higher symmetry group into irreducible
constituents with respect to some subgroup. It is this general problem which we intend to
study in this paper. More precisely we shall discuss the following question.

Given an irreducible module fflA of a semi-simple Lie algebra C (corresponding to
a higher symmetry group) with the highest weight A and a semi-simple subalgebra
C'cC. SCR^i, considered as a module for C, is completely reducible. Let 3JlA

© mx ^a l"2 lhe corresponding decomposition into irreducible constituents with the
;.

highest weights X of C and multiplicities mx. One is then interested in mx.
In some special cases the solution of this 'branching problem' is well known1).
In this paper we shall derive an explicit formula for mA, which is valid for arbitrary

semi-simple C and a large class of subalgebras C. As a special case we obtain a

31 H. P. A. 38, 5 (1965)
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formula for the Clebsch-Gordan series of semi-simple Lie algebras. In Section I we
repeat briefly the theory of characters for Lie algebras. This is useful, we feel, since
there exists a highly developed purely algebraic theory of characters which is possibly
not as well-known among physicists as it deserves to be. With the help of this theory
we then solve in Section II the 'branching problem', and illustrate our result by
several simple examples. In Section III the Clebsch-Gordan series of semi-simple Lie
algebras is discussed and illustrated by examples.

The main interest of our formulae lies in their general validity. For 'big' algebras
and large dimensional representations the numerical evaluation becomes, however,
tedious. This happens to be also the case for Steinberg's formula2) for the Clebsch-
Gordan series of semi-simple Lie algebras or, for instance, for Konstant's8) formula
for the weights and their multiplicities.

To obtain more useful formulae it seems to be necessary to restrict oneself to
rather special situations (compare 3)4). Nevertheless, it is of considerable interest to
examine the general situation which we shall study in this paper.

I. Theory of Characters for Lie Algebras

In this paragraph we give those parts of the theory of characters for Lie algebras
which we need for the solution of the 'branching problem '. For details and proofs we
refer to references5)6).

To fix the notation we repeat first some well-known concepts and theorems.
Let C be a semi-simple Lie algebra over a field ^ of characteristic 0. If the field

is not algebraically closed, we require in the following always that C is 'split'.
This means that C has a Cartan sub-algebra §> with the property that the characteristic
roots of adfh) for all h e § are in cf> fadfk) is the linear transformation of C, which
transforms every xeC into the vector [hx]). In %> we introduce a canonical basis.
To do this let ti foLx,... a,) be a simple system of roots. The characteristic property
of ti is that every root a E kì a,-, a; e ti, where the k{ are all either non-negative or
non-positive integers. Because the restriction of the Killing form fx,y) Tr (adx ¦ ady)
on § is non-degenerate, we can associate with the linear function a; e §>* (§>* dual
space of §) a unique vector ha. e § by <xfh) fha., li) for all he §>. The canonical
base elements of § are now defined as ht 2 ha.lfct.it a;) [(a, ß) is the bilinear form in
§* which is induced by the Killing form].

One calls M e §* an integral function on § if the MfhA i — 1, • • • I, are integers.
Let / denote the set of integral linear functions. A linear function A e J, with A (h{) non-
negative integers, is called dominant. The integral linear functions form a lattice with
the fundamental dominant weights, defined by the property X{(ht) otj, as a basis.
There is a 1:1 correspondence between the isomorphism classes of finite dimensional
irreducible modules for C and the set /+ of dominant linear functions in which to
corresponds an irreducible module with the highest weight A.

The set / is of course an Abelian additive group. We introduce now a multiplicative
group G with the elements {efM) \ M e /} in 1:1 correspondence with J and the
every A e J+ multiplication table

efM) efM') e fM + M'). (1)
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Let A be the group algebra over cf> of G. If A + is the sub-algebra of A which is generated
by the elements efM), MeJ^, then AT is, as one can easily see, the polynomial
algebra <j>[xx, ,xt] of the x{ eflA Hence A+ is an integral domain. The algebra
A is the quotient algebra of A+ relative to the multiplicative system of the efM),
M e J+. It follows from this that A is a commutative integral domain. With each
element S in the Weyl group W we associate the automorphism in A such that
SefM) efSM).

Now let 9ft be a finite dimensional module for C If M e J we define the multiplicity
nM of M in 9ft to be 0 if M is not a weight and, if it is a weight then we define nM
dim 9ftM, where 9ftM is the weight space in 9ft corresponding to the weight M. The
character x of 9ft is now defined to be

X=£nMe(M). (2)
Me]

One calls a character of a finite dimensional irreducible representation of C a primitive
character. Such a character has the form fnA 1)

%A efA)+£nMefM), (3)
M <A

where A is the highest weight and the summation is taken over M A Ain the usual
ordering*).

Because the efM) form a basis of A it follows from (3) that %A %, if and only if
AX A2, i.e., 9ft7l and 9ft^ are isomorphic. It is also clear from (3) that distinct

primitive characters are linearly independent. Hence, the decomposition of a character
X of a finite dimensional module 9ft into primitive characters

X=ZmAiXAi (4)
i

is unique. This decomposition gives therefore the irreducible constituents of 9ft

together with their multiplicities.

9ft © mA 9JL.
i

The following theorem gives an explicit formula for a primitive character.

Weyl's Theorem

Let ySlA be the irreducible module for C with highest weight A. Then the character
Xa of C in 9ft^ is given by the formula

Z det S e (S(AA-ô))

_ SeJV /c\
Xa ~ £ det S e(Sô)

~ ' \ '
SeW

where ò 1\2 Jf <x, a. a root.
a>0

*) In the subspace §* C §* over the rationals Q and the basis ax, a;, af e n, we define the
ordering: M Ski a^ > 0 if kx ¦•• kh 0, kh + 1 > 0, h < I. Mx > M2 if Mx-M2 > 0. The
simple roots then cannot be written as sums of positive roots. The restriction of the bilinear form
(a, ß) on §,* is positive definite.
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We come now to another point which is important for the solution of the branching
problem. A Lie module 9ft for C can always be considered in one and only one way as a

(left) module for the associative universal enveloping algebra UfC) (compare
Appendix A). Let us denote with q(x) the linear transformation in 9ft which is associated
to # e UfC). We want to calculate Tr g(h) for he £/(§)*). Since § is commutative,
Uf§>) is the quotient algebra of the tensor algebra T(C) relative to the ideal which is

generated by the elements x® y — y ® x, x,ye$> (compare Appendix A), i.e.,
c/(§) is the symmetric algebra S(§). This algebra has the following universal property

**) : if <p is any linear mapping of § (considered as a vector space) into a commutative
associative algebra K, then there exists a unique homomorphism x of S(§) into K
such that the following diagram is commutative (i is the natural injection) :

sm

\-> K
In a weight space

mM={xem\efh)x Mfh)x; he§>}

of a module 9ft, gfh) for h e S(§) is a multiple of the unit transformation

gfh) x fMfh) x; xe 9ftM, h e S(§>)

fM is the uniquely existing extension of M (replace in the above diagram K by the
field 0).

sm
\'m

§> <p

fhe%-> Mfh)
Hence

Txgfh) =JJnMfM(h). (6)
MeJ

fM is an element of the dual space S*(£>) oi S($f). We next make some remarks
concerning this space.

S(§) is a graded algebra since this is the case for the tensor algebra and S(§>) is the
quotient algebra of the tensor algebra with a homogeneous ideal***). In particular,

oo

S(§) is a direct sum S(§) © S*(§) of vector spaces Sp(§>). A direct sum is universal
p 0

in the following sense : let there be given a family of 0p of linear mappings of Sp($f) in a

*) The universal enveloping algebra of § is the subalgebra in U(Q) which is generated by §.
**) In this paper we use several times 'universal definitions' for algebraic objects. The reader,

who is not familiar with this notion is referred to ').
***) An algebra A is graded if A Q Ai where Ai is a subspace Ai Aj C Ai+j. An ideal 73 is

homogeneous if B @ B n A{. »
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vector space 9c (over fa. Then there exists a unique linear mapping 6 of S(§) into 9Î
such that the following diagram is commutative (rp natural injection) :

{s*(S)}-^>S(S)

{s*m}—*-> 9c

Therefore, S*(§) Horn (S(§), ^) is the direct product of the S^*(§)
CO

s*m nSP*($>) ¦

p-0

Thus, let cp e S*(§). By restricting cp to S*(§) we can associate to every cp a family
cpp e Sp *(§) and conversely there corresponds, according to the diagram (if one replaces
9Î by fa, uniquely to every family cppa.cpe S*(§) such that

oo

9#)=2>A); h=£hp, hpeSP($>).
p-0

We now introduce a bilinear function over Sffft) and S^(§*). To do this we denote
the elements of £>* as h* and write fh, h*y for the value of the linear function h* on h.

ih, h*y is then a non-degenerate bilinear form. Now, we define the following bilinear
form over S*(§) and S*(§*)

{hxh2...hp, h*x...%)=£ jt(*«'**«,) h{e§>,h;e$>* (7)
a G ©-, t 1

The sum extends over the symmetric group S.. It is not difficult to show that this
bilinear form is non-degenerate. Hence S*(§) and S*(§*) are dual relative to this
bilinear form and we have

oo

S*(£)£i7SW=) (8)
p - 0

Explicitly (8) means: between the elements tpeS*(§>) and the sequences {hf},
hp* e S^(§*) there is a 1:1 correspondence such that

cpfh) =Z(hP- K) ¦ h=ShP- h e SAb)
p

with the scalar product (7). From the definition (7) follows immediately the following
formula

(hx...hp,fh*)P)=p\]J(hl,h*). (9)
i 1

With the help of this formula it is not difficult to show that the earlier defined fM
becomes

CO

fMfh)=ZfhpAp\)-1MP). (10)
p - 0
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Now we put
oo

/js*(§*) s(s*)
p - 0

and write instead of infinite sequences formal series. Thus, the elements of S(§*) are
expressions Z ap,ape Sp(£>*), such that Z a{ Z bt if and only if ai bi,i 0,1,
With the following multiplication fZ af) (Z bf) Z cp, where

Cp ap K + a-p-i h + h «o fy, ¦

S becomes an algebra. The subset of S of finite sums is a sub-algebra which we can
identify with S(§*).

We define a valuation in S by setting

|0j=0, \a\=z-fi
if in a Z ap, ap is the first non-vanishing element.

Then, we have the following properties :

i) \a\ >0, \a\ =0 ii and only if a 0

ii) \ab\ < \a\ \b\

iii) \a + b\ < max (\a\, \b\)

This valuation makes S a topological algebra. The non-archimedean property iii)
of the valuation implies the very simple criterion that Z xt converges if | xt | -> 0 for
i -> oo S(§*) is dense in Sf§>*). Especially, ea is well defined if in a Zap, a0 0.

Furthermore, we have the property ea eb ea + b *).
The formula (10) can now be written in the following way

fMfh)=(h,eM) (11)

Now, we consider in S the sub-algebra A which is generated by eM, M e J. This algebra
is now isomorphic to the earlier introduced group algebra A. This can easily be seen
with the following universal characterization of the group algebra of a group G. The
pair fAG, i), where AG is an associative algebra and i a (monoid) homomorphism of G

into AG is a group algebra of G if the following holds: if Z is any algebra and 0 a

(monoid) homomorphism of G into Z, then there exists a unique homomorphism 6'
of AG into Z such that the following diagram is commutative

¦*,..

With (11) and (6) we have now the following important formula

Tx g(h) (h, x) ¦ (12)

It is evident that the transition of 5(§*) to S(§*) can be made for every graded algebra.
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II. Decomposition of an Irreducible C-Module into Irreducible
Constituents Relative to a Subalgebra

In this paragraph we solve the branching problem for a very general situation.
We formulate the main result in the following.

Theorem 1 {branching rule)

Let C be a split semi-simple Lie algebra over a field of characteristic 0, $> a
Cartan subalgebra and n a simple system of roots of C. Let £' be a split semi-simple
subalgebra of C with the property that there exists a Cartan subalgebra §' of C
which is contained in .§. We furthermore assume that the restriction of every
fundamental dominant weight A,- of C on §' is in J' (J' integral linear functions on £>'). Let

WA=®mx 9cA (13)
x

be the decomposition of an irreducible module 3RA for C with the highest weight A
relative to C Then the multiplicities mx are given by the following formula (2 ô'

sum of the positive roots of C) :

mA JJ det S' A (A; X + d'-S' ô') (14)
S'eW

The sum in (14) extends over the Weyl group W' of C. N(A ; M'), M' e /' is given by

N(A;M')= £ nM (15)
M\& -M'

where the sum extends over those weights of 'MA whose restrictions on §' are M'.
Before we prove this theorem we make some remarks :

i) if one adds to the formulae (13), (14), and (15) Konstant's formula for %/)*)

nM=2JdetSP [S(A + ô) - (M + Ô)] (16)
SeW

then one has in (14) a general explicit formula for mx

mA JJ det S'eut Si £ P [S (A + Ö) - (M + ò)]\ (14')
S'sW \Af|4>'= À + ô' - S'ä' I
SeW

For C A, one has in the Gelfand diagrams9) a very useful tool to determine %
(compare Section III). Unfortunately, we were not able to derive more compact
formulae for N(A; M'). This may very well be possible, at least for special situations.
This is one reason why the evaluation of our formulae becomes tedious for 'big'
algebras and large dimensional representations.

*) ô 1/2 Z a- -PDM] is the number of solutions of Z ^a. «¦ M, where the ka are non-nega-
a>0 <*>0

tive integers. From this definition follows that P[M] is different from zero only it M e J.
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ii) the assumptions which we made in theorem 1 are not very explicit. In the
following theorem we get an explicit description of a large class of C which satisfies
the assumptions of theorem 1.

Theorem 2

Let C be split semi-simple, tc (a,, a,) a simple system of roots, ht, e{, ft,
i =1,2, ,1 the associated canonical generators of C *) and R a subset of (1,2,..., I)

with the property that the matrix fAR)tj A A{J, i,j e R, is the Cartan matrix of a

split semi-simple Lie algebra. Let CR be the subalgebra of C which is generated by
h,, e, ,fj,j e R. Then CR is split semi-simple with the Cartan matrix AR and hj, e}, fj,
j e R as canonical generators.

The somewhat involved proof of this theorem is given in Appendix B.
From theorem 2 we get the following sufficient criterion.
With the notations of theorem 2, CR is a subalgebra of C which satisfies the

assumptions of theorem 1.

The condition of theorem 2 that A R is the Cartan matrix of a split semi-simple Lie
algebra can easily be checked. We give an algebraic and a graphical criterion.

a) AR is the Cartan matrix of a split semi-simple Lie algebra if det.4Ä#= 0.

Proof: A matrix Au, i, j 1, I is the Cartan matrix of a split semi-simple Lie
algebra if the following conditions are satisfied (compare Ref. 10)).

i) Au 2, AVl < 0 for i + j; Afj 0 implies AJ{ 0.

ii) det A 4= 0.

iii) If (ocx, a,) is a basis for an I dimensional vector space §* over the
rationals G, then the group W generated by the I linear transformations Sa
defined by

Zsa, «,-- Au<*i> i i, ---i
is a finite group.

Now the way in which AR is obtained from A implies that i) and iii) are
alwaysfulfilled for AR, which proves criterion a).

b) The Cartan matrices are in 1:1 correspondence to the Dynkin diagrams. From
the Dynkin diagram for C, choose those points which are labelled with numbers from
R. Furthermore, draw only those lines which connect directly these points R in the
original diagram. If in the resulting diagram the connected parts are Dynkin diagrams
of simple Lie algebras, then AR is the Cartan matrix of the semi-simple Lie algebra
CR. CR is then the direct sum of the simple Lie algebras corresponding to the
connected parts.

*) «j ect.,fi 2 e._a.j(a.i, a2-), where ea is an element of the root space of Q corresponding to
the root a. e_„ must be chosen such that (e„, e_„) —1.
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As an example consider the Lie algebra Al of S Ul+X (Dynkin diagram:
o — o o — c). Our criterion b) shows that every R is allowed. This can also be seen

with criterion a) from the Cartan matrix which is

K-)

-1 2/

Fori? 1,2, I'), I' < l we haveCR is in this example a direct sum of certain Av
of course CR A t,.

For applications we also mention that the currently interesting case S Umx
S U„QS Umn also satisfies the assumptions of theorem 1. It is, however, not
contained in the class described by theorem 2.

Proof of theorem 1

Since by assumption §' C §, the universal enveloping algebra £/($') is the sub-

algebra in [/(§) which is generated by §'.
The idea of the proof is now the following: we calculate Tr gfh'), V e U($>') in two

different ways. First, we get Tr g (h') by restricting Equation (6) on the sub-algebra
U(§)') and second by using the decomposition (13). In this way, we get an equation in
S*(§>') which contains the multiplicities mx. With the help of the isomorphism (8) we

get an equation in A' C S(§') and because of A' sé A' finally an equation in the group
algebra A'. Weyl's formula (5) gives the key to get from this an explicit expression
for m,.

We now carry this out in detail. From (6) we get for h' e U($)')

Tr g(h') =£nMfM(h') Z E nMfMfh') £ fM,fh')
MeJ

E E "m/mW
M'eJ' M\~~M'

E **¦ (17)
M'e J' M |ô'-AT

The second sum in (17) extends over those MeJ, whose restrictions on .§' coincide
with M' e J'. fM, is the unique extension on £/(§') of M' (compare the diagram above
formula (6)).

With (11) and the isomorphism of A' and A' we get, using the definition (15),

Tr g(h') (ft', 27 N(A; M') efM')). (18)
M'eJ'

On the other hand, according to (13) and (12) we have

Ixgfh') fh',Zm}.Xx) •

i
where x\ is the primitive character for the C module 9tA. Hence, we get the following
equation in the group algebra A' of the group {efM') | M' e J'}:

ENfA;M')efM')=Em^',- (19)
M'eJ'
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If we insert in (19) the Weyl formula (5) and multiply by the common denominator
in (5) we get

ENfA; M') efM') 27 detS' e(S' Ô') =Em\ E detS' e iS' ^ + ô')) ¦ (20)
M'eJ' S'eW X S'eW

We first transform the right-hand side of Equation (20). The summation can be
taken for all Xe J' ii we define mx 0 for non-dominant X. Now we get

27mM. £àetS'e(S'(M' + d'))=E( E detS'mM,\e (X + ô')
M'eJ' S'eW XeJ'\ S'eW

\M'eJ';lS'{M'+ô')- X + d'

--JTI 27 det S' ms.-,{i + y) _ A e fX + Ò')
Aejfs'eW j
-E( EdetS' ms'(x + a') - A e ft + ô') ¦

Xejfs'eW /

For the left-hand side wie obtain, if we put M' + S' ô' X A- ô',

TN(A; M') 27 det S' e fM' + S' Ô')
M'eJ' S'eW

27 EdetS' N(A-À + Ô' - S'ô') e fX + Ò')
M'eJ' S'eW

Since the efM') are linear independent, we get the following equation

£detS'NfA;X + ô'-S'ô')=mx+ £ det S' ms,ß + V) _ v (21)
S'eW S'eW

The following lemma shows that the second term on the right in (21) vanishes for
dominant X. We thus get formula (14).

We still have to prove the following lemma.
For dominant X and S' + 1, S' (X + ò') — ò' is not dominant.

Proof

From formula (22) below we get ô'fh,) 1 for the canonical generators ht in the
Cartan algebra §'. Thus, for a reflection SJ at the simple root af E A we have

(S! Ô', a,) («5' - «„ oc,) fô', S,' «,) («5', - a,)
hence

ô>(h.) Z.(Z^Z i.(at, aj)

If we now apply SJ on X + ó' we get

S'f (X + Ò') X + Ô' - fX + Ò') fht) a,.

This equation applied to h{ gives (txfhf) 2)

Si (X + Ò') (A,) fX + Ô') (A,) [1 - o,(A,)] < 0

for dominant A. With this and ó'(At-) 1 the assertion of the lemma follows.
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For applications it is important to know the expressions S' ô', S' e W' in the
argument of (14). Concerning this we make some remarks.

The Weyl group W' is generated by the reflections at the simple roots oCjEtt'.
Such a reflection is given by

S'i a,- a,- - A'if Xt

where Af is the Cartan matrix of £'

i 2 (a,-, ai)A,, -f-1—y ; a,, a,- e n' y«-i,<*-i) '

We now calculate SJ ô'. Since SJ a > 0 for a > 0, except for a a;11), where of course
SJ a,- — a,-, it follows

S;<5' l/2 27<x-l/2ai==<5'-aj. (22)
a>0

a =fc <*i

Therefore, in concrete examples one only has to express the elements S' of the Weyl
group as products of reflections SJ at simple roots in order to calculate S' ô'. For
example, the Weyl group of the Lie algebra A2 consists of the following elements:

W {1, SX,S2, Sx S2, Sx S2 Sx, fSx S2)2} (23)

In order to illustrate our results for a non-trivial example, we take for £ the
algebra At of the group S Ul + X and for C the algebra A2 with R (1, 2) (compare
theorem 2). From (22) and (23) we obtain

mx NfA;X) - NfA; X + ocx) - NfA; X + a2)

+ N(A; X + a, 4- 2 a2) - N(A; X + 2oix + 2a2)

+ N(A; X + 2 a.x + a2) (24)

Let us take as an example for A the adjoint representation. In this case, the weights
are the roots. These are

M 0 with nM l; M oq + a!+1 + a,-, 1 ^ * g j g / with nM 1

Except for X [0, 0], only the first term contributes in (23). One easily obtains

OTio,oi (I - 2)2, myxM I- 2, mloxi l- 2, mlXiXt 1

The sum of the dimensions is I2 + 2 I, which happens to be also the dimension of the
adjoint representation.

III. Clebsch-Gordan Series of Semi-Simple Lie Algebras
Our branching rule (theorem 1) gives us also a formula for the Clebsch-Gordan

series of semi-simple Lie algebras. Thus, let © be a semi-simple Lie algebra (split
always assumed) and 911^, 9ft^2 two irreducible modules for (5. If we associate to each

element fgx, g2) e C D= © © © the transformation

fgi.gi) fx®y) =gix®y + x®g2y
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in 9JcV® 9ft,! then ffîA ® 9ft^ becomes an irreducible C module. The restriction of
this representation to the sub-algebra C, consisting of all pairs (g, g), is the tensor
product representation of ©. Since C' is isomorphic to ©, the decomposition of
lMA ® 9JL relative to C gives the Clebsch-Gordan series for ©.

With this remark it is easy to derive from (14) the following formula for the
multiplicities mA in

MA ®3)lA ®mAi3)lA. (25)
1 2

A
One gets

mA 2JdetSQ[fAx,A2);A + ô- So], (26)
SeW

where

Q[fAx,A2);M]= £ <)<> (27)
M-Mx + M2

In (27) the »$ i — 1, 2 are the dimensions of the weights MJ in WAl. The evaluation
of this formula is in many cases simpler than for Steinberg's formula2). For rank 2

algebras one can evaluate it graphically.
We illustrate formula (25) for a non-trivial example. For © we take Al, I > 2, and

consider the tensor product of the adjoint representation with itself. The highest
weight of the adjoint representation is Xx + Xt oq + a2 + ¦ • • + a,. According to a

general theorem2) the highest weights in (25) are necessarily of the form

A=Ax+A2-£nJoL1, (28)
t

y
i-~i

with non-negative integers « •. Hence, in our case the possible A's are :

2 fXx + Xt), 2 fXx + X,) -xx X2 + 2Xl,2 fXx + Xj) - a,

2Xx + Xl_x,2(Xx + Xl) - ta-l-a,) =X2 + Xt_x, Xx + Xl, 0.

The multiplicity of 2 fXx + X,) is of course 1. For A 2 fXx + Xt) — oq one gets

mA Q [a.x + 2 a.2 + 2 a3 + • • ¦ + 2 a.f]

- Q [2 ax + 2 a2 A \- 2 aj 1.

The same multiplicity is obtained for A 2 (Xx + Xj) — a,. For A 2 fXx + Xj) —

(oq + a,) we get

mA Q [«i + 2a2+ h 2a,_! + a,]

- Q [2oq + 2a2H h 2 oq.i+a,]

- Ç [oq + 2 a2 + • • • + 2 xj]

+ Q [2 oq + 2 a2 H + 2 oq]

4-2-2 + 1 1.
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The multiplicity of the adjoint representation is

™-a= (?[>iH +«/] -E® taiH h «,-_! +2 a,- + ai + 1+ ••• + a,]
t 1

[2 Z + 2 (/ - 1)] - 4 (J - 1) 2

In the tensor calculus this corresponds to the two possible ways of forming simple
contractions in a product of two tensors (with one upper and one lower index).

For the one-dimensional representation many terms contribute to (26). But its
multiplicity is, of course, one (corresponding to complete contraction). Our result is

therefore in a shorthand notation :

[Xx + X,] ® [Xx + Xj] [2 fXx + XA ®[X2 + 2 Xj]

®[2XX + VJ © [*i + Vi] © 2 [Xx + Xj] © [0] (29)

(For I 2 the fourth term drops out.) We also give the dimensions of the various
terms in the right-hand side of (28).

dim [2 fXx + Xj)] 1/4 I fl + l)2 (I + 4)

dim[A2 + 2X,] dim [2 Xx + Xt_x] 1/4 (1-1)1(1 + 2) (I + 3)

dim[A2 + X,_f 1/4 (/ -2)fl+ l)2 (/ + 2)

dim [A, +Xj] lfl + 2), dim [0] 1

The comparison of the dimensions in (29) checks.
For At one has in the Gelfand diagrams9) a very useful tool to calculate

Q[fA',.A"),M] in (27). We illustrate this for A2. The Gelfand states are in 1:1
correspondence to the Gelfand diagrams.

h3 m23 °

mi9 m,'12 (30)

mii
where A fmX3 — m23, m23) is the highest weight. The other number can take
independently all values between the two numbers standing to the left and to the right
in the next higher row; for instance, mX3 < mX2 <w23. The eigenvalues of the
canonical elements hx, h2 for a Gelfand state are

hx -> 2 mxx - fmX2 + m22)

h2 -> 2 fmX2 + m22) - fmxx + mxs + m23) (31)

If we put Af (Aj) /q, then Q[fA', A"), M] is the numbers of pairs of Gelfand diagrams
fm'), fm") who belong to A' and A" with the property that

/"i (2 Ki - m'ii - mw) + (2 m"u - ml* - m'L)

1*2 2 fm'12 + m'22) - fmn + m[3 + m'J + 2 fm'[9 + m\f - fm'u + w" + m23)
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If we put
N mla + m23; N m13 + w23

then Q[fA', A") ; M] is the number of pairs

with

m'u + mïi !/3 [2 ptx + pt2 + N' + N"]

«2 + nQ + (m';2 + m'j 1/3 [pix + 2(pc2+N' + N")] (32)

In (32) the right-hand side is given for fixed A', A" and M. In concrete examples Q

can easily be evaluated. This example can immediately be generalized to At.
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Appendix A

Since the universal enveloping algebra is an essential tool in this paper, we give
here its definition and certain of its most important properties (compare Ref. 5)).

Definition

Let £ be a Lie algebra of arbitrary dimension and characteristic. A pair (U, i)
where U is an associative algebra (with a unit element) and i a homomorphism of C

into UL (UL= U, considered as Lie algebra) is a universal enveloping algebra of C

if the following holds: if A is any algebra (with a unit element) and 6 is a

homomorphism of C into AL, then there exists a unique homomorphism 0' oi U into A, such
that the following diagram is commutative :

UfC) UL

4
* A AL

This 'universal' definition fixes UfC) up to an isomorphism, as one can easily see,

Furthermore, i(C) generates the algebra UfC) (these two properties always hold for
universal definitions). A universal enveloping algebra can be constructed as follows:
take the tensor algebra T(C) over C and consider the ideal / which is generated by
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the elements J x® y — y® x — [xy], x,y eC. Let ti be the canonical projection
n: T(C) -> T(C)jJ D= U(C). If i is the restriction of ti to C, then the pair (U, i) is a

universal enveloping algebra.
From the fundamental theorem of Poincaré, Birkhoff, Witt one can conclude

that i is an injection.
We also remark that it follows from this theorem that the associated graded

algebra G U of the filtered algebra U (with the induced filtration of T) is a symmetric
algebra over C, i.e., a polynomial algebra over a basis of C. Hence, this algebra is an
integral domain, which is by the Hilbert basis theorem for finite dimensional C also
Noetherian. From these two conditions one can conclude quite generally that U has

no zero divisors and satisfies the ascending chain condition for left and right ideals,
i.e., U is left and right Noetherian.

Appendix B

In this appendix we prove theorem 2 of Section II.
We begin with a remark. According to 12) one can represent every root ß of C as

ß oq + • ¦ ¦ + xik such that xti + ¦¦¦ + x{ for all m < k is a root. To every root ß

we can associate in this way a sequence (ix, if) and the elements*)

A,, [,,...,,], [/,.../,,] (B.l)
form a basis of C.

We next give a transparent description of CR (instead of e{, ie R we write ef,
etc.).

I. The elements hf, [eR, eff, [fR fff of the basis (B.l) for C form a
basis for CR.

Proof: We denote the vector space which is spanned by these elements as CR. We
show that CR is a sub-algebra from which I. follows.

i) [kf,hf] o, [[,f...<]Af]^27^K-<]6EÄ
m

m

ii) Since

ad[eh ¦ ¦ ¦ \] [ • • • [ad 7 a d e«J • ¦ ' ad Z] '

we have

HZ • ¦ • \]} *[••• [ad 7 ad en] ¦¦¦]-
which shows that we have to apply a non-commutative polynomial in the a d e{ on x.

From this and a similar remark for the f's follows that it suffices to consider the
following products.

Instead of [... [xx x2] xf we often write \xx, Xf.
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The argument is the same for the last two products as for the first two so we consider

only the first two.

iii) For the product [[ef, ef] ef] we have to distinguish the following two
cases :

a) ß + Xj fß xh + ¦ ¦ ¦ + Xj) is no root. Then the product is zero.

b) ß + Xj is a root. In this case the product is a multiple of the e-basis element which

belongs to y ß + Xj ; i.e., the product is an element of CR.

iv) We consider now the product

For k 1 we have [...] 0 for ix + j and [...] — A, for ix j.
For k 2 we have [...] 0 if ix + j and i2 + j
For i2 j we have [[/£/£ ef] [/* [fR ef]] + [[fR ef]fR] -[ff hf] AfJR
For k > 2 we prove by induction that : [[fR, ¦ fR] ef] is a linear combination of the

fR base elements. If no ir j, this product is zero. In the other case let ir + x be the last
index in [ff, fR] which equals j. Then

The first term after the last equality sign certainly is in CR (compare i)). The induction
hypothesis establishes the same claim for the second term. This proves I.

Now we consider a semi-simple Lie algebra C with the canonical generators
h-, e'j, fj ,j e R, the Cartan matrix AR and the simple system of roots ri {a,'}. Then,
of course, x'fhf) Af. C certainly exists and is uniquely defined by these requirements

up to an isomorphism (compare Ref. 10)).

We shall now show :

IL ß' Z k{ aj is a root if and only if ßR Z kt xf is a root.

Proof: For a linear function ß Z ki oq (kt integers) we define the level ß S \ kt \.
We prove II by induction on levels. It suffices to consider the case when all k{
axe non-negative integers. For level n 111. is, of course, true. Now suppose
that II. is true for levels < n. Let ß' have level n+1. Then, it is necessarily of
the form ß' x + x\, x' E ki x[. xR S kt xR is a root (of level ri) by the
induction hypothesis. We have to show that ß' x + a,' is exactly a root if
ßR xR + xf is a root. To do this consider the elements of the form

x' - x'j, x' - 2 x- resp. xR - xf, xR -2xf
which are roots. These are positive and of level < n. By induction hypothesis
these two sequences stop at the same position. Consider now the following
strings of roots (the star stands for R or ', respectively) :

r — 1) xi ,x + q
* *

X:
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where r* and q* are chosen maximally, then, according to a well-known
theorem

2 (a*, a*) „,q ~r (atf.xf) ~f Zk>AP

As we just showed r' rR, this formula implies q' qR, which proves II.
Hence, we know that the roots ß' of £' axe in 1:1 correspondence to the roots ßR of

CR. To each ßR we associated earlier a sequence (ix, if). This correspondence we
carry over to the ß'. Then, the following elements form a basis of £' (compare the
remark at the beginning of this appendix) :

^K-z]. Ui-Q-
Hence, according to I., £' and £Ä are isomorphic as vector spaces, where the bases

correspond to each other.

Now we claim :

III. The multiplication table is the same for both bases. If this is proved, we have
shown that £' and CR are isomorphic (as Lie algebras) and hence we have proved
theorem 2.

Proof: The remarks which were made in the proof of I. show that it is sufficient to
prove III. for the following products:

[[<•••<]<]¦ [vt-Q°n-
i) We study first the second product. For k — 1, 2 III. is correct as the formulae

in the proof of I. show. For k > 2 we prove III. by induction on k. The formulae (B.2)
(if one replaces there R by a star) show that the step from k to k + 1 can be done.

ii) For the first product compare iii) of I. We have the case a) either for both £'
and £R (according to II.) or for none of them. There remains case b). According to
what we said about this case, the multiplication coefficients equal if the following
holds :

IV. Let ß* be a positive root, (ix, if) the associated sequence. Let 1', k'
be a permutation ot 1,2, k. Then

[A'¦¦¦%']-P [A---%]
with p' pR.

Proof: For k 1 this is trivial. We make induction on k. Let us distinguish the
following two cases.

i) h ** j- In this case, we can assume that the sequence which is associated
to the root ß* — xf is ix, ik_x. By induction hypothesis

LZ'"' % .-!,']= 'K"" «Vi]
where t is for both cases the same number. From this IV. immediately follows.

32 H.P.A. 38, 5 (1965)
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ii) Z =h * i'k. Then

[e,i,...eikj] [eh,...e,r,ei ...e,k,],

where the displayed ef is the last one occurring in the expression.
If any one of the xfu+ + xf is no root, then [ef,, ef ] 0. According to II.

this is for both cases simultaneously so or not so. If now every xf, + + xf is a

root, then [ef ef ] 4= 0. We certainly have the equation

[%.-%.*, ¦¦¦%'fi] [ei,'---%'eifi ¦¦¦%]
But according to 13)

[A,---%,e*f*] -q*fA + 1)[<, ...el],
q* and r* are determined by the xf string which contains ß xf, + + xf,.
II. implies

r' rR r > 0 q' =-- qR q > 0

An analogous argument shows

[z-'-zZ <v] sK-¦¦•%¦]'
with a constant non-vanishing s. Hence,

r* * -i r * */•**-] /i-i\r* ** **is [% ¦ ¦ ¦ %'i [A' ¦ ¦ ¦ %'fi ei] -qfr+l) [eti. elf, ^+J), %, «, ]
Therefore

\e, e, \ tie, e, e. e, e,
L »i' 'ft'J L *'' V '(r+2)' 'ft' »J

again with constant ^. This reduces the discussion to the first case and hence IV. is

proved.
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