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On Two Gauge Classes and the Invariance of the S Matrix
in Quantum Electro Dynamics

by M. Zulauf
Institut für theoretische Physik der Universität Bern, Bern, Switzerland

(16. IV. 66)

Abstract. Starting with radiation- and Feynman gauge and introducing operator gradient
transformations, two classes of gauges are distinguished. The operators of the two classes are not
related by gradient transformations. The propagators for both classes are given. Invariance of the
S Matrix ander a transformation from one class to the other is proved and it is shown that for
internal lines none of the four components of the electromagnetic potential vanish for any gauge.

I. Introduction

The propagators of quantum electro dynamics are known to be affected by
ambiguities originating in the invariance of the theory under gauge transformations.
Whereas the form of the unrenormalized propagators in different gauges is well
established [l]1), some questions about the connexions between these various forms
still remain. For example it is not possible to relate the photon propagators in
radiation - and in Feynman gauge by a transformation of the same type as the one that
leads e.g. from Feynman - to Landau gauge2). In this note we intend to investigate
such questions. We distinguish two classes of gauges: the class of non manifestly
covariant gauges and that of manifestly covariant gauges. Typical examples are the
radiation gauge and the Feynman gauge respectively. We define the two classes by
performing operator gradient transformations upon these typical examples. Similar
transformations in a more restrictive sense have also been considered by Landau
et al. [2]. There arises the question of how to introduce the propagators; we shall

attempt to correlate the two distinct methods of Landau [2] and Zumino [1] by using
Schwinger's [3] method of functional derivatives in connexion with a generating
functional Z, into which we shall directly introduce the operator gradient
transformation.

In Section II we first formulate the basic equations of quantum electro dynamics
in radiation gauge. We include a proof in their Lorentz covariance. Section III
contains the definition of the class of non manifestly covariant gauges. For the

propagators we get the same result as Zumino. Section IV deals with the fundaments
of Feynman gauge which serves to define the class of manifestly covariant gauges in
Section V.

x) Numbers in brackets refer to References, page 450.
2) We use the nomenclature of Reference [1],
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In the second part of this note, the question is treated as to why, if there is no
simple gradient connexion between radiation and Feynman gauge, the S matrix is
identical for both cases. The answer is that the so called Coulomb term in the
interaction Lagrangian in radiation gauge is essentially a constituent of a relativistic
propagator and so brings back the unphysical degrees of freedom which were omited.
We give an explicite proof of the invariance of the S matrix under the transition from
radiation to Feynman gauge. This proof is valid for a more general case, viz. the
invariance under the transition from any gauge of the first class to any of the second,
just because each gauge can be transformed by a gradient transformation either into
radiation or Feynman gauge. The surface terms appearing in the S matrix for these
gradient transformations give the correct generators for the gauge change for in and
out fields.

In Section VI we give the S matrix perturbation theory in radiation gauge which,
in Section VII, will be used to prove the invariance of the S matrix.

II. The Radiation Gauge

We define the class of non manifestly covariant gauges by the properties found
for a special example, the radiation gauge, and by operator gradient transformations
which bring us to all other gauges of the class.

A. Fundamental Equations

The radiation gauge is fixed by the non renormalized field equation3)

DAk-dkÀ0=-jk (l.a)

AA0 u (l.b)

[i y" (d^-ieA^i - m] \p 0 (l.c)

<M* 0, jß=^[w.YuWl Ò"ì„ 0. (l.d)

For A0, there is no dynamical equation; A0 is totally and for all times prescribed by
the charge density of the y-field. Integration of (l.b) with the help of the Laplace
Green function Gfx).

A Gfx) - òfx) (2.a)

Gfx) Gfx) ôfx«) (2.b)

yields the following equation for the photon field4)

Ak =-jk- dh dt G * f (3.a)

A0=-G*f. (3.b)

3) Metric: g^v, g00 - gkk 1; latin indices run from 1 to 3, greek ones from 0 to 3. The
space components of the vector xf are denoted by *.

4) The star (*) will always stand as a short hand notation for a 4-dimensional integral. For (3.b)
e'g' -A= -\dyG(x-y)jO(y).
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Symbolically these two equations can be united in a single integral equation :

^ zr + G>f (4-a)

At 0, dkAkin 0, D4" 0. (4.b)

Here the retarded integral kernel is constructed in the following way :

Gfl=-G, G'fÌ=G'fi 0, G'ft-òuD'o + D'^d.diG (5)

Dret is the usual retarded d'Alembert Green function: Dretfx) — ôfx).
A similar integral equation holds for the electron field :

f ^ ft» _|_ Sret * fy" A f) (6)

In this expression, A0 must be thought of as defined by (3.6).

B. Lorentz Convariance

In view of the space-time asymmetry of these equations doubts about their
Lorentz covariance might arise. Indeed, they are not covariant under Lorentz
transformations, yet they are covariant under combined Lorentz and gauge transformations.

Consider the following infinitesimal transformations6) :

Time translations :

Equations (l.a) and (l.c)
Space translations with the parameter ak :

ô Ak atdl Ak ôf aldlf
Lorentz rotations with the angle cx> „:

à Ak «v fx" d> Ak - x« d» Ak + g"h A' - g\ A") - dkA

è f m^ „
(x11 d"f - xv d" f + J- y" y" f\ + ie A f

We adjust the gauge function Afx) in these equations so that for all these
transformations

ôfdlA') ôfdlA') 0.

Now the generators for the transformation listed above can be found easily with
the help of the equal time commutation relations of the system :

[Afx), Afy)]x^y, i (òklò (x-y)- Z d, G (x-y)) (7.a)

{ffx), ffy)}x,=yo =-òfx-y). (7.b)

The generators are uniquely determined and one can check that i they fulfil the correct
structure relations of the Lorentz group, ii they fix the gauge function in dependence
on the rotation angle ca „ :

A=-co/lvG*F"\ fFllv=dhAv-d„Afi
5) Whenever A0 appears in these and the following equations, it is always just an abbreviation

for (3,b).
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and iii they belong to the right Lagrangian of the system, viz.

C Q0 + Q'

Co - \ fAkÂ« + dk A, d* A') + f (A 7ji d" + m)f (8.a)

Q' AkA+J-j0G*j0. (8.b)

By reversing the argument, we can say that if we start with the Lagrangian (8) of our
system and deduce from it the generators of the Lorentz group, these generators
produce, apart from Lorentz rotations, the necessary gauge transformations such
that in each coordinate system dk Ak 0.

Thus the radiation gauge is a Lorentz covariant gauge in the sense that it
automatically provides us with the gauge transformation needed to have a transversal
field again.

C. Propagators in Radiation Gauge

Schwingers [3] generating functional for the propagators in radiation gauge is

given by
ZU, % nl <° I T exP {*' f dz (Ak fk + rj f + f rj)} \ Oy (9)

Jk, r\ and rj axe external c-number currents with respect to which one can build
derivatives. Because of (1) and (7) Z satisfies

y fj * - (*« - * Oj G •> {J - h lw ' J wl)} z °- (10)

This equation can be integrated with the help of the causal d'Alembert Green function
Dc and the electron propagator Gc for an external c-number field B :

Dfx) : D Dfx) - òfx) GfBßJX] : [i y" fdfl - i e BJ + m] G<[Bf, x] Ôfx).

The index c means that the 'causal' path of integration has to be used. The vacuum
polarisation induced by the external field B is now given by

F[Bf\ exp {- Tr J dx dy log Gc [B^ x - y] G^f); y - x]}.
With this the solution of (10) is given by

Z[J, t], V] exp J- — J dx pfx) J dy D< fx - y) Axj pfy)

+ i J dx fifx) J dy <Z [Z- JL -x-y\ f](y) f[ \ —^ (11)

For abbreviation we have put

Atj (du - d, dj G*). (12)

The non renormalized propagators can now be calculated by

Df (x-y) J- A, -Arr - Z [0, 0, 0]
%t y ¦" i 6 JAx) SJJ(y) L j

GAx-y) J- ~T Ajy z [°. °. °] (13)
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and are given by

Gfx) -.—A — àfx)
Dffx) Atj Dfx) and l ?» d"~ m~l £ (14a, b)

fly" dp + m)Acfx).

III. The Glass of Non Manifestly Covariant Gauges

In order to distinguish the fields in radiation gauge from those in new gauges to be
discussed now we designate the former ones by a subscript 'R'. The new class of
fields is defined by the following operator gradient transformations

K A,+ djA*A'), f' f + iefcv*A*)f fA0=-G*j0, dkA"=0). (15)
R R R R R

These transformations are only well defined when all the fields entering them carry
the same time argument. The kernel is therefore of the form

c,(x) cfx) ôfx»).

(Further below, the index v will often be omitted.) We assume cfx) to be a symmetric
function of the argument.

It should be stressed that (15) is not a symmetry transformation of the photon-
electron system. The new fields A', f' will in general obey other commutation relations
and other field equations. But since the radiation field A is purely transversal, the

R

new photon field A'^ also will possess only two degrees of freedom. With (15) and some
reasonable assumptions about cfx), the class of non manifestly covariant gauges is
introduced. Clearly for a specific kernel c and the appropriate Lagrangian for the new
field, the Lorentz covariance can be proved in the same manner as in Section II.

The generating functional for the propagators of the new field is expected to be
of the form

R

Z'U, % n\ <0 | T exp {i Jdx[(A +d.c* A) J"
R R

+ 7]ff + iec*Af) + (f — i e c * A f) rff] | 0>. (16)
R

Using (1) and (7) we get for it the following equation:

1 ô

y ôjf[D J -At - fC ä A,i - Z ël ä Aij cT * - à, £ gt cT *)

*(r-M-k-ï-klkr-°- (17)

The first order solution in c reads

Z'[J, v, 7j\ exp {7_ f dx (/" + c" * d" Jf j dy D< (x - y) g« g[ Ai} ff + C * d" J")

+ i dx fjfx) / dy Gc — r- x — y\ i e \(c * A) (x) — (c * A) (y)\

x^f[a^}}- W
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For the propagators we establish

K (K + Z c" *) Œ + Z S *) Dar (19.a)
R

Gc' exp {(c * A) (x) -fc*A) fy)} Gc (19.b)
R R R

Here, Dcar and Gc stand for the propagators of Equation (14), with the obvious
R R

meaning T)*, gig{ Dctj.
R

Equation (19.a) was first given by Zumino [1].

IV. Feynman Gauge

In a similar way as in Section III we intend to introduce the class of manifestly
covariant gauges by a special example, the Feynman gauge, and by operator gradient
transformations which define all other gauges of this class.

A. Feynman Gauge
The basic equations are

DZ* -Z (20-a)
F

[iy" (dp -ieA/t)-m]f 0 (20.b)
F

[À pfx), Afy)]x,=ya igpjfx- y) (20.c)
F F

{fAA,wfy)h-y° ôfx-y). (20.d)

The relativistic covariance of this gauge is obvious. In contradistinction to the class of

gauges considered until now, A describes 4 degrees of freedom. In momentum space
F

this requires, apart from the creation and destruction operators for transversal
photons, the introduction of longitudinal and timelike photons which should
compensate each other. It is therefore clear that the A cannot be constructed from the

F
A by a. simple gradient transformation of the type (15), since at least the polarisation
R

of the timelike photons parallel to the timelike unit propagation vector n fn n" 1)

cannot be written in gradient form.

B. Propagators in Feynman Gauge

For the generating functional we try again

Z [J, % n\ < 0 | T exp {i f dzfApf" + rif + ffi)}\0y (21)
F

Equations (20) give for it

[0yÂh-(J"-iAsy^M)}z^0- (22)
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The solution is

Z [/, rj, fj] exp 7 / dx JJx) J dyDc (x - y) pfy)

+ ijdx nfx) f dy G< [4- -±- ;x - y] Vfx) F [i- 7^] (23)

and for the photon propagator we have

Dlv=-gllvDr (24)
F

V. The Class of Manifestly Covariant Gauges

We consider again operator gradient transformations which we expect to lead to
all gauges of the manifestly covariant class:

A'„ A +d,(d,*A*), f' f + iefd„*A")f. (25)
F F F

For the sake of definiteness, dfx) contains again a c3-function in the time argument,
and we furthermore assume it to be symmetric.

The transformation (25) will in general change the field equations as well as the
commutation relations of the system. But it will always yield a field with 4 degrees of
freedom. Also, for reasonable kernels dfx), the new field will satisfy again Lorentz
covariant equations. Some possible choices for d(x) which have been used in the
literature are summarized by Peres [4].

For the generating functional of the propagators in the class of manifestly
covariant gauges we put

Z' [f, rj, y] <0 | T exp {i f dz [(4 +dßd* A) J"
F F

+ f] (f + i e d * A f) + (f — i e d * A f) ?]]} \ Oy (26)
F F

It obeys the equation

(?-! ^-^+à,dy* + dvd^)(p+^[L,f-^])}z' 0. (27)

The solution is

Z' [/, % A\ exp \A- J dx fjx) f dy D< (x - y) Pfy)

+ J-Jdx Pfx) J dy fop dv fx-y) + d„ dp (x-y)) Pfy)

+ i dx rj(x) / dy Gc — —- ; x — y\ rj(y) (28)

F [t TJf] ^((d*A)(x)-(d*A) (y)).
F F

By developing for small d we find for the propagators :

Dc;v(J - Dl v (A + Òp dfx) + dv dpfx) (29.a)
F

G'fx) exp {i e ffc* A) (x) - fc* A) (y))} Gfx) (29.b)
F FR
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These transformation properties of the propagators were first given by Landau.
Zumino's result follows from the special case

dfx)= Jd„M(x).

VI. S-Matrix in Radiation Gauge

Going back to Equations (4) and (6) and similar equations for the advanced

boundary condition we define the S matrix in the usual way by solving for the in and
out fields

Aout S+ Ain g t yout S+ y,n S _ (30)

In perturbation theory 5 for radiation gauge is given by

S=7VZ*d«w (31.a)

4 4"7l + 4-^G*&- (3Lb)

The A™ axe the free fields obeying (4.b). For them we shall use the commutation
relations

[A'ffx), Af(y)] J-DkAx-y)= \ Akl D fx - y) (32.a)

{f«\x),fmfy)} J-Sfx~y). (32.b)

With the help of these equations we are going to calculate the S matrix in radiation
gauge. For (31.a) we get in a somewhat abbreviated, but self-explanatory notation

5 |/^ (I) T[fAtilr(\ilG^n-m\. (33)

For a fixed value oi nA 0 each term in the sum over m in (33) contains still various

powers of the coupling constant e (ff ~ e). It is therefore convenient to reorder the
sums and to substitute p m + 2 (n — m) so that only terms with the same power ep

correspond to a fixed value of p.
Furthermore, to see the effects of the radiation gauge, it is only necessary to

consider in p~th order those processes which have p — 2 q external photon lines.

Using Wick's theorem (some details of this calculation are given in appendix) we get6)

SiP) =?+1 {dX)P AF-AnfAA AWAq) !7777 W
: Affxfi Af fxp - 2 q) ; T [(± fîn G * jlf-^ (£)-] (34)

where pi p — m/2 + q and 4- means that the sum runs over the values m
p, p — 2, p — 4, down to 1 or 0 depending on whether p is even or odd. Discussion
of (34) :

6) The double k for the photon propagator index is not meant to be summed over, but stands
as an abbreviation for a series of space indices to be contracted with j*
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For a fixed value of p and for m p we get the usual graphs of the Feynman-
theory which are only modified in that i Affx) describes free photons in transversal
external states, ii the photon propagator to be used for internal lines is (14.a), and iii
each vertex contains factor e yk ;

A"fx)

eh) aI<x)

*ymtx)

For m p — 2 new graphs are obtained from the above ones by replacing one internal
photon line at a time by a vertex of the following type :

AmAû'"(x)

fy0Btx-y)

y"(x) v iy>

The internal photon line is replaced by a vertex function e2 y0G fx — y)f2.
For m p — 4 we have to replace 2 internal photon lines at a time by the new

vertex, and so on. External photon lines and electron lines are always the same as in
the original graphs. As an example we write down the topologically different diagrams
of Moller scattering in 4th order :

X

X
Z A
VII. General Invariance of the 5-Matrix

We shall prove the invariance of the 5 matrix under a transformation from one
class of gauges to the other in the following steps : We show first that the formulation
of the theory in radiation gauge can be replaced by an equivalent intermediate theory
which makes use of the unphysical photons by means of A0. Then we show that the
propagators of this new theory are related to those of Feynman gauge by a gradient
transformation (25), under which the S matrix is invariant. Since each gauge can be
transformed by the aid of a gradient transformation into either radiation or Feynman
gauge, the proof for the general invariance is completed.

The intermediate theory mentioned above is defined by the equations

GAp-dpA0=-jp, (35.a)

[>'Z (dfi-ieAJ-m]f 0, (35.b)
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and the photon propagator (compare with (5))

GCpVfx)=gkpiDlfx)-glglGfx) (36)

with Dckl(x) from (14.a) and Gfx) from (2.b).
The vertex to be used here is

Ap'"lx)

Notice that longitudinal as well as timelike photons appear.
Now the equivalence of this formulation with the original radiation gauge is seen

directly by computing the S matrix in p~th order and concentrating again upon
processes with p — 2 q external photon lines. From (35.c) we get

If) lx)

?yH

V IX)

S(p) W jr (At 7T27 (t gc4 ¦Ain^ - ^"<W= T^p-
In a symbolic notation we write GpM Dckk + G and put G with a factor 1/2 under
the T product :

SW =±\ fdx)» -J^ -—^ - -- (DI
v-1 ¦ (v-q)\ (p-2q)\v\2* K hk>

: Af (xx) ...Af (Xp_tJ : T [(-L ?°,G*/?,)?
" (fj finfxx) & fxp_,f] (37)

Comparison of (37) with (34) and identification of y with pi p — m/2 + q, v

q, q — 1, q — 2, ; m p, p — 2, p — 4, completes the proof of the first step.
From these considerations the meaning of the Coulomb term in the Lagrangian

(3l.b) becomes clear: it is part of a relativistic propagator and, in the development of
the S matrix, it gives all those contributions which in the intermediate theory are
provided by the operators of the unphysical photons. Though radiation gauge contains
only transversal photons in the external lines, all 4 components of the electromagnetic
potential are used in the internal lines.

The last step is to show that G^fx) is correlated to Dcßfx) — gpVDc by a

transformation (25). This is indeed the case, if we put F

dfx) dv dfx)

dfx) =-J2-jdzG(x-z) Dfz) (38)

So the operators of the intermediate theory (we denote them by A A axe given by

Ap Ap+dpdvd*A\ (39)IF F

Constructing the 5 matrix in the intermediate theory according to

S T exp {i J dz finfz) fA« +dpdvd*A]n)}, (40)ii
F
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we can integrate partially and use the continuity equation for p. As a consequence,
S matrix in Feynman gauge will appear, but since dfx) does not vanish for infinite
times, we get surface terms:

5 exp {j / dH Jlfx) 0V d * A\ff S exp {* / dH fin(x) dv d * A\n)
I t^—oa F F t^+tx, F

With the aid of the field equations, we have

/ dHH dvd*A"in= f dH D At dvd*Al=C±. (41)
(-^±oo F '—>.±oo F F

These are just the generators for the transformation (25). So for

follows with

Aout S+ Ain S
I 111

S e'lC-Seic* : A0f* S+ A™ S
fi 11.

I F F F F F

This completes the proof of the invariance of the S matrix.

VIII. Conclusions

Starting with electrodynamics in radiation and in Feynman gauge, we have first
defined by the use of gradient transformations two classes of gauges : the non manifestly

covariant class which describes only transversal photons in a positive definite
Hilbert space, and the manifestly covariant class which makes use of four photon
states in an indefinite Hilbert space. Field operators and propagators belonging to
different classes cannot be connected by simple gradient transformations since timelike

photons are polarized along the unit time-like vector. We have then treated the
S matrix in perturbation theory. That S matrix is invariant under transformations of
a single gauge class can be seen easily since in the integral J" A™ j"n dx the gradient
can be transferred to j"n by partial integration and the continuity equation can be

used. The surface terms for infinite time values are the generators of the gradient
transformations which relate the two in fields. Finally, the invariance of the S matrix
was proved under transformations leading from one class to the other. This was

possible through the Coulomb term in the Lagrangian of a non manifestly covariant

gauge which reintroduces the effects of the unphysical photons for internal photon
Unes. In the virtual states the electromagnetic field always enters with all four
degrees of freedom.
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Appendix
We show here some details of the calculation leading from (34) to (37).

Reordering the sums in (34) to equal powers of e by the substitution of p
m + 2 (n — m) we find

s-1z-/ ca' -^AAArT IA & c&r" «.>"] TI4T,
29 H.P.A. 39, 5 (1966)
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where the star * for the m sum means that m assumes the values m p,p — 2,p — 4,...,
1 or 0 depending on whether p is even or odd.

We then restrict ourselves to processes in p~th order which contain p — 2 q

external photon lines. Consider only the part with the photon operators:

S(p) £* f fdx)P... T [Affxf Affxf ...Ar fxm)] -

m

For each value of m we use Wick's theorem and make all possible contractions until
only

:A?(xJ...A*(xt_u):
remains. We get first, contracting in S(*' only from the right hand side over
neighbouring Ain, for m p the q functions

~l Dlr (Xp — Xp_x) — Drs fXp_2 — Xp_3) — Dtk fXp_2q+2 — xp-2q+l) •

for m p — 2 only q — 1 such functions (the first one is missing), etc. In the general
case for arbitrary m we get pt contraction functions Df where pi is fixed by m — 2 pi

p — 2 q or fi (p — m)f2 + q. Up till now, S'*' has the form

S(p) =£*f (dx)P ...(J- DÙ" : Af(xx) ...Af (xp_2q) :

m

Now we also take contractions over non neighbouring photon operators into account.
For the arguments xm xp_2+x there is a bigger number of contractions than those
considered above. The factor is

m (m—\) «-2/J41
~pf\ Af '

With this, we get finally

Sip) V* f (dx)P
iP+ml2 _Al 7^ (fr & Y

Zu J \ I m\(p-wi\2)\ (m-2p)\ n\2f- \i kh)

: Af(xx) ...Af fxp_iq) :T[[\jl G*^" (/*,)»¦]

or, with m — 2pt p — 2q, the result (37).
Note that in our abbreviated notation repeated indices k k in the propagator stand

for the space type of different summation indices to be contracted with the different
currents;'^.
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