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Dynamical Behavior of Exchange-Coupled Spins1)

by Paul Erdös

International Business Machines Corporation Research Laboratory, Zurich
Säumerstrasse 4, 8803 Rüschlikon-ZH

(19. I. 66)

Abstract. The magnetic resonance conditions and dynamic susceptibilities of a two-spin system
are derived. The spins are coupled through a combination of isotropic and asymmetric exchanges.
This type of interaction occurs in weak ferromagnets.

A method is developed which permits the summation of the perturbative scries for the wave
function in the case of resonance.

I. Exchange-Coupled Pairs of Spin

It has been observed [l]2) in solids doped with magnetic ions, that besides the
well-known Heisenberg type isotropic exchange interaction

Uo=JSx-S2, (1.1)

an asymmetric, or Dzialoshinsky [2]-Moriya [3] type interaction

Ux DAS1xSf (1.2)

may occur. Whereas the former tends to align the two spins antiparallel (or parallel),
the second tends to direct the spins perpendicular to the vector D and upon one
another. The direction of the vector D is determined by a crystallographic axis of the
host solid. In the case of a large antiferromagnetic coupling (/ positive), a small D has
the effect of slightly canting the antiparallel spins by an angle a, which is given by

where D is the modulus of D.
A- <">

1) This paper describes the mathematical treatment of the problem. The discussion of the
physical aspects will be published elsewhere.

2) Numbers in brackets refer to References, page 163.
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We shall study two spins Sx S2= 1/2, coupled by

Tt — TtQ I Ttl (1.4)

and in a static external magnetic field H, parallel to the direction of the vector D,
which is also taken as the ^-direction. An additional alternating magnetic field will be

introduced in the next section.
Since the square of the total spin S and its z-component M commute with ?/0,

we take the four eigenstates | 5 M > as a basis for future calculations, and label them
with a single index v, according to

S M -->v

0 0 1

1 0 2

1-1 3

1 1 4.

The Hamiltonian then takes the form

ìl

o - D 0

'y i 0

0 0 J + pHz
0 0 0

0

0

0

with the eigenvalues

£1.2 ~ J (l =F ÌJ+D*j4 p) £3,4 J±f*Hz.

Here pt denotes the Bohr magneton (Fig. 1).

(1.5)

(1.6)

d2/i6j ^y*
1 ^77— Z/hl

E4

1

J

1

E3

D2/16J \.
F,

Figure 1

Splitting of the antiferromagnetic exchange doublet under the influence of the asymmetric
exchange and the external magnetic field. J isotropic exchange constant. D asymmetric

exchange constant. Hz external magnetic field.
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The exact eigenstates, whose energies are Eit shall be denoted by | i >, i
3, 4. They are obtained from the basis | v > by the unitary transformation

1, 2,

U

with

In first approximation

cosa' — i sina' 0 0

i sina' cosa' 0 0

0 0 10
0 0 0 1

t. I 4 El
tg« -pi

tga' ~ — tga

(1.7)

(1.8)

(1.9)

i.e., the angle a' is the same as the canting angle defined by (1.3). Therefore, we shall
drop the prime from a bearing in mind that in the following, the exact relation (1.8)
defines this angle.

The approximation tga Dj4 f is adequate when DjJ <§ 1. However, a serious

error would be introduced into the solution of the time-dependent problem by the
replacement of cosa by 1, and sina by a in U; this would destroy the unitarity of U,

and non-periodic solutions of the Schrödinger-equation would appear.

II. Dynamic Behavior of the Coupled Spin System

The dynamic susceptibility of the system determines its behavior in an alternating
magnetic field, which varies with frequency a>. Magnetic resonance occurs when the
frequency of the field coincides with the energy difference divided by %, between two
levels of the system, and, in addition, the selection rules for the transition are fulfilled.

The time-dependent magnetic field is taken in the «-direction. It is sufficient to
consider one Fourier-component Hm only, which contributes to the Hamiltonian the
term

U3=-pHm cosco t Sx. (ILI)

In the v >-representation, Sx and Sz are given by

(II.2)

[As can be seen by comparison with (1.5)]. In the j i > representation we have

0 0 0 0 0 0 0 0

1/7
2

0 0 11
0 10 0

and Sz
0 0

0 0

0 0

- 1 0

0 10 0 0 0 0 1

% - fi Hm cos« t U-1 Sx U (II.3)
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To study the behavior of the system under the time-dependent perturbation %
we shall use the interaction representation, or S-matrix method, well-known in
quantum field theory. Its usefulness in this context is based on the fact that the
system has a relatively small number (4) of stationary states. This will permit us - in
case of resonance - to sum the series of perturbation theory to all orders. Off resonance,
the method will enable us to determine the linear and quadratic response of the system
with ease. In contrast to this, the Kubo-formalism [4] and the method of rotating
coordinate systems [5] only yield the linear response.

Let us denote the time-dependent wave functions of the unperturbed system by

xpft) e'"0i't \i>, with co, li-1 E,, i= 1,2,3,4, (II.4)

and E{ given by (1.6). The wave function of the perturbed system will be written as

xpft)=E®,ft)V>M- (II.5)

The four coefficients 0j(t) shall be condensed to a four-component wave function 0(t),
which will be called the wave function of the system in the interaction representation.
Indeed, if ?/3 vanishes, 0 is constant. Inserting (II.4) and (II.5) into the time-dependent
Schrödinger equation for xp(t) yields,

* » "r% %nt(t) $ • (II.6)

where *Uint is the Hamiltonian in the interaction representation.
Its matrix elements are

(Wfa«)v <*| M lì >«"'""'. (II.7)
with

oJji ojj-oji, (II.8)
and "Usft) is given by (II.3).

The Equation (II.6) may now be integrated to yield
t

<P(0 Pexp(- \- j %nft') dt') 0». (II.9)

In this equation, P is the chronological operator which prescribes that operators
at earlier times first act on 0°. This prescription is very important here. The exponential
which is obtained from (II.6) is really meant as the limit, as n tends to oo, of the
product of n operators which depend on different times and which differ only infini-
tesimally from unity [6]. Since "Uintftfl does not commute with ?/,-„((<2), in the following
series expansion the time ordering has to be taken care of.

The initial conditions are specified by stating that the system be in its ground
state 0° (1, 0, 0, 0) at the time t l0.

The usefulness of the formal solution (II.9) will depend on whether we are able to
evaluate the exponential operator multiplying 0°. To do so, we first write out explicitly
"ilint, using (II.7), and the matrices Sx and U as given by (II.2) and (1.7), respectively,

%nft) ~pHm coscot'Zft'), (11.10)
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where

7 _ /2
Z* " - 2

0 F
F+ 0

and F cosa«"*0'88''
(11.11)

In Zx the 0 denotes the two-by-two zero matrix. By virtue of its construction, the
matrix Zx has the same algebraic property as Sx, Sy, and Sz, namely3) :

Z\=ZX. (11.12)

Next, we develop the exponential operator occurring in (II.9) into a Taylor series

0 P {1 + t ft-i n Hm Aft) - (2! Ä)"1 fpt HJ2 A2ft) - + •••} 0° (11.13)

where

Aft) j cosco t' Zft') dt' (11.14)

This is the perturbation series for the time-dependent wave function.

III. Resonance

When the time integration is carried out in Aft) (11.14), energy denominators of the
form cojj — co appear in each matrix element. If the frequency co of the perturbation
is close to one of the transition frequencies co^, the corresponding matrix element
becomes large, and one may neglect all other matrix elements in each term of the
perturbation series (11.13).

For definiteness, suppose

co co3X — e w.'th e <^ coax (UFI)

As initial condition let us take 0° 0 ft 0). From (11.14) we obtain

Aft) aQ A2(i) a2Q2, (III.2)

where Q and Q2 are matrices whose only nonvanishing elements are

Qis Ç*i eut'2 and (Q\x (Q%3 1 (III.3)

pt Hm sina E"1 sin {J- e t) (III.4)

and

a=-r JL

According to (11.13) we need the time-ordered powers of the operator Aft). For
example :

P A*(t) fdtx fdt2 P {%Jtx) %Jt2)} fdtx{fdt2 %nftx) %nlft2)
0 0 Ö 0

+ M %ntfh) %ntfh)} A'ft) +Cf), (III.5)

3) This property follows from the fact that every matrix fulfills its own minimal equation.
Since the eigenvalues of the angular momentum operators in our representation are 0, 0, — 1, and
+ 1, the minimal equation is A (A-l-1) (A-l) 0.
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Cft) dtfUfO), A(tx)]

— i pt2 H2m sin2a e_1 11 — sine t\

10 0 0"
0 0 00
00--10
00 00

(III.6)

Cft) tends to zero as e. In an analogous fashion

P A"(t) A"(t) + Ofe) (III.7)

By virtue of the property (11.12), A3(t) Aft), and the series (11.13) may be summed

up at exact resonance e 0 to give

il + i sin (J- ft-1 pt Hm t sina) Q fe 0)

- [ 1 - cos (Z %-i n HJ sina)] Q2 fe 0)1 0° (III.8)

What has been done for co co3X, also carries through for the other resonances. The
general result being that for the resonance co cojk, the only nonvanishing matrix
elements of Q and Q2 are

Qi„ «?*• e-"'2 and (Q2)jj fQ\h 1 (III.9)
For example, the wave function for exact resonance

0X COS I—- fi-1 fl

02=0,

CO ¦

H0>tsinJj,

Ois

0S i sin I— ft-1 pt Hmt sina),

04=O.
The system oscillates between the states | 1 > and | 3

(III.10)

with frequency
1/4 Ti,-1 pt Hm sina. For a sufficiently weak exciting field Hm the transition from the
initial state | 1 > to the excited state is slow, and we define the transition rates as

proportional to the squared modulus of the wave function in the excited state

Wx^3 t-*\03\A (III.ll)
Combining the results for all resonances, we obtain the following results for the

transition rates:

to

CD

co ¦¦

CO

CO

0)

Wx^2
¦ 4

o,
TF3^4 0,
Wx _ s (16 h)-1 p,2 Hi sin2a ~ ft-1 fp Hu D/16 /2)

Wx^i=Wx^z,
W2_3= (16 h)-1 pt2 Hi cos2a ~ n-1 fp HJ4)2

W2^,= W2^3. (III.12)
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The transitions between the levels 2 <—> 3 and 2 <-> 4 are ordinary Zeeman transitions

and are only in fourth order dependent on Djf. The transitions 1 <—> 3 and 1 <-> 4

are proportional to D\f. Hence the ratio of certain transition intensities, such as

tg2a~(-^)2, (III.13)
W'3-2 ° - \ 4 /,

is proportional to the ratio of the asymmetric to the isotropic exchange constants. Its
observation requires the preparation of the system in an excited state.

The frequency of the above transitions can be tuned by varying the static magnetic
field Hz.

It should be noted that the behavior near resonance, i.e., the line shape4) may be
obtained by a somewhat more elaborate analysis of (V.17). Successive commutators
of the type (VI.6) involve successively higher powers of the frequency mismatch e.

Keeping only the first nonvanishing terms in e, one may derive a formula similar to
(VI.8) which contains the information necessary for the study of the line shape.

IV. Dynamic Susceptibility. Linear and Quadratic Response

When the frequency co of the external magnetic field is not close to any of the
transition frequencies co,., the matrices Anft) which determine the time-dependent
wave function contain large energy denominators, and the series (11.13) converges
rapidly. The linear response of the system is obtained, if in calculating the expectation
values of different quantities we keep only terms linear in Hm. Quadratic and higher
order responses are obtained correspondingly.

The exact expression for the expectation value of the magnetic moment Mft) is

Mft) =pi 0ft) j Sft) I 0ft) > (IV.l)

where the operator Sft) and the wave function 0ft) are in the interaction representation.
For linear response, we represent 0ft) merely by the first two terms in (11.13),

and obtain
Mft) i h-1 p2 Hm(0»\ Sft) Aft) - Aft) Sft) j 00 > (IV.2)

At this point, a remark on the initial conditions is in order.
In the case of resonance, we specified the initial wave function 0° as the

unperturbed ground state at i 0, and the external field acted indefinitely. This was
correct, because the system passes through its unperturbed ground state any number
of times under the action of the perturbation. Hence, without loss of generality,
t 0 could be assigned to one such passage.

Far from resonance the situation is different : If before the action of the perturb-
ance, the system were in its ground state, it might never pass through it again. Hence,
we assume 0° to be the unperturbed ground state at t — 00, and multiply the
interaction Hamiltonian (11.11) by esl, where s is a small positive number. This
corresponds to an adiabatic switching on of the perturbation6). It starts with zero at

4) This may be called the 'natural line shape' of the resonance, in contrast to the line shape
due to relaxation processes.

5) Some authors prefer to introduce the factor est by adding a small imaginary part to the
frequency. That procedure is less illuminating, but equally effective.

11 H.P.A. 39, 2 (1966)
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t — oo and reaches its full strength at t 0. The expectation values thus calculated
are made independent of s by going to the limit s -> 0.

With the initial conditions so specified, 0° (1, 0, 0, 0), and the problem is
reduced to the determination of the single matrix element [Sft), Aft)]xx in the
interaction representation.

As explained in Section II, in the interaction representation the ^-component of
the spin has the form Zx, given by (V.ll), whereas the ^-component Zz is the same
as Sz, as given in (II.2). Using

Aft)= f e*'Aosco t' Zft') dt' (IV.3)

(cf. (IL4)), one obtains in the linear response approximation, (that is, neglecting
terms proportional to Hi)

M'ft) fi-1 p2 Hm sin2a cosco t [p ,*"» + p ^41 ,-r m L Cyli-CO2 ^ COl!-CO2

-2nid (ft)31 -(o)-2ni fcoiX - of] and Mft) 0 (IV.4)

The symbol P means, that the Cauchy principal value is to be taken, whenever
an integral of this expression over the frequency co is required. P may be omitted
for co off resonance.

Inserting

sina ~ -* o31 ^ JJM^BJJ. œa ~ .^ZAAhAAÀJfAA. (IV.5)

we obtain the static susceptibility

- i£- =y .£? (IV.6)

for co 0. The Kramers-Kronig relations are also fulfilled.
Since the first nonvanishing term of the ^-component of the magnetic moment is

quadratic in Hm, we proceed to calculate the quadratic response. Using (11.13) and

(III.5) to take cognizance of the chronological ordering, the magnetic moment is

again given by the matrix element (1, 1) of a sum of operators:

Mfi) i ft-1 p2 Hm [Sj A]xx + p* ft-2 Hi fA S A)xx

- (2 ft)-1 p3 Hi (S A2 + A2 S + S C + C S)xx (IV.7)
Here

C=fpHayi ìdtx[%Hftf,Aftx)]. (IV.8)
ó

The first term in (IV.7) is the linear response already calculated. Each summand of
the third term of (IV.7) may be shown to vanish. For the ^-component Sx, the second
term vanishes, too. Hence M'ft) contains no quadratic term in Hm. There remains only

Mft) p3 fi-2 HlfAft) 5-" Aft))xx p3 fi-2 Hl (I AXi |2 - | Au \2) (IV.9)



Vol. 39, 1966 Dynamical Behavior of Exchange-Coupled Spins 163

Evaluation of the matrix elements ^414 and A13 yields

Mft) p3 ft-2 HI sin2a {^^ + ^- + n2ô fcoix - co)

2 2 11+ P —; 5- cos 2 co t ô (co,, — co) sin 2 CO t ; r ¦—r^^ coli-co2 co41 + co
v 41 ' (co31-co)2 (co31+co)2

2 2 1

— n2 ô fco3X — co) — p - —; j- cos 2 eu H ò fcosx — oj) sin 2 co t\. (IV.10)

For h co <^ / this expression reduces to

MZW
16 A^- H» î1 + cos 2 co ^) (IV.11)

As expected, the magnetization contains, besides the static limit, a second harmonic
component. Resonances occur for co co3X and co mix.
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